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ABSTRACT

The properties of a distribution-free rank-like test for the two-sample scale problem are
studied. This rank-like test is superior to commonly used rank tests for scale in that it: (1) does not
require equal or known location parameters, (2) is robust for skewed data, (3) is resolving and (4) has
significant power advantages in some circumstances. It is a statistic especially well suited for testing
for equality of scale in biological applications where data are sampled from skewed populations with
unequal medians. The proposed test is shown to be asymptotically normal and asymptotic relative
efficiencies are calculated. Power properties are studied via simulation. Extensions to the j-sample

problem are indicated.
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1. Introduction

While powerful, robust, and highly useful distribution-free rank tests for differences in
population locations are readily available, the same can not be said of tests for scale differences. The
most common distribution-free tests for scale include the Siegel-Tukey test (S-T), the Ansari-Bradley
test (A-B), the Capon test, Mood’s test, and the Klotz test, all of which are linear rank statistics based
on score functions that are symmetric (or nearly symmetric) about 1/2. Such distribution-free rank
tests for scale are hampered by restrictive assumptions that significantly limit their applicability. One
of the most common and problematic assumptions is that the two distributions do not differ in terms
of a specified location parameter, typically the median. Or if the location parameters are unequal, it is
assumed that they are at least known (Bradley, 1968). In this connection Moses (1963) stated “No
rank test ... can hope to be a satisfactory test against dispersion alternatives without some sort of
strong restrictions (e.g. equal or known medians) being placed on the class of admissible distribution
pairs.” Assumptions of this type are rarely tenable in the biological sciences and violations of such
assumptions may entail serious statistical consequences. One of the most serious consequences of
violating the assumption of equal medians in the commonly used rank tests for scale occurs with
skewed data. When the data is not from a symmetric distribution, linear rank statistics for scale
detect differences in location in the abscence of differences in scale. In addition to having restrictive
assumptions and being nonrobust to unequal medians with skewed data, linear rank statistics for scale
are nonresolving (Wasserstein and Boyer (1990)); that is, as the scale parameters of the two

distributions move further apart, the probability of detecting the alternative does not approach 1.

The primary purpose of this paper is to examine the properties of a rank-like test for scale
differences that (1) makes no assumptions concerning distribution locations, (2) is resolving, (3) does
not detect differences in location for skewed distributions when the null hypothesis of equal scale
parameters is true, (4) is distribution-free and (5) is referenced to readily available tables of critical

values. This test is especially suitable for testing for scale differences when the two samples are from



skewed populations with different medians. Data of this sort are quite common in biological
applications. In the remainder of this paper, a description of the test statistic is given, its asymptotic
properties are discussed, its power properties are compared to that of the well known Siegel-Tukey test

(Siegel and Tukey, 1960), and finally a brief discussion is provided.

2. Definition of the Test Statitsic.

Let¢ X and Y be two random variables with distribution functions Fx(t) and
Fy(t)=Fx((t—4)/0) and with densities fx(t) and fy(t)=%fx((t—p)/a), respectively. Let X;, X, ...,
Xm and Y;, Yg, ..., Yp denote two random samples of sizes m and n from populations with cdfs Fx(t)
and Fy(t), respectively. Testing the null hypothesis that the two random variables, X and Y, have the
same scale parameters is equivalent to testing the null hypotheses Hy:0=1 versus the alternative
Ha:0#1. No assumptions are made about the symmetry of Fy(t) or about the equality of the location

parameters of X and Y.

