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Abstract

In this report we examine the Bayesian method for testing for compliance
to a given threshold studied by Nicholson, Mensing and Gray. It is noted that
although this test and accompanying confidence intervals are valid for a single
event, it is incorrect to apply it or the confidence intervals to repeated events
at the same site unless the number of calibration events is large. Since in any
foreseeable future the number of calibration events is likely to be small, this
report studies the applicability of the Bayesian test in this case. The results
suggest that in many instances the Bayesian method examined here should be

used on repeated events with caution if the number of calibration events is less
than three.



1 Introduction

Over the last few years much of the interest in yield estimation and threshold
test ban treaty monitoring has shifted to the problem of properly monitoring
yields that are somewhat smaller than the current test ban limit of 150 Kt.
As a result of this interest in smaller yields it has become more important to
include the effects of unknown slope (in the standard magnitude/yield relation)

on estimated yields, associated confidence intervals, and related hypothesis tests.

The most popular approach for addressing this problem thus far has been
through the Baysian methodology. See W. L. Nicholson, R. W. Mensing and H.
L. Gray, or R. H. Shumway and Z. A. Der for example. In each of these papers
the authors make use of prior distributions on the parameter spaces to obtain
estimates of yield, confidence intervals for yield, threshold type test of hypotheses,
and associated F-numbers which allow for errors in estimating geological bias and
slope as well as several other unknown parameters. Although such results are
exactly what was needed in one sense they present a problem in another. That
is, although the confidence intervals and hypothesis tests are valid when related
to a single event from all possible parameter configurations they do not represent
such intervals or hypothesis tests when applied repeatly to a fixed test site (This
will be explained in detail in section 4). This problem was noted by Fisk, Gray,
McCartor and Wilson (1991) for the case where the slope is known.

In this report we examine the current Baysian approach to yield estimation
from several practical aspects. That is we consider:

1. The power of the tests for several different parameter configurations and
yield training sets.
2. The maximum benefit of previous no yield data regarding its contribu-
tion to increasing the power or decreasing the F-number.
3. The actual error rate or confidence interval (CI) that results when these
Baysian tests or CI’s are applied to repeated tests at the same site.
Item 3 is of special interest if the number of calibration events is small and the

particular test site is an anomaly, i.e. a site whose parameters differ substantial
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from their corresponding Bayesian means. We shall refer to our investigation of

item 3 as a robustness study.
2 Notation and Background

Let Y; denote the jth yield at a given test site and let m;; denote the ith
magnitude associated with the jth yield,

mi; = A; + B,'Woj + e;; (1)

t = 1,2,---,p and j = 1,2,---,n, where Wy; = logY; — logly = W; —
Wy, with Wy given and the e;; represent random errors. Further let A =
(A1,--+,Ap), B = (By, -+, Bp), and e; = (e1j,€2j, -, ep;j) where the prime
denotes transpose, and the e; are normal random vectors with mean (0,0, ---,0)’

and known variance L. We can now write (1) in the matrix form
m; = A+ BWoj + e;. (2)

In the model defined by Equation (1) A and B are vectors of parameters
that depend on the test site and the particular magnitude being considered. For
example mj; may refer to the jth m; value while mg; might be the jth mL,
value. Ideally A and B in (2) would be known. This is in general not the case.

However there may be sufficient information regarding A and B to restrict
their possible values. That is, it is arguable that one can reasonably impose
a probability distribution on A and B a priori. This is in fact the reasoning
that leads to a Bayesian approach to the problem. Specifically we suppose that
B = (A, B') has a prior normal distribution with known mean Hg and covariance
Zg. In the future we will denote this by 8 ~ N(ug, Eg). Therefore in Equation
(2) we no longer treat A and B as fixed parameters but as random variables or, if
you like, “parameters” which take on their possible values with some probability.

