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Abstract

Exploratory graphical methods to display fully and partially ranked data, that is, to display
data on the symmetric group of permutations or on a coset space of the symmetric group, are critically
needed. Commonly used graphical methods such as histograms and bar graphs are inappropriate
because the symmetric group and its coset spaces do not have natural linear orderings. In this paper,
graphical methods are developed to display frequency distributions of fully and partially ranked data
with or without pseudoranks. Simply, the frequencies for each full or partial (pseudo)ranking are
plotted on the vertices of a generalized permutation polytope that preserves a natural partial ordering
as well as the metric Spearman’s p on full and partial rankings, and the metric Kendall’s 7 on full
rankings. The proposed graphical method also induces a very natural extension of Kendall’s = to

partial rankings.

A permutation polytope is the convex hull the n! points in R® whose coordinates are the
permutations of n distinct numbers. This paper proposes a generalized definition of permutation
polytopes, and proves the necessary properties of generalized permutation polytopes by considering
polytopes as the intersection of a set of linear inequalities. The issues of visualizing a plot on a
polytope in R™ are addressed by developing the theory needed to define all faces, especially the three
and four dimensional faces, of any generalized permutation polytope. The proposed graphical methods

are illustrated with five different data sets.
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1. Introduction

Exploratory graphical methods are critically needed to display frequency distributions for fully
and partially ranked data. Fully ranked data occur, for example, when a set of judges are each asked
to rank (possibly, with pseudoranks) n items in order of preference. Each observation is a permutation
of n distinct pseudoranks, and the resulting set of frequencies is a function on S, the symmetric group
of n elements. In partially ranked data, the judges are asked for an incomplete ranking of n items
which can be represented as a permutation of nondistinct pseudoranks. A set of frequencies of partial
rankings is a function on a coset space of S;,. Because neither the elements of S;), nor the cosets of S,
have a natural linear ordering, graphical methods such as histograms and bar graphs cannot be used in
a reasonable manner to display frequency distributions for full or partial rankings. Other graphical
methods for representing rankings include multidimensional scaling, minimal spanning trees, and
nearest neighbor graphs as discussed by Diaconis (1988) for fully ranked data and by Critchlow (1985)
for partially ranked data. Cohen (1990) presents additional exploratory data techniques for both full
and partial rankings, and Cohen and Mallows (1980) propose graphical procedures based on

multidimensional scaling and biplots.

In this paper, graphical techniques are developed to display frequency distributions of fully and
partial pseudorankings by using a generalized definition of permutation polytopes. A polytope is the
convex hull of a finite set of points in R™. Yemelichev, Kovalev, and Kravtstov (1984) define a
permutation polytope to be the convex hull of the n! points in R™ whose coordinates are the
permutations of n distinct numbers. In this paper, we generalize this definition and define a
permutation polytope to be the convex hull of the points in R® whose coordinates are the distinct
permutations of the n (not necessarily distinct) pseudoranks. Then, to graphically display a set of full

or partial rankings, the frequencies with which each permutation of pseudoranks is chosen are plotted,



not on a line as is done with histograms, but on the vertices of the permutation polytope.

The resulting graphical displays are especially useful as diagnostic tools because they are
compatible with the two most commonly used metrics on Sj,: Kendall’s 7 and Spearman’s p. For fully
ranked data, both the 7- and p- distances are easily interpretable on the permutation polytope.
Kendall’s 7 is the minimum number of edges that must be traversed to get from one vertex to another;
and Spearman’s p is proportional to the straight line distance between vertices. If pseudoranks are
used, the straight line distance between two vertices is proportional to the fixed vector extension of
Spearman’s p. And the minimum number of edges that must be traversed to get from one vertex to
another induces a new extension of Kendall’s 7 on partially ranked data that is equivalent neither to

the Haussdorf metric of Critchlow (1985) nor to the metric suggested by Diaconis (1988).

The permutation polytope on which the frequencies are displayed is inscribed in a sphere in an
n— 1 dimensional subspace of R®. (This is related to the observation by McCullagh (1990) that the n!
elements of S, lie on the surface of a sphere in R™ 1 in such a way as to be compatible with both
Kendall’s  and Spearman’s p.) Hence, for n > 4, the problem of visualization of points on a polytope
in higher dimensions must be addressed. One approach to this problem is to explore a higher
dimensional polytope by examining its three dimensional faces and portions of its four dimensional
faces. An algorithm is derived to determine the defining characteristics all of the faces of any
permutation polytope. It depends on first defining a permutation polytope as the solution to a finite
set of linear inequalities, and then extending the results of Yemelichev, Kovalev, and Kravtstov (1984),
which apply only to permutation polytopes with distinct values, to our more general definition of a
permutation polytope. In particular, for any full or partial ranking it is shown that any two-
dimensional face is combinatorily equivalent to either a triangle, a square or a hexagon, and any three
dimensional face is combinatorily equivalent to one of the following 8 Archimedian solids: truncated
tetrahedron, triangular prism, octahedron, tetrahedron, truncated octahedron, cube, cuboctahedron, or
hexagonal prism. For fully ranked data, all two dimensional faces are combinatorily equivalent to

either squares or hexagons, and all three-dimensional faces to either truncated octahedrons, cubes, or



hexagonal prisms.

In Section 2, the proposed graphical techniques are illustrated for n =3 and n=4 with
ordinary ranks. Section 3 contains the theory needed to develop the proposed graphics for n >4 and
for partially ranked data with pseudoranks. A number of examples are contained in Section 4. Section

5 concludes with proofs.

2. Permutation Polytopes for Fully Ranked Data with n=3,4

Before developing the concepts needed to support the proposed graphical methods for n > 4, for
pseudoranks, or for partial rankings, the proposed graphical technique is illustrated with ordinary full
rankings for n=3 and n = 4. In fully ranked data, a judge can express his preferences for n items either
as an ordering or as a ranking. Orderings are denoted by permutations of the n item labels, bracketed
by < >. Items are frequently labeled with the integers 1 through n, but in this section, items will be
labeled with letters to avoid confusion between rankings and orderings. For example, < B,C,A,D >
means that item B is ranked first, item C second, item A third, and item D is ranked last. A ranking
is a permutation of n values that are written as a vector 7 = (1rl, «. y Ty ) where L2 is the rank of item

A, 7 is the rank of item B, etc. The ranking corresponding to the ordering < B,C,A,D > is (3,1,2,4).

