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Abstract

Quality improvement programs in recent years have increasingly stressed the
need to conduct experiments to identify features of products or processes that can lead
to enhanced quality. Competitive pressures mandate that these experiments be
simultaneously information rich and resource efficient. Many multifactor experiments
are conducted by varying only one factor at a time. Proponents of statistical design
strategies, which vary several factors simultaneously, have demonstrated superiority
according to technical criteria such as design efficiency. In this article, the dynamic
character of one-factor-at-a-time experiments is exploited to demonstrate its clear

geometric disadvantages relative to statistically designed experiments.
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1. Introduction

One-Factor-At-a-Time (OFAT) experimental design strategies for changing
factor settings are cited often in the statistical literature as strategies that should be
avoided. However, these same design strategies are widely used and advocated in
industrial applications. In contrast, statistical design strategies (e.g., complete or
fractional factorials conducted in completely randomized designs) are strongly
recommended by the statistical community and are often avoided in industrial

applications.

Statistical design strategies involve an experimental protocol which specifies
simultaneous changes in two or more factors from one test run to the next. The
resulting designs geometrically attempt to cover the experimental region of interest
within the constraints imposed by the number of test runs allowed. The OFAT strategy
includes a dynamic or sequential aspect which results in designs that have substantially
inferior coverage of the experimental region than the statistical designs. This dynamic
aspect results more from a mixing of experimental goals than from an inherent
advantage of the OFAT strategy over the traditional statistical approach. Our objective
in this article is to contrast the properties of the OFAT strategies with those ensuing
from classical statistical design approaches. We attain this objective primarily by

comparing the geometric properties of each type of design.

Many statistical textbooks on experimental design provide a description of an
OFAT strategy (e.g., Box, Hunter, and Hunter 1978, Chapter 15; Mason, Gunst, and
Hess 1989, Chapter 6). Taylor, et al. (1973) provide a detailed explanation of a
sequential OFAT strategy for the minimization of a cost function, a strategy based on
Friedman and Savage (1947, Chapter 13), within the context of a discussion of three

multivariate optimization techniques. This OFAT design strategy can be briefly



described as follows (see Section 2 for further details).

Suppose that y = f(x;, Xy, ... , X)) is a response which is a function of factors x,
Xy, ... , X, and it is desired to find a combination of values of the factors which
maximizes y. Assume for simplicity that the factors are discrete-valued; i.e., each x; can
take on only m distinct values. First, the values of x,, x3, ... , x, are fixed and the
response is obtained for each of the m values of x;. The value (or level) of x; that
produces the maximum value of the response for the m test runs is then identified. The
value of x; is then fixed at the level, say x,,, which maximizes y. Now x, is varied
across its levels and a value, say X,,, 1s identified which maximizes y. This procedure is
repeated sequentially for all of the factors until the list is completed. Note that this
process requires a maximum of mk observations -- an important feature that is
discussed later. There is still some ambiguity in this description of the OFAT procedure
due to the ordering of the factors (i.e., which factor is named x,, etc.), the choice of
initial values for each of the factors, how many of the levels of each factor are actually
tested, and whether any repeat tests are conducted to assure a stable solution. These

ambiguities do not materially affect the comparisons made in the sections which follow.

A representative illustration of the OFAT design methodology is Marlow and
Mason (1985). In this experiment on leakage of pipe connections used in the oil and gas
wells, a number of controllable factors, including misalignment, tong speed, rocking,
pipe rotation, and manufacturer, were varied one-at-a-time in an OFAT scheme. The
resulting data base was expanded to include several uncontrolled variables (covariates):
shouldering torque, final torque, thread contact, multiple torque peaks, crooked pipe,
and tong slippage. Once the data were collected, the imbalance in the OFAT design and
the presence of uncontrolled covariates mandated that sophisticated regression

modeling, including an assessment and accommodation of collinearities, be used to



model the response. The need for sophisticated statistical modeling due to the
imbalance in the design is a common feature of OFAT experimentation. Had a balanced

statistical design been used, some of these problems could have been alleviated.