Now suppose n calibration events are available, i.e. n events at a given site
for which the yields W; are known (or at least known sufficiently well that we
can neglect the errors in the observed W;). Then we can determine a compliance

test and its associated F-number which properly integrates the information in the
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prior distribution with the data from the calibration events. This is the subject

of the next section.
3 A Bayesian Test of Compliance

In order to determine a test for compliance which makes use of prior informa-
tion regarding 8 and the calibration events, we need to determine the probability
density function (pdf) for m = m,; given mj, my,: - -, my. We will denote this
pdf by f(m|mi,), where m, = (my, mg,---,my,). Given n events for which the
yields are known we wish to develop a compliance test for an (n + 1)st event for
which the yield is unknown.

Note that the model in (2) can be written in the form

mszjﬂ+ej7j=1a2a"'7n) (3)
where
10 --- 0 Wy 0 --- 0
61 .- 0 0 Wy, --- 0
D;= Dol : S : =1, W) 8L
00 ---1 O 0o .- Wy

and ® denotes the kronecker product.
Case 1: B known
The problem is a simple one when B is known since in that event m is

independent of the previous mj, mg,---, my, t.e. Eﬂ = 0. The hypothesis Hy,
to be tested is

Hy: W< Wr
against (4)
Hy : W> Wrp,

where W = Wy, 1. If we shorten the notation Wy 511 to We, i.e. take Wy 41 =

W, we can write the hypothesis test in Equation (4) in the form
Hy : We < Wer
Hy : We> Wep,
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where W, = W — Wp. In this case f(m|my) = f(m). Now let

p
my = Z"imb (5)
i=1

where the r; are known weights with 0 < r; < 1 and Zle r; = 1. It is well known
that if e; ~ N(0,Z.), then m ~ N(DB, X¢) where D = (1, W) ® I, and it then
follows at once that m, ~ N(r'DB,r'Zer), where r = (r1,rq, -+, rp) . Therefore,
under H), we take W, = W, so that a test of the hypothesis in Equation (4) at

the 100« percent significance level is given by the following rule

Reject Hy if myp > Tiq, (6)
where
Tia = ¥'D7B + 241/ Zer, (7)

D7 =(1,W.r) QI

and 24 is the 100(1 — a)th percentile point of N(0,1) distribution. We shall refer
to the test defined by the rule given by Equation (6) as Test 1.

Case 2: # unknown

Of course B is not known and therefore Test 1 cannot be used in practice.
It does however furnish us a base line for comparison purposes. What can be
reasonably assumed, as we have already mentioned, is that 8 ~ N (yﬂ, P ﬂ), where
Bg and Eﬁ are known. In this case m and ™, are not independent and therefore
the problem is a bit more difficult. It can however be solved by making use of
the following theorem, the proof of which we include in the Appendix.

Theorem 1. Let m = myu4) be a p-dimensional magnitude related to
Won+1 = W¢ by the model of Equation (3). For k =1,2,---,n+1, let M) =
Yf=1my/k, My = 5oy Wojm/k, and Wor = 351 Woj/k. Suppose B
has the prior density N(pg,Zg). Then the probability density of m given my,
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f(m|my,), is N(g, X), where
-1 ‘
S=%[%.-H| I, 8)

§= g{(l, W) ® zgl}zﬁ [zﬁ + {En+1 ® (Ee/(n + 1)) }] )

A{Ba1 8 (Se/(n+ 1)} [251#3 +n(bozs!) ( ) )] e

My (5)
and

H = {(1,We) 81, } 85 [Bg + {Eny1 © (Ze/(n+1)) }]
{Eat1® (Te/(n+1))} {( Wl, ) ®Ip} , (10)

E 1 WO,n+1 -1
n+l — W n+1 W2/( 1) .
0n+1  2uj=1 Woi/(n+

Given Theorem 1, the problem is once again trivial and we can again write
down a 100a% significance level test. If m, is defined by Equation (5), then it
follows from Theorem 1 that the pdf of m, given mn is N(r'g,r'Sr), where p
and ¥ are given by (8) and (9) respectively. The desired test is then

Reject Hyp if my > T,

where
Too =T'p + 2o V' Zr, (11)

p and X are defined in Theorem 1 with W, = W_r, and z4 is the 100(1 — «)
percentile point of N(0,1). We shall refer to the test of Equation (11) as Test 2.
From Theorem 1 one can also obtain a confidence interval for W. For a

general treatment of the confidence interval problem with a Bayesian prior see
R. H. Shumway and Z. A. Der.