Figure 1 contains the orderings and corresponding ;'a.nkings of the 6 elements of S3 . Note that
two points are adjacent and connected by an edge if their orderings differ by a pairwise adjacent
transposition, or equivalently, if their rankings differ by an inversion of two consecutive values. Hence,
the minimum number of edges that must be transversed on the hexagon to get from one vertex to
another is equal to Kendall’s 7. Formally, if 7 and ¢ are two full rankings, then 7(7,7) is defined to be
the number of pairs (i,j) such that 7, < 7 and o; > a5 - This is equivalent to the minimum number of
pairwise adjacent transpositions needed to change the ordering corresponding to 7 into the ordering

corresponding to ¢. The placement of the vertices in Figure 1 is also compatible with Spearman’s p

n
which is defined as p(7,g) =( 3 (7ri - a'i)2 )1/ 2 1 the edges of the regular hexagon are all of length
i=1



N2, then Spearman’s p is the Euclidian distance between two vertices. Also note that the two vertices

of an edge of the hexagon either have the same item ranked first or the same item ranked last.

These ideas [see, for example, Knuth (1981), McCullaugh (1990), Thompson (1991)] can be
extended to n=4 by placing the 24 permutations at the vertices of a truncated octahedron, as shown in
Figure 2. The truncated octahedron is an Archimedian solid with 8 hexagonal faces and 6 square faces.
In Figure 2, as in Figure 1, 7 is the minimum number of edges that must be traversed to get from one
vertex to another, and p is the Euclidean distance between two vertices if each edge is of length ¥2 (see
Schulman (1979) for a proof). Examination of the two-dimensional faces of the truncated octahedron
in Figure 2 shows that the four vertices of any square have the same two items ranked in the first two
positions and the remaining two items ranked in the last two positions. Similarly, the six vertices on
any hexagon all have either the same item ranked first or the same item ranked last. There are 24 one-
dimensional faces which are edges. The two vertices of any edge agree on the ranking of the first and
last choice if the edge is between two hexagons, and the vertices agree on either the first two choices or
the last two choices if the edge is between a square and a hexagon. This idea that each face of a
permutational polytope has a “defining property” is instrumental in the development of the proposed

graphical methods for n > 4.

To illustrate the proposed graphical techniques with n = 3, consider the data in Table 1 from
Duncan and Brody (1982) in which 1439 people were asked to rank city, suburban, and rural living in
order of preference. The respondent’s current residence is recorded as a covariate, and within each
covariate, the relative frequencies for each permutation are calculated. In Figure 3 these relative
frequencies are plotted on the corresponding vertices of 3 hexagons. Each hexagon corresponds to one
of the three covariates, and the sizes of the circles at the vertices indicate the relative values of the
relative frequencies. It is immediately obvious that rural and suburban residents are fairly similar to
each other, and both are different from city dwellers. Those who prefer the city as their first choice
seem to live in the city. Relatively few rural and suburban dwellers prefer their current location least,

while many city dwellers would rather be anyplace else. In the case of n = 3, this proposed graphical



technique is similar to the plots of Cohen and Mallows (1980) in which circles with areas proportional

to the frequencies are placed at the ends of 6 vectors radiating from the origin.

To illustrate the effectiveness of plotting ranked data with n =4 on truncated octahedrons,
consider the following example. At the beginning of a course in literary criticism, 38 high school
students read the short story by Faulkner and ranked 4 different styles of literary criticism in order of
their preference. At the conclusion of the course, they read another short story by Faulkner and again
ranked the same four styles of literary criticism. The 4 styles were authorial (a), comparative (c),
personal (p), and textual (t); and the question of interest was whether or not the post-course rankings
had moved in the direction of the teacher’s own preferred ordering < p,c,a,t >. Table 2 contains the
pre- and post-course rankings. The frequencies of the 38 pre-course rankings are shown in Figure 4a
and the 38 post-course rankings are shown in Figure 4b. Although the bivariate nature of the data is
lost, valuable insight into this data is gained from the plots. Most obviously, the frequencies do change
a great deal between the two sets of rankings. First, there seems to be a notable increase in the
frequencies at the vertices of the hexagon corresponding to the 6 orderings that begin with ¢. The post-
course ranking do not seem to have moved toward the teacher’s preferred ranking, <p,c,a,t>, but as
suggested by the conclusions of Critchlow and Verducci (1990), they appear to be closer to <p,c,a,t>
than are the pre-course rankings. One might hypothesize that the orderings have moved toward
<c,p,t,a> because almost half of the post-rankings lie either on < ¢,p,t,a > or on one of the three
vertices within on edge (pairwise transposition) of <c¢,p,t,a>. McCullaugh and Ye (1990) reach a
similar conclusion which they illustrate by plotting the vectors of the average pre- and post-course
ranking on a truncated octahedron. Other observations that can be drawn from Figure 4 include 1)
the frequencies at the 6 vertices corresponding to the ordering that end in ¢ decrease; 2) style a is
rarely chosen as either a first or second choice after the course is completed; and 3) the incidence of

style t as a first choice decreases.

To make the plots perceptually accurate, the areas of the circles in Figures 3 and 4 are based

on Steven’s Law which says that a person’s perceived scale, p, of the size of an area is



p x (m'ea.)'7
(Cleveland, 1985). Hence, the areas of the circles are calculated as

area o fm/ 7,
where f is the value of the frequency. If the area is proportional to the frequency, area  f, then small
circles appear too large and large circles appear too small. Conversely, if the radius of the circle is
proportional to the frequency, that is, area f2, then large values are magnified and small values are

minimized.

3. Permutation Polytopes with Arbitrary Pseudoranks

Many applications, including partial rankings, lend themselves to the use of pseudoranks.
With pseudoranks, a ranking is a vector whose elements are a permutation of n not necessarily distinct
numbers (pseudoranks), and an ordering is a permutation of the items such that the first item is
assigned the smallest pseudorank, the second item is assigned the second smallest pseudorank, etc.
Unless otherwise stated, it is assumed without loss of generality that the pseudoranks are
0<a; <ag<...<ay. Ordinary full ranks correspond to a;=i. In partially ranked data, the n items
are partitioned into r groups of prespecified sizes n,, ny, ..., n; such that zr: n;=n. The ith group

i=1

contains the judges n; ith favorite items. If r = n and n;=n,= ... =n,=1, then the data is fully ranked.

The judges preferences are specified as rankings via the pseudoranks

(1) 0<ay=..= ap, < an1+1 = =ag 4n, <. < 3pn +1 = = 2p

Equivalently, pseudorankings can be described with the very useful notation of multisets [see Stanley
(1986)]. The multiset corresponding to (1) is {wlnl,w2n2, vy wr“r} where w; < Wy < ... < w, are the
r distinct values of the pseudoranks and w; occurs n; times. Let M denote the multiset M = {lnl, 2n2,
N rnr}, and let &(M) denote the set of (“1 n, 23 “r) distinct permutations of the multiset M. If
n, =1, i=1,2,..,n, then S, = G(M). A permutation of (nondistinct) pseudoranks is denoted by
W= (wal, Wogr s w”n) where g € G(M). Define the set *¢ = {1 € S, such that Wg = a"'."}’ and

define *g"l to be the set of permutations in S, that are inverses of elements in *g. Note that 7 is in



*g'l if and only if x,rk =ay implies x| = wa.k. We will now define the pseudo-inverse of 7 €S, to be

the element g € (M) such that 7 € *g‘l. This pseudo-inverse is unique and well defined, but more
than one element of S, can have the same pseudo-inverse. To denote a partial ranking as an ordering,
we will adopt the notation of Critchlow (1985) in which the n; items in the ith group are enclosed in
parentheses. An ordering, with items labeled with numbers, corresponding to any pseudoranking can

be obtained by simply inserting the proper notation into any element of *g'l.