Pilon (1989) reports that product design often is optimized using finite element
analysis on data collected by changing factors in an unstructured OFAT experiment.
An alternative approach using inner and outer orthogonal arrays (fractional factorials)
popularized by Taguchi is applied to explore the finite element model space in a
structured manner that is more efficient than the OFAT strategy. The inner- and outer-
array type of design, although somewhat controversial because of the potential for the
confounding of effects and because of the size of the experiment, permits the

examination of both “control” and “noise” factors.

Leigh and Taylor (1990) refer to OFAT as the so-called classical experimental
design and “the one that has been favored almost exclusively among scientists and
engineers.” They describe it as a logical and orderly approach to experimentation that is
superior to the “shotgunning” intuitive approach sometimes favored by mnovice
researchers. They note as drawbacks to the technique “lack of information about errors
resulting from material variation, bias errors, and errors resulting from the sequence of
testing”. Perhaps the most important drawback is the lack of information regarding the
interaction between factors. These authors recognize the advantages of statistical
designs and suggest that their use will increase with the advent of the personal
microcomputer and the development of statistical software packages which incorporate

statistical designs.

Bajaria and Copp (1987) note that for improving a stable manufacturing process
there are two competing strategies -- one relying on the OFAT “trial-and-error

approach” and the other relying on methods grouped in the phrase “statistical problem



solving.” The authors draw an effective analogy between trying to open a lock by
testing one key (variable) at a time, OFAT, versus trying to open a combination lock
by simultaneously changing several factors, statistical problem solving. The “one-key-at-
a-time” approach is no longer preferable since optimal solutions to most current
scientific and engineering problems ordinarily rely on optimum combinations of several
factors, not on a single one. It is further noted that most American manufacturers today
have gained knowledge of their products and processes through OFAT strategies and
may have reached the upper limit of the rate at which trial-and-error creativity can
progress. Appropriate use of statistical methods is recommended as a means of

achieving further progress.

Thomas (1974) notes that in small models where all factors are independent and
have no interaction effects on output, OFAT may be acceptable. However, in sensitivity
testing of large-scale computer models where such assumptions are not justified, the use
of statistical design of experiment techniques (e.g., factorials) leads to a better
understanding of model sensitivity to specific factors and, equally important, to their

combined influences.

Roussel et al. (1984) note that in the photoresist process, a critical technology in
semiconductor wafer fabrication, start-up is very critical. A common method used to
characterize the needed processes is to first find a point where the process works, then
to vary a single parameter (factor) at a time while keeping the others constant, an
OFAT strategy. Since several parameters can be important in a positive photoresist
process, it can be a lengthy process to explore all of them one-at-a-time, and
interactions between two or more of the factors may not be discovered. The authors
recommend a “statistical strategy of experimentation” utilizing factorials, Plackett-

Burman designs, and Box-Behnken designs to overcome the limitations of OFAT



techniques.

These references to the use of OFAT strategies in the engineering literature point
out both the widespread use of OFAT designs in engineering and scientific applications
and the anecdotal recognition of their shortcomings. In the remainder of this paper, the
weaknesses of OFAT experimentation are more comprehensively discussed in a
structured discussion of design geometry and the requirements of good experiments. In
Section 2, a paradigm for the dynamics of OFAT experimentation is developed.
Deficiencies in this paradigm are geometrically demonstrated. In Section 3, guidelines
for the statistical planning of experiments are shown to be seriously lacking in OFAT
experiments. Recommendations for the selective use and the avoidance of OFAT

experiments are made in Section 4.

2. Characterization of OFAT Designs

OFAT experimental designs, like all experimental designs, consist of a sequence
of design points laid out in a geometric pattern. If an experiment involves changing k
factors, each test run can be represented by a set of values (x;, x,, ... , i), where x;
represents the level chosen for the jth factor. Because of this representation, the selected
design points form a geometric pattern in k-dimensional space. The shape and
dimensions of this pattern depend on the strategy and dynamics used to select the

points.

As an illustration, consider a three-factor experiment. If each factor is to be
tested at three equally spaced levels, the experimental region, perhaps after suitable
coding, can be represented as the surface and interior of a cube. A complete factorial
experiment with one or more test runs conducted at the center of the design also could

be geometrically represented as a cube similar to Figure 1. The points represented in



Figure 1 are all combinations of (x;, x;, x3), with each x; taking the values 1, 2, and 3.
Observe that test runs are conducted on each edge, each face, at each corner, and at the
center of the cube. The cube in Figure 1 could either define the limits of the

experimental region or it may represent a subregion interior to the experimental region.