4 A Constrained Bayesian Test

In a recent report Nicholson, Mensing and Gray (1991) show how previous
magnitude data can be used to define a Bayesian prior for 8 even though the
associated yields are not available. We shall refer to such data as “no yield”
data as before, and we also assume that n calibration events are available. In
this section we consider the question, “What is the maximum information that
can be gained by this approach ?” In order to accomplish this we will consider
the problem of the previous section but we let the number of no-yield events
go to infinity. That is, we consider the case where the “no yield” data set is
sufficiently large that the parameters that are estimable from that data can be
estimated without error, i.e. they are known. By developing a test for this
case and comparing its power to Test 2 we are able to determine the maximum

improvement in power (or reduction in F-number) obtainable in the approach of

Case 2.
Specifically we note that the parameters

Ci—1 = B‘i/Bh 1=2,3,---,p
and (12)
pi-1 = Ai — ci—14y,
do not depend on yield and hence consistent estimates for ¢;_1 and p;_1 can be

obtained from the “no yield” data. Thus in this case we take c;_1 and p;_1 as

known, ¢ = 2,--., p. Moreover under these constraints the model of Equation (3)

becomes
m; = pr, +Dyp;B) +ej, (13)

where ﬁl = (AI’Bl)la BL = (OvlJ'l’ H2, 1/“1)-1), and

1 c1 ca -1\’
D Lj = .
Wo; aWo; caWp; -+ cp—1Wopj
Thus the original 2p dimensional parameter space for B is reduced to the 2

dimensional one due to the constraints in Equation (12).
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To determine a test for the model of Equation (13) we need the following
theorem, the proof of which is included in the Appendix.

Theorem 2. Let m = my] be a p-dimensional magnitude related to
Wo,n+1 = We by the model of Equation (13). Suppose B1 = (A1, B1) has the
prior pdf N(py,E;). Then the pdf of m given My is N(pc, Ec), where

-1
2c = [Ip - DL,n+1Q;.|1.1DIL,n+12;1] Eea
pe=p;+ 2 DL 1 11Q7 1 Ra,

and

n+1
Qni1 =271+ Z(Dll;jzngLj),
—~

n
Rn =Z7 1l + Y Dp;E0 Y (mj — py),

j=1
1 cl c9 Cp—1
DL,n+1 = .
Wc Cl WC C2 WC tre Cp_IWc

From Theorem 2 it follows that my ~ N(r/ gie, r'Ecr) and hence a 100(a)%
significance test of the hypothesis in Equation (4) is given by the following rule:

Reject Hy if my > T34,
where
T3o = pc + 2aV/ P Zer, (14)

and z4 is the 100(1 — a) percentile point of a N(0,1). We shall refer to the test
of Equation (14) as Test 3.

5 Power Curve Comparisons

In order to assess the impact of imposing the prior information, we compare

the power of the following tests:



Test 1 :  a test of hypothesis based on the assumption that the population
parameters are known.

Test 2:  a test of hypothesis based on the unconstrained Bayesian ap-
proach and the assumption that the parameters are unknown.

Test 3:  a test of hypothesis based on the constrained Bayesian approach

and the assumption that the population parameters are un-

known.
The power at W is given by

POWCI'(W) = P(mr > Talﬁin, W).
Also the F-number of the test is given by

F =10"r—"r,

where Wr is the value of the log yield at which the power is 0.5.
Since we specified the critical values of Test 1, Test 2, and Test 3 in (7), (11),
and (14), respectively, it is easy to show that the power of Tests 1, 2, and 3 are
’(Dr-D
Power(W); =1— @ (za + _(\/'-Tr’_Tr)ﬁ_) , (15)
Power(W)s =1— @ O(s — bw) + 2aVX'Br ,
\/ r’EWr
Power(W)3 =1~ & O (Be = How) + Zav/IEer ,
vV l‘lzcwl‘
where D = (1, W) ® I, ® is the cumulative distribution function of N(0,1), and

{pw, 2w}, {#cw, Bcw} are defined as in Theorem 1, and Theorem 2, respec-
tively, with W given.