The proposed test statistic is constructed by first randomly choosing two observations, say Xi
and Xj’ from the sample Xl’ X2, <. y Xm and defining the random variable Dx1=|xi—xj| . Then Xi
and Xj are deleted from the sample and the procedure is repeated successively to produce D,,, ...,
Dx[m /2) (where [x] denotes the greatest integer part of x). In generating D.,, ... , Dx[m J2) all the
observations in the sample X Xgy ey Xm are exhausted if m is even, or one observation remains if m
is odd. In the same manner the random variables Dyl’ Dy2y wry Dy[n /2] are generated from Yl, Y2, .
Yn . While the random variables D i and Dyi may seem at first glance unmotivated, it follows from
Theorems 2 and 3 of Bickel and Lehmann (1979) that it is very natural and entirely expected that a
test statistic for scale should be based on the random variables Xi—Xj and Yi—Yj if it is desired that

the test statistic also be insensitive to location differences.

To study the distribution of the resulting random variables, let Dy and Dy denote random

variables with cdfs



oo t4+u

FDx(t)=I I £(v) fi(u) dv du , £0,
-00 y-t

oo t+u
and FDy(t)=I I fy(v) fy(u) dv du = FDx(t/a) , 120,
-00 u-t

respectively. Then, the generated random variables, D,y, D, ... , Dx[m /2] and Dyl’ vy Dy[n /2] 8re
simply random samples with distribution functions FDx(t) and FDy(t)' The densities for Dy , fDx(t),
are given in Table 1 for several common densities fy(t). Note that FDx(t) and FDy(t) are
asymmetrical distributions in which the total mass is confined to the positive axis. Because the
difference between FDx(t) and FDy(t) is completely described by the scale parameter, o, the null
hypothesis that X and Y have equal scale parameters can be tested without interference from the
unequal (nuisance) location parameters simply by comparing the two random samples D,,, D,, ... ,
Dx[m /2] and Dyl’ ey Dy[n /2] - The proposed test statistic is motivated by noting that although there
are no nuisance parameters to describe location differences between Dy and Dy, the medians of FDx(t)
and FDy(t) are different if 0 #1. As 0 moves further from 1, the medians of Dx and Dy move further
apart. Hence, the heuristic idea behind the proposed statistic for testing Hy:0=1 versus Hy:0#1 is to
apply any suitable two-sample rank test for location, such as the Wilcoxon rank-sum test, to the two

random samples, D,,, D, ..., Dx[m/2] and Dyl’ vy DY[n/2]'

To formally define the proposed test, let R,; and Ryj , 1€i<[m/2] , 1<j<[n/2] , denote the
ranks of D; and Dyj, respectively, in the combined sample D,,, ..., Dx[m /2] Dyl’ ey Dy[n /2] * Let
N=[m/2]+([n/2], and let #(t) be any square integrable function on (0,1) called the score function.
Although this is a test for scale, we will be primarily interested in score functions that are monotone so
as to detect the shift in medi?ms that accompanies the change in scale between Dy and Dy. The scored
ranks are generated from the score function either as approximate scores, a(i)=¢(i/N), or as exact

h

scores, a(i)=E(U(i)) where U,y denotes the ith order statistic of a sample of size N from a uniform

distribution on (0,1). Define the scored rank associated with D,; as a,;=a(R,;). Then the proposed



test is the sum of the scored ranks associated with the [m/2] random vaiables D ,, D,,, ... , Difmy/2)

(m/2]

For any choice of score function, ¢, the linear rank statistic B is distribution-free. As breifly
noted by Moses (1963), when ¢ is the identity function with approximate scores (that is, ¢(t)=t and
a =R,xi(N+1)'l ), then (N+1)B is exactly the Wilcoxon rank-sum test applied to the two samples
Dyyy oer s Dx[m /2] and Dyl’ .y Dy[n /2] and tables of small sample critical values are readily
available. Duran and Mielke (1968) discuss the use of the score function ¢(t.)=(t.(N+l)/N)2 for
comparing the scale parameters of two asymmetrical one-sided distributions, and Mielke extends the
discussion to score functions ¢(t)=(t(N+l)/N)r, r>0 . In this paper we will examine the test
statistic B with two different sets of scores. First the Wilcoxon scores, which are widely used to test for

differences in location, generate the test statistic

[m/2]
Bw= Y R;/(N+1).

i=1
N
On the other hand, the shape of fDx suggests that the Savage scores, ag(i)= ). (1/j) may be
1m0

= 1-i
appropriate, thus generating the test statistic

[m/2]
Bs=)_ as(R).