Using the same three levels as shown in Figure 1, all fractional factorial and
OFAT experimental designs for three factors, each at three levels, are geometric figures
consisting of subsets of the points in Figure 1. Figure 2 shows a one-third fraction of the
complete factorial in Figure 1. This fraction is commonly recommended (e.g., Cochran
and Cox 1957, p. 271) when it is not possible to conduct a complete factorial and it is
known that no interactions exist among the design factors. Qualitatively, it is a
reasonable design in such circumstances since each level of each factor occurs an equal
number of times in the experiment. Moreover, there is some geometric balancing in that
design points occur on three corners, three edges, and three faces. Of perhaps greatest
importance is the fact that one can evaluate the potential for this design to achieve the
experimental goals because the design points are fixed and known in advance of the
experimentation. Other designs may be deemed more appropriate once such an

evaluation occurs.

OFAT designs can also be represented as a geometric figure defined by subsets of
the points in Figure 1. Unlike traditional complete and fractional factorial experiments,
OFAT designs are dynamic in the sense that the final selection of points in the design is
dictated by outcomes observed during the course of the experimentation based on a
predefined strategy for choosing “optimum” points. A small initial set of points (x;, x,,

., X) is selected; i.e., the m points defined by listing all the m levels of one factor
while holding the levels of the other factors fixed. Once the outcomes from the initial m

test runs are known, a decision strategy is utilized to determine subsequent points at



which to test. All such strategies are based on the initial and subsequent outcomes and

are therefore dynamic.

In a three-factor, three-level experiment, one might initially choose to test all
three levels of Factor A with Factors B and C set at their middle levels. Alternatively,
one might initially choose to test all three levels of A with B and C set at their lowest
or highest levels. One could also choose to test all three levels of A with the levels of B
and C set to standard levels, regardless of whether the standard level for each of the
factors is its lowest, middle, or highest value. Obviously, there are many choices for
initial sets of points; however, once the data are collected on the initial set of points, the
strategy and the dynamics of the procedure dictate the next tests, as described in

Section 1.

Figures 3 and 4 illustrate two of the many possible geometric patterns that could
result from such a dynamic procedure. Suppose that the initial level for each factor is
chosen to be its middle level. Suppose further that as each factor is evaluated its middle
level turns out to be the optimum level. The experimental region tested is shown in
Figure 3. The centers of each of the six faces of the cube are all included, but there is no
information about extreme combinations of the factors on the edges or on the corners of
the cube. Alternatively, suppose again that that the initial level for each factor is chosen
to be its middle level but that as each factor is tested its highest level is selected as the
optimum level. The experimental region tested is shown in Figure 4. Five of the seven
locations of the test runs are on one face of the cube, and almost no information is
provided on all the other edges, faces, and corners of the cube. Note that in general, for
a design having k factors, if at any stage of the testing the optimal level of a factor
occurs on a face of the k-dimensional cube, all further testing will be restricted to that

face of the design space.



While one of the two OFAT designs shown in Figures 3 and 4 may be considered
equally appropriate as the design in Figure 2 in a particular experimental setting, it is
unlikely that both would be considered appropriate. Moreover, due to the dynamic
nature of OFAT experimentation, it is unknown prior to the experimentation which of
these two designs, or which one of many possible others, would actually be realized. It is
therefore impossible to evaluate, prior to conducting the ezperiment, whether the final

design points are likely to enable the experimental goals to be achieved.

To illustrate the potential detrimental effects of OFAT experimentation,
consider the data in Table 1 (Hart 1963). These data were obtained from a complete
factorial experiment involving four factors, three having two levels and one having four
levels. The outcome of interest is the final tension (psi) of an automobile engine head
bolt. The purpose of the experiment is to determine which combination of the design
factors produces the greatest (mean) final tension. The four design factors of interest are

stud type, initial tension, gasket type, and the position of the head bolt on the engine.