To illustrate these definitions, suppose that n;=2, n,=2, ns=1, and n=5. This means that the
judges state a pair of first choices, a pair of second choices, and a last choice. The pseudoranks are
0<a;=ag<az=a,<ag, and the multiset is {w%,w%,w:;} where w =a;, Wo=ag, and Wy=ag . Further
suppose that some judge ranks items 1 and 4 first and ranks item 5 last. Then the ranking is
(wl,w2,w2,w1,w3) so that ¢=(1,2,2,1,3). Then we have *¢ = {(1,3,4,2,5), (1,4,3,2,5), (2,3,4,1,5),
(2,4,3,1,5)} and *g'1={(1,4,2,3,5), (4,1,2,3,5), (1,4,3,2,5), (4,1,3,2,5)}. By inserting the proper

1

parentheses, any element of *¢™* immediately gives the partial ordering <(1,4),(2,3),5>. Also, ¢ is the

pseudo-inverse of each of the four elements of *g'l.

To extend Spearman’s p to pseudoranks, let ag and ag be two rankings where 7 and g are in
Sp- Then, we define p(ag, a5) = ( izril (a‘”i —-ao,i)2 )1/ 2, Critchlow (1985) shows that this extension of
Spearman’s p to partially ranked data is equivalent to the fixed vector metric, F,- The p-distance
between any two points that differ by the inversion of two consecutive pseudoranks, a; and 3,1 is
p=\2 lai —a; +1| - If the pseudoranks are chosen so that w; =i, 1 <i<r, then this distance reduces
to p =2 so that the p-distance between all “adjacent” points is constant. On the other hand, if the
pseudoranks are tied ranks, then the distance between adjacent points is not constant, but instead it
still holds that ‘ilai = N(N+1)/2 . Both of these methods of assigning pseudoranks are of interest in

i=

the subsequent development of graphical techniques for partially ranked data via permutation

polytopes.

In extending the graphical techniques of Section 2 to arbitrary pseudoranks,



0<a; <ag<..< ap, we first consider the (nl n, gs nr) permutations, a, as points in R” where 7

is a permutation of the multiset {lnl, 22 .., rnr}. These points lie in the intersection of the sphere

n n r
2 (-2 = X (3 -3 = X ny(w; -3)?
| i=1 i=1 i=1
and the n — 1 dimensional hyperplane
n
E xi =na
n r i=1
where @ = n'lz: a = n'lz: n,w; . We define a permutation polytope as the convex hull of these

i=1 i=1
points. When a = i, i=1,2,3, Figure 5 shows that the permutation polytope is a hexagon (plus its

interior) inscribed in a circle in the plane x; +x,+x3=6. When ag=a9=2.5 and a; =1, the

permutation polytope is a triangle in the same plane. A permutation polytope can be mapped into
n n n

Rro-1 by shifting 3 x;=na to ) x;=0 and then mapping the hyperplane 2 %; =0 onto the

i=1 i=1 i=1
hyperplane x, =0 via a transformation equivalent to the Helmert transformation. In particular, the

th

mapping is accomplished with the n x n matrix whose n*" row is % (1, 1, 1, ..., 1); and whose ith row,

?Z}T (1,1, ..., 1, —+i, 0, .., 0), has i ones, followed by —4+i , followed by n—i—1 zeros,
i“+i

1<i<n-1. Because this transformation is orthonormal, distances and angles are unchanged by the

mapping, so that the polytope is still inscribed in a sphere in R™1 and Spearman’s p (the Euclidean

distance between two points) is preserved.

With straightforward computations, we can now determine all possible permutation polytopes
for n=3 and n =4. If n =3 and if the three pseudoranks are distinct, then the permutation polytope
is a 6-sided convex polygon, i.e., it is combinatorily equivalent to a hexagon. Unless it is a regular
hexagon, it has 3 short sides alternating with three long sides. If n = 3 and two of the pseudoranks are
equal (i.e., either just the first choice or just the last choice is specified), then the polytope is an

equilateral triangle.

When n=4 and the four pseudoranks are distinct, then the polytope is combinatorily equivalent
to a truncated octahedron. If a, =i (i.e., ordinary ranks), the resulting polytope, when mapped into
R3, is the regular truncated octahedron shown in Figure 2. Its vertices are the points corresponding to

the permutations and whose edges are all of length ¥2. In addition to the truncated octahedron, there



10

are four other permutation polytopes for n=4. They correspond to the partial rankings. If
a, < a, < ag =a, Or a; = a9 < az < a,, then the permutation polytope is combinatorily equivalent to a
truncated tetrahedron. Figure 6 shows the regular truncated tetrahedron which corresponds to w; =i,
i=1,2,3. Each of the 4 triangular faces corresponds to the partial rankings in which the same item is
ranked first; each of the 4 hexagonal faces correspond to the partial rankings in which the same item is
ranked last. In the next case, suppose that the judge specifies a first and fourth choice, but does not
differentiate between the middle two items: a, < a, = a3 <a,. The rwultigg permutation polytope has
twelve vertices and is combinatorily equivalent to the cuboctahedron in Figure 7. The regular

cuboctahedron in Figure 7 is obtained from w. =i, i=1,2,3. If three of the four pseudoranks are equal

i
(that is, if only the first choice is specified or only the last choice is specified), then the resulting
polytope is a regular tetrahedron (see Figure 8). And lastly, if n, =n, = 2 so that a, =a, <aj;=a,,

then the permutation polytope is a regular octahedron shown in Figure 9.

A set of partially ranked data with n =4 is then graphed on one of the above polytopes by
placing circles whose radii are determined by
radius f5 /1
at each appropriate vertices. If w; =1i, then the polytope is a regular Archimedian solid. On the other
hand, if tied ranks are used, then the polytope is not necessarily regular, but it can be inscribed in a
truncated octahedron by placing the vertex corresponding to a partial ranking at the centroid of the set
of compatible full rankings. This offers a promising method for visually examining data sets, such as

that APA voting data [Diaconis (1988)], that contain both full and partial rankings.