(16)

(17)

From (16) and (17) it is clear that the power of Test 2 and Test 3 depends on
the value of my,. Therefore in order to compare with Test 1 we generate two equiv-
alent data sets for Test 2 and Test 3 with fixed values of {Ze, pg, Xg, c1, p1,n}
when p = 2. With the known parameter and the generated data sets, we com-
puted the power of Test 1, Test 2, and Test 3 on the 100 equally spaced grid
values between log 150 and log 300 for W from (15), (16), and (17), respectively
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~and Wy = log 125. We ran this simulation 20 times to get the mean of the powers
for Test 2 and Test 3. Power(W);, mean Power(W)s, and mean Power(W)3 are
plotted on Figure 1 through Figure 8 for various values of {Z,, Bg, Xg,c1, p1,n}

Now we summarize some findings from the simulation. As we can see in Fig-
ure 1 through Figure 3, mean Power(W )9 and mean Power(W)3 rapidly converge
to Power(W); as n gets large. Similarly average F9 and average F3 converge to
Fi as n grows, where Fy, F9 and F3 are the F-numbers of Test 1, Test 2, and
Test 3, respectively.

The relatively better performance of Test 3 over Test 2 is observed regardless
of the values of ¢; in Figure 1 and Figure 4. However, Figure 5 and Figure 6
show that the overperformance of Test 3 against Test 2 diminishes as the standard
deviations of Ag and By (0 4,,0p,) decrease to those of A} and Bj, respectively.
Figure 7 and Figure 8 show the same phenomenon as o¢, becomes small enough
to be similar to g¢,. Thus it would appear that if the values used here for pg,Xg
and X are representative, additional no yield data would be of little value.

6 Robustness

In the previous sections we have developed a test of the hypothesis of com-
pliance of the (n + 1)st event given n calibration events when B8 is unknown. We
referred to this as Test 2. In making use of this test it is important to under-
stand the nature of the false alarm rate or significance level a. Possibly the best
way to interpret a is to think through a simulation for estimating a. In order
to simulate the process one would first generate 8 from N(pg,Xg) and then,
given B and W;,i = 1,---,n, generate e},ey, -, e, to obtain my. Now let-
ting Wi4+1 = log 150 and generating e, +1 to obtain my, 1, one would apply the
test and note the decision. This simulates the senario of obtaining n calibration
events and one additional event of unknown yield. This entire process would be
repeated a large number of times and the proportion of incorrect decisions would
approach a. Table 1 below describes the method. The B; denote the values of
B generated on simulation # i. Let my541(3) = Ym; n41, where m; 41 is the
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(n + 1)st magnitude vector generated in the sth simulation, ¢ = 1,2,---, 1.

Table 1. Simulation procedure for estimating the false alarm rate

Simulation # 1 Simulation # 2 .o Simulation # [
Given ﬂl,WI,"',Wn ﬂ27W17""Wn ﬂth,""Wn
Generate mii,- -, M]n m1,:*, M2y myy, -+, My,

Generate mj 541, W =1log150 mg 41, W =1og150 .-+ my, 1, W =logl50
Decision Reject if Reject if ‘.- Reject if
mr,n+1(1) > T2a(1) mr,n+1(2) > T2a(2) mr,n+1(l) > T2a(l)

Now, if we define a random variable X such that X = 1if m, 511(j) > Taa(J),
and otherwise X = 0, it follows that

l
a = lim ZXJ-/I= lim X a.s.

l—o00 4 l—o0
j=1

We should note, however, that in practice the application of these tests will
be to events mp41,Mp42, -, Mnts at the same site. That is, what is needed
is essentially a test so that the empirical false alarm rate or significance level
approaches a as s gets large rather than as [ gets large. We shall refer to the
sample false alarm rate as s — oo as the “actual significance level” or “actual

false alarm rate” and denote it by a(mp|n,8). Thus

a(ﬁnln,ﬂ) = P(mnp+s > T2al_rh+ﬂa Wh+s = log 150, 8) (18)

= lim (# of m,; > Tas)/k.
k—oco

It can be shown that
. — =
nl-l—{go a(mpy|n, B) = a.
Thus when n is large, a(mp|n,B) ~ a regardless of the observed value of B.
However in most instances n will be small and therefore the question which

arrises is, “How robust is a to small values of n and unusual values of B, i.e.

values of B far removed from pg ?” That is, “How close is a to a(mp|n, B),
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the actual false alarm rate, when n is small and B is substantially different from
pp?”