One test run of this experiment necessarily involves all four of the positions on the
engine. Because of this, the position factor does not influence the selection of a design
involving the other three factors. Consequently, attention can be concentrated on the
first three factors, a three-factor experiment in which each factor is to be tested at two
levels. Using the averages across the four positions as the responses for this experiment,
the eight averages in Table 1 constitute the results of a complete factorial experiment in
these three factors. It is clear from the averages in Table 1 that the combination of stud

B, initial tension B, and gasket B resulted in the highest average final tension.

Suppose that the experiment had been run using an OFAT design strategy.
Suppose further that stud A and tension level A were chosen to be the initial levels as

each level of gasket type was tested (run #1 = gasket A, run#2 = gasket B). Note that



gasket A (average = 2967 psi) would be selected over gasket B (average = 2875 psi) and
would be used in the remainder of the test runs. Next, with stud A and gasket A fixed,
initial tension would be tested at its B level (run #3). Initial tension B (average = 3638
psi) would be selected over initial tension A (average = 2967 psi, from run #1). Finally,
with initial tension set at its B level and gasket at its A level, stud B would be tested
(run #4). Stud A (average 3638 psi, from run #3) would be selected over stud B
(average = 3157 psi). The “optimum” combination of factor levels would then be chosen
to be stud A, initial tension B, and gasket A, with the mean final tension estimated to

be 3638 psi.

As mentioned above, the true optimum levels are stud B, initial tension B, and
gasket B, with mean final tension estimated to be 3790 psi. The cause of the selection of
the suboptimal levels of the factors is the choice of initial levels. There are starting
values that will lead to the correct optimum combination of levels; e.g., beginning with
stud B and initial tension B. There are, however, other starting levels in addition to the

one just illustrated that will lead to suboptimal levels; e.g., stud A and initial tension B.

Apart from this danger of mislocating an optimum combination of factor levels,
there are other features of the data which are clearly evident from the complete
factorial experiment but which would likely be unobservable from an OFAT
experiment. An analysis of the complete factorial data using analysis of variance
procedures uncovers a statistically significant interaction between stud type and gasket
type. Stud type A produces a higher average final tension with gasket type A, but stud
type B has a higher average final tension with gasket type B. In addition, there are two

or three very high final tension measurements for position #1 on the engine.

Interactions are not usually evaluated in OFAT experiments because of the lack

of simultaneous changes of the factor levels and the mistaken belief that the changes in
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the levels of one factor, while holding all the other factors fixed, provides all the
information needed to completely assess its influence on the response. Thus, the
interaction between stud type and gasket type would not ordinarily be investigated,
even if the data were sufficient to evaluate the statistical significance of the interaction.
The lack of balance in the OFAT design could also lead to substantial bias in the
interaction effects that might be observed. Similarly, the high final tension
measurements for position #1 would likely not be discovered because some of the key

combinations of the first three factors would not be run in the OFAT experiment.

3. Statistical Designs vs. OFAT

In the context of designing experiments to ascertain conditions for which a
response surface attains a maximum, Friedman and Savage (1947) note three
deficiencies of factorial experiments. First, they allocate test runs to regions of the
factor space which may be of no interest because the regions are far from the maximum.
Second, because of the balance that is inherent in factorial experiments, the design
points can only effectively cover a small region. Large regions are explored superficially.
Third, factorial experiments make no use of the fact that some of the factors might be
continuous and others, though discrete, might be ordered. This last deficiency, the
authors note, can be remedied.

Further, the authors note that a complete factorial experiment without

k

replication would require m™ test runs for k factors each having m levels. An OFAT
experiment in which all k levels of each individual factor were included would only
require at most m -k test runs. Thus, the ratio of the number of test runs required by

the complete factorial experiment to that of the OFAT design is at least mk/mk =

mk-1 /k, an increasing function of both m and k. For an experiment involving k = 5
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factors each having m = 3 levels, the factorial experiment would require 35 = 243 test
runs while the OFAT design would utilize at most 3-5 = 15 test runs. Thus the OFAT
could be replicated 16 times and still would require fewer test runs than the complete

factorial experiment.

There are a number of rebuttals to these arguments for the preference of OFAT
designs to complete factorial experiments. Some obvious ones are the need to explore,
even if superficially, the entire experimental region if one does not know a prior:i the
location of the maximum. If one does have such information, the experimental region
explored can be made smaller for the statistical designs. Likewise, a complete factorial
experiment is ordinarily not recommended when the number of test runs is excessive.
Fractional factorials and composite designs are some of many alternatives to complete

factorials when the number of runs is deemed excessive.