=1

Also, locally most powerful tests for scale can be derived via exact scores. Define the function

o, (F, (W)

¢(ufp, )=—1-Fp_ (u) T (FL (w)

for ue(0,1). From Hajek and Sidak, Section VII.1.3 (1967), it follows that ¢(u,fDx) is the optimal

score function and that the locally most powerful test for detecting changes in scale is

[(m/2]
Bou.ipy = Z; E[$(Ugyfo, )] -



Note that Bg is the locally most powerful test for detecting changes in shift when the underlying data

is exponential.

It is interesting to examine the proposed test, B, in light of the statement by Moses (1963) (as
quoted in the Introduction of this paper). Previous attempts to construct rank-like tests for scale
differences between random variables with unequal medians, such as Fligner and Killeen (1976), were
based on transforming the two samples in an attempt to match up the medians. Unlike B, many of
the resulting tests assume symmetric distribution functions. The test B is unique in that the two
samples are transformed to have an entirely different location property in common. The distributions,
FDx(t) and FDy(t), do not have equal medians, but they share the location property that
FDx(t)zFDy(t)=0 for all t<0 and for all values of #. In many commonly encountered situations, the
assumption of equal medians is unrealistic, but the assumption of equal endpoints of the supports is
always satisfied by the construction of the random variables Dx and Dy . Hence, in testing whether
Dyqy Dyoy oty Dx[m /2] and Dyl’ vy Dy[n /2] &re from populations with the same scale parameter, the
usual restriction of equal medians is replaced by the (already satisfied) restriction of equal endpoints for
the half-lines that describe the support of the two underlying populations from which Dx and Dy are

sampled.

The proposed test, B, also posesses another desirable property not shared by many other linear
rank tests for the equality of scale parameters, namely that the power of the test approaches 1 as the
parameter of interest moves away from the null hypothesis and appoaches the extremes of the
alternative hypothesis. =~ 'When the null hypothesis is Hy,:#€w and the alternative hypothesis is
Ha:0€Q\w, Jogdeo (1966) defines a test to be resolving if supoeﬂ\wPr(reject Hgyl 8)=1 . Otherwise,
it is said to be nonresolving. Wasserstein and Boyer (1990) show that a large class of linear rank tests
for equality of scale are nonresolving. Included in the class of nonresolving tests for scale are the

Ansari-Bradley test, the Capon test, the Siegel-Tukey test, the Klotz test, and the Mood test.



To show that B is resolving when #=c is the parameter of interest and when ¢ is
nondecreasing, first note that 2=(0,1) and w={1}. The extremes in the alternative correspond either
to when o moves toward infinity, at which time all the observations in the sample D,,, D,,, ... ,

Dx[m /2] will tend to preceed all of the observations D Dyza ey Dy[n J2p °F when o moves to 0, in

y1
which case all of the observations in the sample D,,, D,,, ..., Dx[m /2] will tend to follow all of the

observations Dyv Dy2; «oe s Dy[n /21

Theorem 2.1. Assume that ¢ is nondecreasing. Then test statistic B is resolving and

a_li_{g@Pr(B reject Ho| 0)= }711'_2 0Pr(B reject Hg| 0)=1.

Linear rank statistics for the two-sample location problem are generally resolving, while linear
rank statistics for the two-sample scale problem generally are not. In this respect, the structure of By

is more similar to the structure of rank tests for location than to that of rank tests for scale.

These ideas can be generalized to yield test statistics for the J-sample problem. Suppose there
are J samples, each of size n; from populations with cdfs F((t—pj)/aj) , 1<j<J. The null hypothesis
is Ho:0y=0,=...=0 versus the alternative that not all of the o, , 1<j<J, are equal. From each of
the J samples, the corresponding samples, Djl’Dj2' ey Dj["j /2] 3re generated as above. Then the
Kruskall-Wallis test or another appropriate rank test for the J-sample location problem is applied to
the samples of Dj’s. The result is a distribution-free test for the J-sample scale problem that does not

require equality of medians, is resolving, and is especially appropriate for skewed data.