These permutation polytopes induce a the natural extension of Kendall’s 7 to partial rankings
for n =3 and n =4. We define the extension of Kendall’s 7 to be equal to the minimum number of
edges that must be traversed to get from one point to another. This extension clearly satisfies all of
the properties of a metric, and by the symmetries of the above polytopes, is right invariant. As shown
in Table 3 for a,<a,=ajz<ay, this graphically induced metric for partially ranked data is different from

the induced Hausdorff metric, T*, discussed in detail by Critchlow (1985). It also differs from the
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“metric® I(m,g) proposed by Diaconis (1988, p. 127). Although I(z,g) has beautiful combinatoric
properties, it is not a metric because it is not symmetric in its two arguments. To obtain a
counterexample, consider the simplest partial ranking in which n =3, ny =1, and ng =2 and denote
the identity rankings as id=(1,2,2). By Theorem 2 of Diaconis (1988), p-127, it follows that
zn:ql(id’g) = q2+q+ 1 where 1) takes the values (1,2,2), (2,1,2), and (2,2,1). This means that there is
e;actly one point, 7, such that I{id,7) = 1, and one other point, g, such that I(id,g) = 2. Also, by the
right invariance of I, there is exactly one point a distance 1 from 7 and one point a distance 2 from 7.
If I is symmetric, then I(id,r) =I(r7,id) =1, and I(7,g) =I(g,7) =2. Hence, there are two points a

I(‘I,Q)

distance 2 from g which violates the fact that Y q = q2+q +1.
7

To define the relationship between the above proposed extension of Kendall’s 7 and arbitrary
permutation polytopes for n > 4, we first write a permutation polytope as the solution to a system of
linear inequalities and characterize all of its faces. Let N, be the set {1,2, ..., n}. For notational
convenience in the following discussion, items are labeled with the integers 1 through n instead of with
letters. Yemelichev et. al. [(1984), Chapter 5, Theorem 3.1] show that a permutation polytope is

equivalent to the intersection of the following system of constraints:

||
2 .ins Zan-i-l—i for all w C N,
i€w i=1
n n
® Yox= s
i=1 i=1

Although Yemelichev et. al. (1984) define permutation polytopes only for distinct values (i.e., distinct
pseudoranks), their proof of this equivalence does not require the pseudoranks to be distinct. Also,
Yemelichev et. al. (1984) use decreasing values (i.e, 0 <ap<a  ;<.. <ay), but without loss of
generality we will use increasing values because they are far more natural in the context of rankings.
The above definition of a polytope is illustrated in Figure 10. When a =i, i=1,2,3, equations (2) and

(3) are
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X;+x, <5,
X1+X3 S 5,
X2+X3 S 5,

x1+x2+X3 = 6 .
On the other hand, if a3 = a5 = 2.5 and a| = 1, then equations (2) and (3) are

x; £ 2.5,
Xq < 2.5,
X3 < 2.5,
x;+x, <5,
X1+X3 S 5,
X2+X3 S 5,

Note that not all of the equations are needed to define the triangle.

Yemelichev et. al. (1984) then proceed in Theorem 3.4 of Chapter 5 to characterize all of the
faces of a permutation polytope for distinct 0 < a; < a, < ... <a,. They prove that the set of solutions
to (2) and (3) is an i-dimensional face (i-face), 0 <i < n-2, if and only if the inequalities in (2) are
satisfied as equalities for subsets wy, w,, ..., w ; ; of Ny, such that w; Cw, C...Cwp ;1 Cw) =Ny
To be able to graph partially ranked data, we extend these results to nondistinct pseudoranks. The

proof of the following theorem is in Section 5.

Theorem 1. For 0 <i<n-2, let w;, ..., wy ; | be non-empty subsets of Ny, let w, =0, and

let w ;. =Ny . Then any set of solutions to

|w|
) Z x; < Zan-i-}-l for all w C N
iew i=1
lwkl
5) Z X = Za’n-i+1 for k = 1,2, ..., n-i

i € wk i=1
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is an i-face of the permutation polytope if and only if
)w CwpCee Cwp o 1 Cw =Ny, and
2) if ij A“’j-ll > 2, then an_le_ll > a’n—le|+1 .

The major difference between Theorem 1 and the corresponding theorem of Yemelichev et. al.

(1984) is the condition that if ij ij_ll > 2, then A This condition is satisfied

>a .
wj_ll n-ijH-l
trivially if all the pseudoranks are distinct. If this condition is omitted in Theorem 1, then the

resulting set of solutions is a face of the polytope, but its dimension may be less than i.

To use Theorem 1, it is useful to define Qk = wk\“’k-l’ 1<k <n-i, and to rephrase Theorem

1 as follows: the set of solutions to (4) and to

1
(6) Z X = Zan-i+1 fork=1,2, .., ni,

n-1
where ik=|wk_1]+1, is an i-face if and only if 1) Q, Qq, ..., Q,_; are disjoint with jl—Jle ={1,2, ...,

n}, and 2) if |Qj| > 2, then a We can use Theorem 1 to characterize all of the 0-

n—|wj|+1 <a

n-l(«.’j_ll :
faces (i.e., vertices). For any 0-face, each of the n sets Qk’ 1 <k <n, contains exactly one element
(item label) which induces a permutation 7 defined by Q) = {m }. Then, equations (4) and (5) reduce
to Xr = nk+1 which is equivalent to x = Yo where g is the pseudo-inverse of (mp, 7, 1, .y 7).
This proves that the O-faces (vertices) of the permutation polytope are exactly the (n1 n, 11113 nr)
points whose elements are distinct permutations of the pseudoranks. Note that w,, which is a vector
in R™, is the ranking. The corresponding ordering, with items labeled as numbers, is obtained by

inserting parentheses into <m, Tl - T> a8 required by the shape of the partial ranking, ny, by,

ey Dp .

Next, define S(Ql, Qg oy Qn-i) to be the set of all possible permutations 7 € S, such that

Q= {ﬂlwk.ll-i-l’ Tlug 42 = ”Iwkl}’ and define S'I(Ql, Qg -y Qn—i) to be the set of pseudo-
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inverses of the permutations (mp, T s oo 1rl) where z_rGS(Ql, Q2, vory Qn-i)' By using pseudo-
inverses, we can prove the following generalization of Corollary 3.8, Section 5, of Yemelichev et. al.

(1984). The proof is in Section 5.