These arguments, pro and con, touch on only a few of many issues that arise in
the context of designing experiments. The formulation of a comprehensive set of
requirements for well designed experiments is needed to ensure that optimization of the
choice of a design to fit one criterion does not lead to a poor choice of a design from

some other important criterion.

Cox (1958, Chapter 1) lists the following requirements for a good experiment:
absence of systematic error, sufficient precision, conclusions should have a wide range of
validity, designs and analyses should be as simple as possible, and the uncertainty in the
conclusions should be assessable. The wide variety of statistical designs available (e.g.,
Cochran and Cox 1957; Mason, Gunst, and Hess 1989; Ostle and Malone 1988) permit
these requirements to be satisfied to the greatest extent possible within the constraints
of time, budget, equipment, and personnel imposed by the nature of the experiment. It

should be clear from the previous discussions that OFAT designs place a premium on
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the simplicity requirement and the number of test runs, often to the serious detriment

of the others.

Freedom from systematic error, the first of Cox’s requirements, implies that
fitted models and estimated factor effects are not biased. Bias can occur in experiments
for any of a number of reasons, including differences in experimental units to which
factor combinations are applied, the choice of a design, the model fit to the data, or
because of any combination of these reasons. The wide range of blocking designs (e.g.,
latin and graeco-latin squares, randomized complete block, balanced incomplete block),
when coupled with the physical act of randomization, enable an investigator to control
for heterogeneous experimental units or test conditions. Complete factorials (with
randomization), as opposed to fractional factorials (including OFAT designs), enable all
individual and joint factor effects to be estimated and provides better assurance that an
adequate model can be fit to the data. Adequate modeling does depend on the
knowledge and experience of the investigator, but it is also critically dependent on the
design used. An OFAT design will not usually permit the inclusion of all two-factor
interactions in a model and is usually quite imbalanced (some factor levels are included
in the design many times, others only a few times, still others only once). Modeling
deficiencies or severe imbalance in a design can lead to serious bias in estimates of

model parameters and factor effects.

Adequate precision, the second of Cox’s necessary qualities for a good
éxperiment, generally implies that model parameter estimates and factor effects be
estimated with suitably small standard errors. Depending on the intrinsic variability in
observations taken under similar conditions, adequate precision can be achieved through
the use of blocking designs or through sufficient replication of some or all of the factor

combinations included in the design. The larger the intrinsic variability in repeat
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observations, the larger the experiment size that is needed to ensure adequate precision.
If large experiments are conducted by repeating factor combinations, the increased
experiment size is often accompanied by increased variability due to heterogeneous
experimental units or test conditions. Blocking is then needed to control this extraneous
source of variability. Blocking and replication are in direct conflict with the prevailing
priorities of OFAT experiments: simplicity and small experiment size. Thus OFAT

designs often ignore the requirement for adequate precision in an experiment.

The factorial layout in Figure 1 comprehensively covers the experimental region
of interest, the third of Cox’s requirements, within the constraint of selecting three
levels for each factor. In contrast, the OFAT experiment geometrically portrayed in
Figure 4 is severely restricted to a small area within the region of interest. The tradeoff
for fewer test runs for the OFAT design is a serious compromise of the investigator’s

ability to draw conclusions over a wide range of interest.

The ability to properly asses factor effects in the presence of uncertainty is the
last of Cox’s requirements. In many types of industrial experiments there is more than
one type or source of uncertainty that must be quantified. Split-plot designs, initially
used predominantly in agricultural experimentation because of differences in variability
associated with different plot sizes, are becoming increasingly popular statistical designs
in industrial experiments because of constraints on randomization of test runs (e.g.,
Addleman 1964; Mason, Gunst, and Hess 1989, Section 10.4). Split-plot designs permit
the estimation of two or more sources of uncontrolled variability and the consequent
correct estimation of uncertainty of factor effects which have different sources of
variability (see also, Milliken and Johnson 1984, Chapter 24). Whether from different
plot sizes, different types of experimental units, or because of restricted randomization,

different sources of experimental uncertainty must be accounted for in the analysis of

14



such data. OFAT experiments do not acknowledge the possible presence of two or more
sources of uncontrolled variability and, therefore, do not permit correct assessment of
factor effects relative to the various sources of variability. Thus, OFAT experimental
strategies must sacrifice a correct analysis of data from experiments in which

uncertainty arises from two or more sources in order to maintain priority on simplicity.