3. Asymptotic Properties of B.
To study the asymptotic properties of B, first define the following:
'\=n¥lmoo[m/2]/N’

po=[m/21/1~1i§1a(i), and



o3 =lm/2ln/ AN =D)L (30 -N" )"
Assume that 0<A<1. Then, it follows (see Randles and Wolfe (1979) or Hajek and Sidak (1967)) that
(B—po)/ oo converges in distribution to a standard normal random variable under the null hypothesis.
This yields an easily implemanted large sample test for Hg:o=1. For B,y straightforward

computations show that pozé[mﬂ], and 02 =[m/2]x[n/2]/(12(N+1)) .

The asymptotic relative efficiency (ARE) of B relative to other tests for scale is obtained by
by first calculating the efficacy of B for a sequence of Pitman alternatives for scale. It follows from
Hajek and Sidak (1967) (cf also Randles and Wolfe (1979)) that the efficacy of B for any square

intregrable score function is

o0 o0
efi(B) = A(I—A)( [ 6w ot au )2 ( [ 6-97 au )‘1
-00 -00

_ 1
where ¢ =[¢(u)du. The expression for eff(B) can be simplified. Assuming mild regularity conditions
0

on the underlying distribution, the first integral becomes

o0 o0
J $(u) ¢(u,fp,) du = I u¢'(FDx(u)) fp, (u) du .

-0 -00

When ¢ is the identity function, we have 3:% and (cf. Duran and Mielke (1968))

eff(B)=12A(1—)) (T u f3 (u) du)2
0

as long as tl.i-Toothx(t)zo . Because the construction of B effectively halves the sample size, the ARE

of B relative to any other test, say T, is

eff(B)
2 ff(T)’

The values for ARE(B,y,,S-T) are given in Table 2 for a variety of distribution functions. The values

ARE(B,T)=

for eff(S-T) are calculated by (cf Randles and Wolfe (1979)

efr(sT)=4s,\(1—A)(T u 2(u) du — I u 2(u) du)2
-0

v



where v is the median of fy . Because the Siegel-Tukey test and the Ansari-Bradley test are
asymptotically equivalent, it follows that ARE(B,,,S-T)=ARE(By,,A-B). Note that the ARE’s
increase as the tail weight of the underlying distribution incraceases. In examining the ARE’s in Table
2 it should be emphasized that these ARE’s apply only in the case when the medians of the two
samples are equal. In this case, however, B would not be the test of choice because the effective sample
size is halved (and hence the power lowered) to compensate for the unequal medians. When the two
medians are unequal, the Siegel-Tukey test, the Ansari-Bradley test, and the Mood test are not valid,

but B is valid. Power comparisons in the case of unequal medians is explored in Section 4.

It is of particular interest to further examine the asymptotic properties of the more commonly
used rank tests for scale (e.g. S-T, A-B, etc.) under the null hypothesis of equal scale parameters when
the two samples have unequal medians. This can be accomplished by letting L be any linear rank
statistic and examining the efficacy of L under a sequence of Pitman location alternatives. This

efficacy is:

0 0
ff(L) = m_,\)( j ¢! (Fx(u)) £2(u) du)2( j(«»(u)—a)’ du)".
-00 -0

This expression is 0 if and only if the first integral is 0. When F is symmetric and ¢ is symmetric
about the median of F, it is readily seen that eff(L}=0 . However, when F is not symmetric, but ¢ is
symmetric about some value, (a8 is the case with most linear rank tests for scale), the integral in the
numerator will be 0 only under very rare conditions. In practice, when commonly used score functions
are used, the integral will be nonzero and the test will detect a difference in medians with skewed data
when the null hypothesis of equal scale parameters is true. This is a major drawback of the commonly

used rank tests for scale that is not shared by B .