Corollary 2. The face corresponding to a partition Q;, Qo, ..., Qui of {1,2, ..., n} is generated

by the set of points w, where g € S'l(Ql, Qg+ Qn—i)'

For any 1-face, Theorem 1 implies that there is an integer j € {1,2,...n} and a permutation x
such that Qk = {rk}, 1<k<j; Qj = {7rj, ”j+1}’ Q= {1rk+1}, j<k<n-1; and ap 5+1 > ang -
Note that ij_ll =j—1 and ij[ =j+1. Then, $(Q;, Qg ---, Q,_1) contains only 7 and 7, = (7,79,
ey T DTSR 2T 30 «yTp), from which it follows that the elements of S'I(Ql, Qg -y Qn—l)
differ only by the inversion of two consecutive integers. By Corollary 2, it follows that 2 vertices of a
permutation polytope are adjacent (on the same 1-face) if and only if they differ by a single inversion
of a) and L for some 1 <k <r—1, where ay <ap.q- Equivalently, the orderings, STy s oo
T i+ 20 n-j+1'Tn-§-1'Tn-§-2 woym> and <wp, T 4y ey 7> (with extra parentheses as needed)

differ only by the transposition of items w_. and =

n-j n-j+1 which do not have the same pseudorank.

This extends Corollary 3.9, Section 5, of Yemelichev et. al. (1984) to nondistinct values. For ordinary
ranks, it follows immediately that Kendall’s 7 is equal to the minimum number of edges (1-faces) that
must be traversed to get from one point to another. Sirr;ilarly, for partially ranked data, the above
proposed extension of Kendall’s 7 can now be defined for n > 4 as the minimum number of 1-faces that
must be traversed to get from one partial ranking to another. Because this extension of Kendall’s 7

has such appealing graphical properties, it merits further study.

By using Corollary 2, we can characterize all of the possible the 2- and 3-faces of permutation
polytopes. For any 2-face, there exists a permutation 7 of the n item labels such that one of the three
cases in Table 4 holds. Case 1 is combinatorily equivalent to a hexagon because n—3 of the
pseudoranks are assigned to n — 3 of the items, and the other three pseudoranks, which are distinct, are

permuted among the remaining three items. Case 2 is combinatorily equivalent to a triangle because
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n — 3 of the pseudoranks are fixed, and the remaining three pseudoranks, two of which are equal, are
permuted among the remaining three items. And Case 3 is combinatorily equivalent to a square: n — 4
of the pseudoranks are fixed, and of the remaining 4 pseudoranks, the two smaller are permuted and

the two larger are permuted. On the squares, it is allowable that j =i~ 1, and also that a, a

- = 2n-ic
All 3-dimensional faces of any permutation polytope can be similarly characterized. Clearly,
each 3-face is combinatorily equivalent to some Archimedian solid whose 2-faces are either triangles,
squares, or hexagons. For any 3-face, we can use the same methods used above for 2-faces to show that
there exists a permutation 7 of the n item labels such that one of the eight cases shown in Table 5
holds. If the data is fully ranked, then the only possible 3-faces are combinatorily equivalent to
truncated octahedrons, hexagonal prisms, or cubes. Triangular prisms and hexagonal prisms require
that n > 5, and cubes require that n > 6. Note that triangular prisms and hexagonal prisms can also

occur when Qi has two elements and Qj has three elements withi>j .

4. Examples

Data sets in which the observations are partial rankings with n > 4 can be illustrated by a set
of 3-dimensional polytopes in which the frequencies are plotted on the appropriate vertices.
Frequently, it is useful to also plot portions of the 4-'dimensional polytopes. The surface of a
permutation polytope in four dimensions can be drawn with distortion in three dimensions just as the

surface of a globe can be drawn an a planar map.

To determine all of the i-faces most easily in practice, the sequence of pseudoranks is first
written down with appropriate equal or less than signs. Then, Theorem 1 is used to determine all of
the possible values for |wk|, k=1,...,n-1, such that w; Cwy, C...C W1 C 9= Sy, and such that if

ijl - ij_ll > 2, then an_le-ll >a

n-le|+1 - This determines the sizes of the sets Qp, k=1, ...,n-1.

Then, for an arbitrary, fixed 7, and for each set of possible values of !le, the sets Qk are written as

{7r|“’k-1|+1’ Wlwk.1|+2’ e s ‘”Iwkl}’ k=1,...,n-1. It then follows from Corollary 2 that the set of vertices
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of the i-face correspond exactly to the orderings < my, 7 1, ..., #;> (with parentheses inserted in the
required places) which are compatible with ka{r‘wk I+ Tl 2 rlukl}, k=1,...,n-i . Then,
the number of faces are counted by letting 7 range over S;. This is illustrated in the following

examples.

Example 1: In a university department, 5 job candidates, named A, B, C, D, and E, were
being evaluated by the seven faculty members to determine which one should be invited for an
interview. The chairman asked each faculty member to name his first and 'second choice. The data are
shown in Table 6,‘ both as orderings and as rankings with a; =1, a9 =2, a3 =ay=az=3. In this
case, we have aj<ag<ag=a,=ag. There are 20 possible partial rankings. The questions of interest are
whether there is a “most popular” candidate to invite and whether there are any “outliers® among the
faculty. In determining the 3-faces, it follows from Theorem 1 that the only possible 3-faces occur
when |wj|=1or |wj|=4. It is not possible to have |w;|=2 because az=a,, and it is not possible to
have |w;|=3 because az=aq; in neither case is Condition 2 of Theorem 1 satisfied. Hence, for each 3-
face we have either Q; = {7rl1r2,7r3,1r4} and Qo = {7r5}, or Q= {7rl} and Q9 = {1r2,r3,1r4,7r5}. In the
first case, the orderings of the points on the vertices are <1r5,7r4,(1r3,1rz,7r1)>, <7r5,1r3,(1r4,7r2,1rl)>,
<1r5,7r2,(7r3,1r4,1rl)>, and <7r5,7r1,(7r3,7r2,7r4)>. The resulting figure is a tetrahedron in which all
points have the same first choice, and the four vertices correspond to the four possible second choices.
There are 5 different 3-faces that are tetrahedrons, each corresponding to a different first choice. In the
second case, the figure is a truncated tetrahedron in which each vertex has the same candidate ranked
among the last three. There are five 3-faces that are tetrahedrons. As shown in Figure 11, all of the
data are contained on two adjoining faces, the tetrahedron in which candidate A is ranked first, and
the truncated tetrahedron in which candidate E is ranked last. The distances between the points on
two different 3-faces of a four dimensional permutation polytope can be somewhat distorted when
plotted in three dimensionals, but much information is still preserved. It is immediately seen from
Figure 11 that candidate A is most popular. Also, there is an outlier (who is, coincidentally, the

chairman) at 32133. Better intuition about Figure 11 can be obtained by noting that the maximum



17

number of edges that must be traversed to get from any one point to another is 3. That is equivalent
to saying that the extended version of Kendall’s r (proposed above) takes the values 0,1,2, and 3. In
fact, each point has 4 points that are adjacent, 6 points that are two edges away, and 9 points that are

3 edges away.