In addition to the “actual false alarm rate” we need to obtain the probability
of rejecting Hy as s — oo. We shall refer to this as the “actual power” or the

“actual probability of detection”, and denote it by P(Win, 8). Thus
P(W|n, B) = P(mn+s > Toq|Tn, B, Wnts = W) (19)
= lim (# of m, > Toa)/k.
k—co

Then it also can be shown that
Jim_ P(W|n, 8) = Power(W).

From (18) and (19) it is clear that a(mn|n,B) and P(W|n,8) depend on min.
Thus for every sample of my, these quantities will be different. We can however
estimate E[a(T,|n, B)] and E[P(W|n, )] for various values of 8 and n. This is
the topic of the remaining portion of this section.

In order to investigate the robustness of the actual false alarm rate,
a(mp|n, B), a small simulation was performed for a variety of values of n and B.
Specifically, taking p = 2, pg = (pa,; B4, 1B, £B;) = (44, 1,1), 04, =04, =
o, = op, = 0.05, ppo = pB = 0.5, paAB = 0, 0¢; = g¢, = 0.05, pe = 0.5, W =
log 150 and Wy = log 125, we considered the cases

B=ng+C-(04,,04,0,0),
where C = 0,+1,+2, forn =1,2,3,5,10 and 100.
For each case a value of my,| was obtained 10,000 times (or equivalently
my4i, i =1,---,10,000 was obtained) and a(mn|n, B) was estimated by

R of rejections
&(Tnln, B) = 2L

10,000

As already noted a(miy|n, B) depends on m, and clearly the same is true about

(20)

&(Ty|n, B). Therefore a reasonable measure of the robustness of Test 2 when n
is small is the E[a(mMp|n,B)] = po. To obtain an estimate of pq, for each case

we generated 20 repetitions of &(Tiy|n, B8), i.e.
1 20
fa = 20 ; &i(r_ﬁnln, B). (21)
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The results of these simulations are given in Table 2 for a = 0.025. It is worth
noting the relatively large standard deviation of &(mpy|n, 8). In view of the val-
ues of fig one can conclude that the distribution of &(mp|n,B) is quite skewed
to the right or at least contains some extreme values on the right side. That
is, values of &(Mp|n,B) much larger than fi, are more frequent than values of
&(mp|n, B) less than fi,, or substantially larger values of &(mp|n,B) than jiq
may not be unusual. Since &(Mi,|n, B) is obtained from 10,000 repetitions, it fol-
lows that &(mp|n, 8) = a(1na|n, B). So similar remarks can be made regarding
a(mp|n, B). The result of this is that Table 2 presents these results in a conser-
vative way since most people would interpret the mean as a typical value of the
false alarm rate. What we are cautioning here is that, in fact false alarm rates
substantially larger than the mean values shown in Table 2 will be much more
common than in a symmetric distribution. We probably should have included

the median in Table 2, but that was not calculated.

It should be noted that if C < 0, the Bayesian estimator of yield will un-
derestimate yield and hence the true false alarm rate will be too small while if
C > 0 the estimator will overestimate yield and hence the false alarm rate will
be too large. From inspection of Table 2, it appears that if we have only 1 or 2
calibration events, this effect can be large, and hence in this case the Bayesian
significance level or CI may be seriously in error. On the other hand if n > 5 the
method might be considered adequate, even though for C < 0 the false alarm
rate may still be sufficiently too small that it could very adversely effect the

power, i.e. the chances of detecting a violation.