4. Small Sample Comparisons.

This section examines the results of a Monte Carlo study used to compare the Type I error and



power properties of B,,, Bg, and the Siegel-Tukey test when sampling from a variety of population
shapes. The distributions studied were standard normal, double exponential, uniform (-.5, .5),
exponential, chi-square (d.f.=1), and a right-triangular distribution with density as shown in Table 1.
It should be noted that the first three of these distributions are symmetric about 0 (zero) while the

remaining three are shewed with left most end points at zero.

Throughout the study, observations for the two samples submitted to analysis, X' and Y/,
were obtained throught the transformations X’'=X and Y'=cY+k01 where X and Y are randomly
sampled from a common population with standard deviation o,. Five thousand repetitions of each
experimental condition were employed. Simulation results are shown in Tables 3 through 11.
Populations studied as well as values used for ¢ and k are as indicated in these tables. Throughout the
study each sample consisted of m=n observations. In evaluating the tabled results, it should be noted
that c=0,/0,=1 (where o, is the standard deviation of the Y ) implies the null hypothesis while ¢>1
indicates the alternative. In addition, k#0 implies a violation of assumption for S-T, but not for B,y

or BS.

The results for symmetric distributions are contained in Tables 3, 4, and 5 for the normal, the
uniform, and the double exponential distributions, respectively. Table 3 shows that when sampling
from the Gaussian distribution, all three tests produced Type I errors near the nominal level under the
condition c¢=1 and k=0. However, as values of k>0 increase with c fixed at 1 (i.e. under a still true
null hypothesis), S-T becomes increasingly conservative with the proportion of rejections reaching 0
(zero) for larger values of k. As expected, By, and Bg continue to produce results near a. Under the
condition k=0 and c>1, S-T is always more powerful than B,,, and Bg. For k#0, B, and Bg are
more competitive with Bg always being more powerful than S-T for k>2. The magnitudes of the
advantages of By, and Bg over S-T are substantial in many cases with this being particularly true for

Bg. It should also be noted that Bg is significantly more powerful than B,y in many circumstances.

Next, Table 4 shows that patterns of Type I error results obtained for the uniform distribution

10



were similar to those seen with the normal distribution. As might be expected from the ARE’s
reported in Table 2, the power advantages of S-T under this distribution are often somewhat larger
than those obtained for the normal data. Once again, however, for k=3 large advantages are seen for
By and Bg as compared to S-T with Bg being superior to By, for most conditions. And from Table 5
it can be seen that the results for the double exponential distribution were similar to those found for

the normal curve. It should be noted that for n=60 Bg was always more powerful than S-T for k>0.

Data for the skew distributions were generated by means of the same transformation model as
was used for the symmetric data. For these distributions, however, the null condition was evaluated by
fixing ¢ at 1 while varying k from 0 to 3. This resulted in a simple shift of location. Tables 6 through
8 show similar patterns of Type I errors for the three statistics. Because of their insensitivity to
location, By, and Bg were valid for all conditions studied. By contrast, S-T was valid only for k=0.
For k>0, S-T often produced highly inflated Type I error rates with inflation increasing with increases
in sample size. It is also interesting to note that inflations were greatest for k=1 and diminished for
larger k. The magnitudes of the inflations were also dependent upon the shape of the sampled

population.

The alternative for skewed data was evaluated by setting k=0 and having ¢ take the values
1.25, 1.50, 2.00 and 3.00. Since the means of all three skew distributions are greater than 0, these
transformations generated data in which medians and variances depend on each other. Data with this
characteristic are common in the biological sciences and are particularly common when populations are
skewed. Tables 9 through 11 show that B,,, and Bg were more powerful than S-T for all conditions
studied. The magnitudes of these advantages were often quite large. As was true of the symmetric

distributions, Bg was generally more powerful than B,.