Example 2. Table 7 contains the orderings for partially ranked data in which 16 mothers and
22 preschool boys were asked to taste 5 crackers, A = animal crackers, R = Ritz crackers, S = Saltine
crackers, C = cheese crackers, and G = Graham crackers. [See Critchlow'(1985).] Each mother and
preschooler named their first three choices, but did not differentiate between their last two choices, so
that n =35, n)=1, ng= 1, ng = 1, and ng=2. The pseudoranks are aj<ag<ag<a,=az. From
Theorem 1, the 3-faces correspond to |wg| =5, and either |w;| =4, |wj| =3, or |wi[=1. Hence, we
have one of the following three cases
1) Q) ={my7mg,mg,my}, Qg = {m5},
2) Q) = {mmgw3}, Qg = {my,75},
3) Q; ={m}, Qg = {mg,mg,my,ms}.
Condition (2) of Theorem 1 is not satisfied if |w{|=2 because aj=a; . In the first case, the polytope is
a truncated tetrahedron corresponding to the cracker lgbeled LA being ranked first. In the second case,
the polytope is a triangular prism. The vertices of the triangular prism are <1r5,1r4,7r3,(7r2,7rl)>,
<7r5,1r4,1r1,(7r3,7rz)>, <7r4,7r5,7r3,(7r2,7r1)>, <7r4,1rs,7r2,(7rl,7r3)>, <1r4,7r5,7rl,(1r2,1r3)>, and
<1|'5,1r4,7r2,(1r1,1r3)>. In the third case, the polytope is a truncated octahedron corresponding to the
cracker labeled 7, being ranked among the last. The resulting polytope, which is inscribed in a sphere
in four dimensions, has 60 vertices. Its three dimensional faces consist of 5 truncated octahedrons, 5
truncated tetrahdrons, and 10 triangular prisms. The maximum number of edges that must be

traversed to get from one point to another is 6, and each point is adjacent to 4 other points.

Figures 12a and 12b show plots of the partial rankings for the mothers and boys, respectively,
on a portion of the four dimensional polytope. Clearly visible in both figures are 4 truncated

tetrahedrons and three triangular prisms. The figure has some distortion: the dashed lines are all of
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length 1, and form 3 more triangular prisms. The missing truncated tetrahedron, which has vertices all
beginning with R, as well as the other four triangular prisms, are behind the middle of the figure and
are not drawn. Only two of the mothers and one of the preschool boys chose partial ranking beginning
with R which would be plotted on the omitted truncated tetrahedron. The differences between the
mothers and the boys are readily apparent: the boys tend to prefer animal crackers and the mothers
tend to prefer saltines. In these drawings the truncated octahedrons are distorted and difficult to see.

They can be plotted separately, but little additional insight into the data is obtained.

Example 3. In a major city, Catholic Charities mailed a survey to a sa.mplihg of the members

~

of the local diocese asking each person to rank from 1 to 3 the top three services needed in the
community as they saw them. The list of possible choices were

I = Intensive therapy for emotionally troubled youth and their families
E = Employment assistance for the unemployed

F= Food and financial assistance for families in crisis

L = Legal assistance for immigrants and families

M = Marriage and family counseling

D = Day care for low income families

A = Adoption

O = Outreach to refugees arriving in Dallas

S = Alcohol and substance abuse treatment for adolescents

P = Prepared meal and health services for low-income senior citizens

H = Housing for low and moderate income families
Table 8 shows the frequencies with which each partial ordering was chosen. Altogether there were 576
respondents to the survey who listed a first, second, and third choice; and 284 of the possible 990

partial rankings were chosen.

In this example the pseudoranks are aj<ag<ag<a,=ag=ag=a;=ag=ag=a;=a1;. Using
Theorem 1, it follows that there are four different possibilities for the sizes of Wi
1) lw|=1, k=1, ..., 7; |wg|=11

2) |wl=1, k=1, ..., 6; |wq|=10; wgl=11
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3) lwy|=1, k=1, ..., 6; |wq]|=9; |wg|=11

4) lwk|=1, k=1, ..., 5; |w6|=9; lwe}=10; |w81=11 .
The resulting sets Q are

1) Qk={7rk}, k=1, ..., T; Q8={1r8,7r9,7r10,7rn}

2) Qk={1rk}, k=1, ..., 6; Q7={7r7,7r8,7r9,7|'10}3 Q8={7"11}

3) Qu={m }, k=1, ..., 6; Qy={mp,mg,mg}; Qg={m10s71}

4) Qp={m.}, k=1, ..., §; Qg={mg,my,7g,mg}; Qz={m1p}; Qg={m11} -
In the first case, the figure is a truncated octahedron in which items labeled 7 through 7 are ranked
among the last 8, and the remaining 4 items are permuted among the first, second, third and fourth
places. In the second case, the figure is a truncated tetrahedron in which item 1 is ranked first, and
items Tqy Wgy Mg, and 7 are permuted among second, third and two fourth places. In the third case,
the figure is a triangular prism in which items 710 and 7y, are permuted between first and second
place, and Ty Tg, and Tq are permuted among the third and two of the fourth places. And in the
fourth case, item 11 is ranked first, item T19 is ranked second, and items T Ty Tgy and mq are
permuted among the third and three of the fourth places. The resulting permutation polytope is

R10

inscribed in a sphere in and has 990 vertices. Its three dimensional faces consist of 330 truncated

octahedrons, 1050 truncated tetrahedrons, 4620 triangular prisms, and 13,860 tetrahedrons.

In spite of the large number of 3-faces, a great deal of the data can be illustrated by choosing
the 3- and 4- faces that contain the largest percentages of the data. For example, if interest is
restricted to any 5 items, then the points can be plotted on the figure used in Example 2. This is done
in Figure 13 for F,E,DH, and P, with the truncated octahedron corresponding to rankings beginning
with P, which is hidden behind the figure, shown at the bottom of Figure 13. The most striking -
feature of the 4-face in Figure 13 is that although it has only 20 3-faces, it contains almost 1/3 of the
data. The 12 points on the tetrahedron in which F is ranked first, contain 92 respondents, or 16
percent of the data. Also interesting is the fact that the points of this truncated tetrahedron are almost

uniformly distributed except for the vertices FDH and FDP. The frequency distributions on the other
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4 truncated octahedrons are not all that different from each other, but overall their frequencies are
considerably smaller than the frequencies of the truncated octahedron beginning with F. These

observations are useful in guiding the choice of a model to fit the data.

Faces can also be chosen to answer specific question of interest. In this case, there is interest in
the relationship between choices I and S. Figure 14a contains the truncated tetrahedron whose vertices
correspond to the partial rankings in which the first, second and third choices are chosen from F, S, P,
and I. On the right side of the figure S precedes I; on the left side, I precedes S. Clearly, S precedes I
more frequently on this particular 3-face. As a contrast, Figure 14b contains a hexagons with all the
permutations of I, S, and M. In this case, I precedes S. These observations can be interpreted in light
of the qualitative differences between the choices F and P, and the choice M. Other faces to illustrate

the relationship between S and I contain too few points to be of interest.