Power Considerations

Figures 1 - 8 compare the power of Test 1, Test 2, and Test 3 for various
parameter configurations. As in the case of the false alarm rate, if these parame-
ter values are representative, little is to be gained from additional no yield data.
Also, from the comparison of the F-numbers it does not appear that a great deal

is to be gained by taking n > 2. Unfortunately these rather pleasant results do
not uniformly extend to the actual power.
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Figure 9 through Figure 36 compare the “actual” power of Test 2 to the
power of Test 2, i.e. they compare P(W|n, 8) to P(W). The figures also compare
the F-number for Test 2 to the “actual” F-number. For n < 2 it is clear that
both the power and the F-number are seriously effected if C = +2 and the same
is true for C = %1 if n = 1. It should be pointed out that the small F-numbers
associated with C < 0 are a result of very large false alarm rates and should not

be viewed as improved tests.

Concluding Remarks

In this report we have investigated the robustness of the Bayesian method
(referred to as Test 2) for testing compliance of an observed yield to a threshold.
Although the simulations reported here were not exhaustive, they were adequate
to demonstrate that the Bayesian method for testing compliance is probably not
satisfactory if there are only one or two calibration events. Moreover it is highly
desirable to have five or more calibration events to guarantee good agreenent
with the stated significance level. Similar remarks could be made regarding the
corresponding confidence intervals.

. The consequence of these findings is that if it is unlikely that several cali-
bration events will be available, Test 2 and confidence intervals associated with
Test 2, the Bayesian tests and CI discussed by Nicholson, Mensing and Gray, and
those introduced by Shumway and Der should be used with care. In fact if the
number of calibration events is less than 3 it would probably be wise to consider
a constrained likelihood method as an alternative to the Bayesian method, or, if
possible, the Bayesian method should be extended to include the case of several

events following the calibration events.
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Table 2. Estimate of Actual False Alarm Rate E[a(n,8)], a = 0.025

C=-2 C=-1 C=0. C=1 C(C=2

n=20

o 0.0000  0.0000  0.0023  0.0488  0.3165

st. dev. fig 0.0000  0.0000  0.0001  0.0006  0.0011

st. dev. &(my,|n, )  0.0000  0.0000  0.0004  0.0025  0.0050
n=

fi 0.0006  0.0034  0.0149  0.0532 0.1418*

st. dev. fig 0.0003  0.0013  0.0044 0.0112  0.0205

st. dev. &(my|n,B) 0.0012  0.0058  0.0197  0.0499  0.0919
n =

fia 0.0034  0.0089  0.0225  0.0498  0.0985

st. dev. fiq 0.0014  0.0030  0.0061  0.0107 0.0173

st. dev. &(my|n,B)  0.0062  0.0132  0.0273  0.0479  0.0774
n =

fia 0.0046  0.0099  0.0193  0.0364  0.0643

st. dev. fiq 0.0018  0.0033  0.0055  0.0087  0.0132

st. dev. &(mq|n,8) 0.0079  0.0146  0.0246  0.0389  0.0592
n==9

fia 0.0076  0.0121  0.0192  0.0283  0.0425

st. dev. fiq 0.0019  0.0029  0.0042  0.0058  0.0081

st. dev. &(mn|n,B)  0.0084¢  0.0128  0.0190  0.0259  0.0363
n=10

fo 0.0119  0.0155  0.0201  0.0255  0.0316

st. dev. fiq 0.0017  0.0025  0.0030  0.003¢  0.0040

st. dev. &(Ty|n,B) 0.0075  0.0110  0.0132  0.0152  0.0179
n = 100

fa 0.0229  0.0230  0.0234  0.0238  0.0240

st. dev. fiq 0.0015  0.0013  0.0016  0.0014  0.0015

st. dev. &(qa|n,B) 0.0065  0.0058  0.0072  0.0063  0.0065
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* note: For symetric confidence intervals a 100(1 — 2a)% two sided confidence
interval corresponds to a one sided a—level significance test. For example, for
Test 1 of size 0.025, the corresponding two sided confidence interval is a 95%
C.1. This suggests that if the “actual” significance level is 0.14, the actual C.I.
could be a 72% C.I. That is, if the site geological bias is 20 greater than the
expected bias, p 4, then even though the Bayesian significance level is 0.025 and
the Bayesian C.I. is 0.95, the actual significance level is estimated here as 0.14

and one would assume that the actual two sided C.l. is around 72%.
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APPENDIX: PROOFS