Of Cox’s five requirements for a good experiment, the fourth one, simplicity, is
arguably not as critical as the other four, at least at first glance; moreover, it diminishes
in importance as more advanced experimental design computer software becomes
readily available. What makes simplicity so strong a consideration in industrial
experimentation is the lack of statistical sophistication of many investigators who design
or conduct experiments. Relatively few engineers and scientists performing industrial
experiments are trained in the statistical design of experiments. On the other hand,
very few of these same investigators wish to use procedures with which they are not
familiar or that have properties that are not understood. Yet this paradox is at the

heart of the concern over the use of OFAT designs.

While OFAT designs are conceptually simple and easy to understand, their
properties cannot be detailed prior to an experiment precisely because of the dynamic
character of OFAT experimentation. Whether an OFAT experimental design will have
desirable statistical properties is unknown at the beginning of the experiment. Cox’s
requirements for the absence of systematic error, a wide range of validity, and the
ability to assess factor effects in the presence of uncertainty cannot be assured. In
contrast, the properties of the designs and the resulting analyses for any of the

statistical designs mentioned above have been well studied and documented.

There are numerous other discourses on the requirements for “good”

experimental designs in addition to the above discussion of Cox’s. The discussions by
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Box and Draper (1959) on response surface designs and Hunter (1985) on the design of
industrial experiments are especially germane. The latter article, in a discussion of
orthogonal arrays, addresses the need for considering the properties of both the design

and the intended model prior to the selection of an appropriate experimental plan.

4. Concluding Remarks

The primary rationale for the use of OFAT experimental designs is the folklore
that the effects of factors in multifactor experiments cannot be satisfactorily interpreted
when two or more factors are simultaneously changed. The voluminous literature on the
analysis of statistically designed experiments contradicts this belief. It is true, moreover,
that the geometric pattern of OFAT designs may render the analysis of data from these

designs incapable of separating the true effects of the factors.

Statistical models arising from designed experiments can conveniently be
categorized into the following four groups: (1) models about which nothing is known or
assumed, (2) models assumed to be additive in the individual factor effects, (3) models
assumed to be linear in the parameters but not necessarily additive in the individual
factor effects, and (4) models assumed to have some other specified functional form.
The goals of a designed experiment can be stipulated in many ways, including the
following three: (a) comprehensively model the response as a function of the factors, (b)
comprehensively assess individual and joint factor effects for the factor levels included
in the experiment, and (c) determine the level(s) of the factors that produce optimum
responses. The OFAT design strategy would appear to have merit for goal (c) if model
(2) could be considered appropriate. All other combinations of models and goals listed

above are better served by a careful selection of a statistical design.

As stressed in this paper, the crucial deficiency of OFAT experimental designs is
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their dynamic nature. Because of this dynamic character of OFAT designs, no optimal
geometrical or statistical properties can be cited for them. It is clear from the examples
in this paper that there are geometrical difficulties with these designs, difficulties that
affect the statistical properties needed for adequate modeling and correct inferences on
the factor effects. On the other hand, statistical designs have known geometrical and
statistical properties. Adequate modeling, subject to the information known or
suspected prior to the experiment, can be guaranteed. For example, highly efficient
designs can be chosen that will guarantee that quadratic models in the factors can be fit
to the data without unplanned confounding of the various factor effects. OFAT designs

in general cannot provide such a guarantee.
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Table 1. Final Tension Measurements.

Stud Type A Stud Type B

Position A B A B A B A B

Average 2967 2875 3638 3463 2600 2782 3157 3790

OFAT
Run No. 1 2 3 4
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Fig. 1 Complete Factorial in Three Factors,
Each Having Three Levels.
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Fig. 2 One-Third Fractional Factorial.
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Fig. 3 One-Factor-at-a-Time Experiment,
Middle Levels Selected as Optimum.
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Fig. 4 One-Factor-at-a-Time Experiment,
Highest Levels Selected as Optimum.
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