5. Proofs

Proof of Theorem 1. First, we prove that the system of equations (4) and (5) determines an i-
dimensional face when Conditions 1 and 2 hold. Clearly, the points satisfying (4) and (5) are a subset
of the points satisfying (2) and (3) in the definition of the permutation polytope. Because the system
is consistent, it determines a face. The rank of the syst-em is n—i. To show that the face is of
dimension i, we use Proposition 4.3 of Yemelichev et. al. (1984), p. 36, and show that the system has
exactly n —i linearly independent constraints by showing that none of the inequalities in (4) are rigid.
That is, we must show that all of the inequalities in (4) can be solved as strict inequalities. Let w be a

subset of Ny, such that w # w , k=0,1,2 ..., n—i. From (4) we have that

1

|w|
iezwxi < ; p-it1 -

There exist an integer p € {0,1,2,...,n-i-1} such that wp C w and Wpt1 ¢ w . Because pr| < jw], we

can write
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I“"pl
Z Z + Zx Zan i+1 T Zx
icw i€w i€ w\wp i=1 i€ w\wp

Similarly, there exists an integer q € {1,2,...,n-i} such that w C wq and w ¢ Wg-l and because

|w| < Jwgl, we can write
E =25+ x5 = Za‘n-i+1’
i€uwq i€w 1€ wg\w i=1

This implies that

""’ql

|w]
25 S e 2% 2 D anggpioeand D ox = Z B i1 -
ie w\wp i=lwp|+1 ie wq\w i=|w|+1 ie wq\w 1_|wp|+1
Because wp Cw Cwg , Wpt1 ¢w,and w¢ We-1 0 Ve have that |Q)| > 2 for each integer k such that

p<k<q . This implies that a

2] Wkl +1< aﬂ'l“’k-l | for p<k <q, from which it follows that the

above pair of inequalities can be satisfied as a strict inequalities which in turn implies that the face has

dimension i.

Conversely, suppose that we have an i-face of the permutation polytope satisfying equations (4)
and (5). Without loss of generality, assume that lel < |wy| implies j <k , j,k=1,2, ..., n-i. Assume
that Condition 2 does not hold so that for some’ integer j we have ij A “'j-ll >2 and
Bl 1= an_le_ll . Straightforward calculations show that the system of equations in (4) and (5) is
equivalent to the system of equations defined by (4) and (5) augmented with

lw.)
X =

. i Za’n-i+1 ’

1€ w =1
where w, = j_lu{x*} where x, GQj . Hence, the face is of dimension less than i which is a
contradiction. Next, suppose that the inclusions in Condition 1 of the theorem do not hold. Then

there is a pair of sets, wp a.ndwq, such that neither is a subset of the other. Without loss of generality,

we can assume that p =q—1 and that pr| < |wq| . Then for any point x on the i-face, we have
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» h

lep xewq 1=

2o+ D 5= 1an-i+1 + i__zlan-i+l

lwp U wgl lwp Nwgl
= in + in < E apir1t E 8p-itl -
i €wpUuwg i€wpNug i=1 i=1

Because neither wq or wp is a subset of the other, we have that |wp Awa > 2, which in turn implies

that an_lwa +1 <3, prl . Because the pseudoranks are nondecreasing, it follows that
lwp U wgl lwp Nwgl |wgl |wpl
z i+l E i+l < Zlan-m + _E;an-i+1
i= i= i= i=

This contradiction implies that the inclusions in Condition 1 must hold.

Proof of Corollary 2. Corresponding to any i-face is a partition Qq, Q2, cory Qn-i and a set of
permutations S(Ql, Qgs +es Qn-i) such that Qk = {Wlwk-1|+1’ Tl 42 o+ 'Iwkl} for any 7 € S(Ql,
Qg - Qn—i) . First, suppose that Wg is a vertex such that ¢ € S'l(Ql, Qgy - Qn—i) and let x = Vg -
Then, by definition of S'l(Ql, Qgs -y Qn-i)’ we have x,rk =a 1.1 k=1,2,...,n where 7 € S(Qq, Qq»

ee Qn—i) . Hence,

1Ql Q!

) . Z X = Z x,,.j =.Z p j+1 fork=1,2, ..., n-i,
JEQ ™ J=iy =iy

where jk = |wk_1|+1, which shows that ag is on the face determined by Qp Q2, o Qn-i . Conversely,

suppose that Y is not on the face generated by Qq, Qgy -y Q,.; that is, n & S'I(Ql, Qgs o Qn-i)'

-

Let x=wp, . Then, because ap i+1 is decreasing in j, equations (7) hold at x=wp only if

-~ ~

{x,rjk, x,rjk+1, veey x,rIQkI}={an_jk+1, a’n—jk+2’ ey an'lel‘H} for each k=1,2,...n—i . This implies
that 7 € S'I(Ql, Qg -y Q,,_;)» which is a contradiction.
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Table 1: Data Set

n = 3 Residence Types with a Covariate
1439 Survey Respondents

Frequencies Relative Frequencies
Orderings Rankings City Suburb Rural Total City Suburb Rural
<C,S,R> (1,2,3) 210 22 10 242 .330 .044 .033
<C,R,S> (1,3,2) 23 4 1 28 .036 .008 .003
<S,C,R> (2,1,3) 111 45 14 170 174 .090 .046
<S,R,C> (3,1,2) 204 299 125 628 .320 .598 .414
<R,C,S> (2,3,1) 8 4 0 12 .012 .008 .000
<R,S8,C> (3,2,1) 81 126 152 359 .127  .252 .503

Table 2: Data Set

n = 4 Types of Literary Criticism
38 Students

Frequencies
Ordering before after

ACPT
ACTP
ATCP
ATPC
APTC
APCT
CAPT
CATP
CTPA
CTAP
CPAT
CPTA
PCAT
PCTA
PTAC
PTCA
PATC
PACT
TACP
TAPC
TCPA
TCAP
TPAC
TPCA

IO RO WNNNNWEF=MINOO & OOCO O
NOONOHEFHFNINDNCEAENEBWUAWNEORMFEO M O

Teacher’s preference: PCAT



Table 3: Haussdorf Metric T* vs. Proposed

Extension of Kendall’s r: Distance From <a,(b,c),d>

Ordering T*
<a,(b,c),d>
<a,(b,d),c>
<a,(d,c),b>
<b,(a,c),d>
<b,(a,d),c>
<b,(d,c),b>
<c,(a,d),b>
<c,(a,b),d>
<c,(b,d),a>
<d,(b,c),a>
<d,(a,c),b>
<d,(b,a),c>

b OB NN W W NN DO
BB CO R M DN N = e DN

Table 4: 2-Faces of Permutation Polytopes

1) Qk={7rk}’ 1 S k<j an_j+1>an_j>an_j_1
Qj‘_‘{rj’”j+1”rj+2}

2) Qk={ﬂ'k}, 1 S k<j an_j+1=an_j>an_j_1 or
Qj={mm; 1 1v7j 9} 3 j4+1> 20 =% j-1
Qk={7rk+2}v j<k<n-2