Proof of Theorem 1
For the new observation m related to W,, the conditional pdf of m given

m,, f(m|m,) is as follows:
fCunltn) = [ f1(m, BlTHn)dB
= [ falmiB, T fo(BI )8
= [ Awmip)a(BITn)d8, (A1)

where f1, fo, and f3 are the probability densities. The last equation is obtained
due to the independence between m and my, when B is given. The conditional

distribution of B given M, may be computed using Bayes’ law as follows:

| WAL(EIB)

where h is the prior density of the parameter vector f and L is the likelihood

(A2)

function for the data M, given values of 8. If we assume e; are independent

multivariate normal, then

L(Wq|8) = [] »(m;|B),
j=1
where
18Y — (9P (5. [~1/2 _ Ll naYY-lm. D
$(m;|8) = (27)P|Zel M 2exp{ — 5(m; - D;8YE5 (m; - D;8)}.
Note
f2(m|ﬂ)L(_rﬁnw) = L(?ﬁn+llﬁ, mp41 = 1N, Wn+1 = Wc)

since e; are independent. Thus referring to (A1) and (A2) leads to

f(m’r—n*n) — fh(ﬂ)L(ﬁn+1|ﬂs My 1 = m, Wn+1 = WC)dﬂ
J H(B)L(win|B)dp

Thus if () is available, f is completely determined.
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Note
WBYL(EnlB) o eap| ~ 3 {(B~ g T5'(B - p)
n
+(m; ~D;8)E; (m; — D;8)}. (A3)
i=1
The exponential of (A3) is —1/2 times

n n
£S5 +)_ DT D;18 — 2upB5t + Y miTo ;18 + wpTy g
j=1 i=1

n
+ Z m'jE;'Imj. (A4)
1
Let Wy, = Z;’l—l Woj/n. Since D; = (I,WOJ’) R1Ip,.

ZD’ £;1D; i ((1 Wo;)' ®1,,)2-1((1 Wo,)mp)

1 Wy,
oy w3 ) o=
1 WOj Woj

where

( 1 WOn )—1
n = _ n 2 .
Won Zj:l Woj/"

Let m,) = > j=1mj/n and My () = > j=1Wojm;/n. Then it is easy to
verify that

jz::lmgzglnj - (mgn), m'W(n)) (12 ® (Ee/n)—l).
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We can rewrite (A4) as follows:

825" + {Bn o (Se/n) }—I]ﬁ — [y + (), By )

(12 (Zo/n) )] B+ w5B5 g + 3 miEsim,
j=1

- (- 2) 55"+ {0 (2om)) ] (-2
~ 2[5+ {Ba® (Be/n)} | Zn + iy g + ;zlm;.zglmj,
where
Zn =[5!+ {En (z:e/n)}_l]—1 [Eglﬁp +{ne (Ee/TI)_l} (:;(’i))} :

Since —(1/2)(8 — Zn)'[EEI + {En ® (Ze/n)}"1(B — Zn) is the exponential
of the multivariate normal density with mean Z, and variance [2;1 + {En ®
(Be/n)} 171, and [ ezp(~(1/2)(B - Zn)'[S5" + {En ® (Be/n)}~1(B — Zn))dB

is a constant, it can be shown that

[ HOLE g8 x cap| - (/D - Zu[25! + {En e (Be/m)} 2

n
+ ”;92;1“'9 + 2:1 m}Eglmj}] .
J:

For the new observation m, let f(m|my) be the conditional density of m

given my, in the unconstrained case. Then

_ fh(ﬂ)L(r_n)n_*_llﬁ, mMp4]1 = M, WO,n+1 = W,)dB

Cmimin) [ h(B)L(RnlB)dB
. e:z:p[ _ (1/2){ ~ 2z [2;1 + {E,,+1 ® (Ee/(n + 1)) }_1] Zni1
+ 2! [2;1 + {E,, ® (ze/n) }_1] Zon + m'zglm}], (A5)
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where

Zpe1=R31 [zglyﬁ + {120 (Se/(n+1) "} ( e )] ,

. r_nW(n+1)
Rpt1 = E5! + {Ent1 @ (Be/(n+1))}

e ( 1 Wo,n+1 )_1
n+1 = _ 3
Wontl Lo Wii/(n+1)

n+1

Mniq) = » mj/(n+1),
j=1
n+1

My (nt1) = > Wojmj/(n+1),
Jj=1
_ n+1
Wont1 = Y Woj/(n+1),
=1 -

with my41 = m and Wy 1 = We.