3) Qk={7rk}, 1<k<j B +1>an-j and an-i>a'n-i-1
Qj={7fj,7fj+1}

Q={m; pmiyol
Qk={7fk+3}, i<k S n—-2.

hexagon

triangle

square



Table 5:

1) Q={m}, 1 <k<i
={mpmi 1 174274 3)
Qk={7rk+3}s j<k<n-3

2) Q={m,}, 1 <k<j
Qj={7"j,7fj+1a7fj+2’7fj+3}
Q={# 43} i<k <n-3

3) Q={mh 1<k
Qj={”j17rj+1)7j+217rj+3}
Q={m 3} i<k<n-3

4) Qk={7rk}! 1<k<j
Q=173 p 17542754 3}
Qe={mc 3} i<k<n-3

5) ka{wk}» 1<k<j
Q={mp 7 1243}
Q={mp 3} i<k <n-3

6) ka{wk}’ 1<k<j
Qj={7rj’7rj+1}

Q={mi 172 iy 3}

7) Q={m}, 1 <k<j
Qj={7rj’7rj+1}
Q=1 it My sh
Qk={7rk+4}, i<k<n-3or

8) Qu={m}, 1 <k<i
Qj={"ij7fj+1}

Q=1 17iy2}
Qm={7rm+2s7rm+3}
Qk={7rk+4}, j<k<n'3

3-Faces of Permutation Polytopes

20-j+1<%0-§<%n-j-1<2n-j-2

30-j 41730 <2n§-1<3n-27 OF
2 §4+1<%05<*0§-1"2nj-2

3 j+1<2n-=2n-§-1<2n-j-2

Anj+17 %057 2-§-1<%p-j-25 OF

30 j+1<%n-j730-j-172n--2

3 oj+ 1530 <Bn-§-173n-j-25 OF

2n-j+172n-§<%n-j-1"2n-5-2

an~j+1<an_j and

3p-i<?n-i-1<%y.i-2

3 +1<3nj 5 and

. . 4=3
3.i<%-i-172.i-2 °F

a. 1<a

n-i—2n-i-1<%p-i-2

an_j+ 1 <an_j and

a, ;<a,:and

1<a.

2p-m- m-m-2

truncated octahedron

truncated tetrahedron

cuboctahedron

tetrahedron

octahedron

hexagonal prism

triangular prism.

cube



Table 6: Data Set

n = 5 Candidates, A, B, C, D, E
7 Rankers

Orderings Rankings
< AE,(B,C,D) > (1,3,3,3,2)
< A,D,(B,C.E)> (1,3,3,2,3)
< D,A,(B,C,E) > (2,3,3,1,3)
< A,B,(C,D,E)> (1,2,3,3,3)
< B,A,(C,D,E) > (2,1,3,3,3)
<C,B,(A,D,E)> (3,2,1,3,3)
< A,C,(B,D,E)> (1,3,2,3,3) -

Table 7: Data Set

n = 5 Types of Crackers
16 Mothers and 22 Preschool Boys

Orderings
Boys Mothers
ACS CRA
GCA SRG
ACG CSA
CAG CSA
CGA SRA
ARC SCR
CSA SCG
SCR GAR
AGC SAR
ARG CSA
AGC RSC
ACS RAG
GRA SCG
CGA SAR
ACS GAS
CGS SCA
ARC
ACG
RAC
AGC
ACG
CAG



ADH
ADS
AED
AEF
AEL
AED
AFP
AHS
AIS
ALH
AMI
APD
APM
ASM
DAL
DAS
DEH
DEP
DFE
DFH
DFI
DFM
DFO
DFP
DFS
DHE
DHF
DHO
DHP
DIF
DIP
DMF
DMI
DMS
DOI
DPF
DPH
DPM
DPS
DSE
DSH
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DSI
DSM
EAF
EDF
EDH
EDM
EDP
EFA
EFD
EFH
EF1
EFL
EFM
EFQ
EFP
EFS
EHD
EHF
EHI
EHL
EIF
ELA
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EMS
EPF
EPH
EPM
ESH
ESI
ESM
ESP
FAD
FAM
FAP
FAS
FDA
FDE
FDH
FDI
FDL
FDM
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FDP
FDS
FEA
FED
FEH
FEI
FEM
FEP
FES
FHD
FHE
FHI
FHM
FHO
FHP
FHS
FIE
FIH
FIP
FIS
FLH
FLS
FMA
FMD
FME
FMH
FMI
FML
FMP
FMS
FOD
FOE
FOL
FOP
FPA
FPD
FPE
FPH
FPI
FPM
FPQ

All other orderings were not chosen
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Table 8: Data Set

n = 11 Choices
576 Survey Respondents

FPS
FSD
FSE
FSH
FSI
FSL
FSM
FSO
FSP
HAD
HDE
HDF
HDI
HDL
HDM
HDO
HDP
HDS
HED
HEF
HEP
HFD
HFE
HFM
HF0
HFP
HFS
HIE
HLA
HOF
HPF
HPI
HPL
HPS
HSE
HSP
IAS
IDE
IDS
IED
IEF
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IEP
IES
IF0
IFS
IMA
IMD
IMF
ML
IMP
IMS
I0A
IPD
IPE
IPF
IPH
IPM
IPO
ISD
ISE
ISF
ISM
ISP
LMD
MAD
MAE
MAI
MAP
MAS
MDP
MED
MEF
MEH
MEP
MFA
MFE
MFH
MFI
MFL
MFP
MFS
MHE
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MID
MIE
MIF
MIL
MIO
MIS
MLA
MPA
MPF

MSE
MSF
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OLF
OME
OMF
OPF
OPL
PAF
PDE
PDF
PDI
PDL
PED
PEF
PEI
PEM
PFA
PFD
PFE
PFH
PFI1
PFL
PFO
PFS
PHD
PHF
PHS
PID
PIE
PIF
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PME
PMF
PMO
SAD
SAE
SDE
SDF
SDI
SED
SEF
SEL
SEP
SFD
SFE
SFH
SF1
SFL
SFM
SFP
SHE
SHL
SHP
SIA
SIF
SIH
SIL
SIM
SIP
SLE
SMD
SME
SMP
SGD
SPE
SPF
SPH
SPM
SPO
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