Note
My q) = (n/(n + 1)) m) + (1/(n + 1)) m
Ay (1) = (0/(n + 1)) ipyn) + (We/(n + 1)) m.
Then ’
M1 1) m(5) 1
(rhw(n+1)) ( / +1)) (ﬁlw(n)> ¥ <1 ( +1)) We °

Therefore the exponential of (A5) is —1/2 times

= My 1Rnt1Mpp1 + 25 (25! + {En @ (Ze/n) }'1] Zn — WS p

+ (m—p) 27 (m—p), (46)
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where

Mns1 = Rphy [251#;3 + (/4 1) {B e (Be/n+1) ) ( e )] ,

My (n)

=1, [ze ~H| L.,
p=2{(1, W) 0 571} 55[Bp + {En1 @ (Ze/(n + 1)) }]

'{En+1® (Ee/(n+1))} 251#ﬂ+"<l2®2§1) ( m(y,) )],

My ()

with

H = {(1,W.) ® T, } B4 (L5 + {Ent1 ® (Ze/(n+ 1)) }]

ABnt18 (Be/(n+1)) } { (wlfc) ®Ip}'

Since the first three terms in (A6) are not function of m, which are constants,
the theorem holds.
Proof of Theorem 2

Note the distribution of m; given B; is the multivariate normal with mean

gL+ Dp;B1 and variance Ze.

B(B1)L(TnlB1) ox exp| — (1/2){(B1 — m1) ET1(B1 - w1)
+ Y (mj — pr — DAY S5 (mj — up — DB} | (AT)
j=1

The exponential of (A7) is —1/2 times

(81~ 2 [B7 + zn: (D7;22'DL;) |(B1 - Zn) - 24 57 + Xn: (D;25 D)
j=1 j=1

n
Zn + P T + Y (mj — pr)EgN(mj — pp),

=1
where
Zp = [}31‘1 + zn: (D,szngLj)]-l [21_1#1 + zn: DB (m; - #L)]-
j=1 j=1
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Hence

JECZCAA
(oS emp[— (1/2){ -z, [2'1-1 + 2": (D'LJ-EEIDLJ-)] Z,
Jj=1

n
+ W T e+ Y (my - pr) 5 (my - )}
j=1

For the new observation m, let f.(m|my,) be the conditional density of m
given ™y, in the constrained case. Then
_ JRB)L(Wn 1|81, mpy1 = m, Wonyy = We)dfy
J R(B1)L(in|B1)df1

oc e:z:p[ . (1/2){ —Z [21—1 + nf:l (D'szglnLj)] Znt1
, p

fc(mlﬁn)

n
+Zn |7 + Y (D1,;55'D ;)| Zn + (m— pp)' St (m - wp)}),
j=1
(A8)
where Z,, 1 is defined as Z, with m,,;; = m, and
1 c1 co cp—1
DL,n+1 = .
Wc Cch C2Wc cee Cp_ch
For k = 1,2,---,n+1, let R, = Ei’lpl + Zle D'szgl(mj — pr), and let

Q= z“1_1'*'E:_];zl(Dl_r,_jz:(;lDLj)- Then with Zp4) =Rp +D,L’n+12€—:-1(m_#[4)7
it is easy to show that (A8) is

ezp| ~ (1/2){ ~ RhQ7} R + 25QnZn + (m — ) |21 ~ 551D o1 Q7
D185t (m = ) - 2RLQE1 DY gy Bo(m - pip) )]
o< ezp| — (1/2){(m - pe) 71 (m - o) }],
where
-1
B, = [Ip ~Dprn1Qsl DL, +12g1] T,
Be = pL + EcEEIDL,nﬂQ;}.lRm-
The last result is obtained because Qn, Qn+1, Rn, and Zy are not function of m.
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