5. Discussion.

The distribution-free test for scale, B, is insensitive to, and therefore makes no assumptions

11



concerning, population locations. By contrast, the Siegel-Tukey test along with similar statistics is
valid only in the highly restrictive and usually unrealistic circumstance that population medians are
equal or are known. The tendency of S-T to become conservative with an accompanying loss of power
when population medians differ is well known and often mentioned in the literature (see Boehnke
(1989) for example). Researchers might be tempted, therefore, to apply the Siegel-Tukey test in
situations where equivalence of population medians cannot be assumed with the expectation that, at
worst, a conservative test will result. As has been demonstrated above, however, this test may become
completely invalid when sampling is from skew distributions with Type I error rates approaching 1.0.
This is particularly troublesome since it is precisely in these circumstances that a distribution-free test

can be most useful.

We also reiterate that while the method of computing B,,, and Bg effectively halves the
sample sizes, these statistics remained competitive with S-T for k>0 and were often much more
powerful than S-T in these situations. While the power advantages of Bg as compared to B,,, were
usually modest, they were nevertheless of sufficient size so as to favor this form of the statistic in
applications. Use of Bg does not place an undo burden on the researcher since Savage scores are readily
obtained through such popular statistics packages as the International Mathematical and Statistical
Libraries (IMSL, 1987), SAS (SAS Institute, 1985) and SPSS (SPSS, 1990). A test statistic may be
obtained by calculating an independent samples t test on the Savage scores with reference then being
made to a t distribution with m+4n-2 degrees of freedom. The t approximation for the sampling
distribution of this statistic is quite good for the sample sizes employed in this study. (This was the

manner in which Bg was used in this study.)

We recognize that the manner in which B,y and Bg are calculated does not provide a unique
result. While this is not an entirely desirable trait, it should be noted that it is not unprecedented in
rank-like statistics (cf. Moses (1963)), and that a “correct” result is obtained as long as the statistic is

calculated in the manner described above. We believe that this negative trait is far outweighed the

12



fact that B is truly distribution-free in the sense that the Wilcoxon rank-sum test and other rank tests
for location are distribution-free. That is, no distributional assumptions are made about symmetry or
equal location parameters. This property is achieved by basing the test on the differences Xi—Xj and

Yi_Yj’ as suggested by Theorem 2 in Bickel and Lehmann’s (1979) discussion of measures of spread.

An interesting perspective on the test statistic B is obtained by noting the distinction between
spread and dispersion made by Bickel and Lehmann (1979). Essentially, dispersion applies only to
symmetric distributions and is relative to a location parameter, while spread is location free. In this
respect, B is unique among rank-like tests for scale in that, being based on the differences Xi—Xj , it is

a test for spread as opposed to being a test for dispersion.

6. Proofs.

Proof of Theorem 2.1. First, consider the case when o approaches 0. The cdf of the smallest
o 4 o1 (1 [m/2]
order statistic, Dx(l) , from the sample D,,, D,,, ..., Dx[m J2)p 8 1—(1 FDx(t) and the cdf of
the largest order statistic, Dy([n /2n from the sample Dylv Dy2, vy Dy[n /2 is
2 2
(FDy(t))[n/ ]=(FDx(t/a))[n/ 1 Then, we have that

(o ]
Pr(Dy /2])<Dx(1))=I [m/2] f, (&) (1-Fp, )™ (Fp, (1)) 2t
0

=E((FDV(DX(1)))IH/2])=E((FDX(Dx(n/U))[n/z]) .

Because tliin()‘_"F[))((t):l , it follows that ;lgl_) oPr(Dy([n /2])<Dx(1))=l . Hence, we have
supaen\wPr(reject Hol 6)> ;_irgoPr(reject. Ho| o)
2 lim Pr(Dy(fn/2)) <Dy(1)) =1
which implies that By is resolving. By similar arguments, the theorem also holds when & approaches

infinity. Q. E. D.
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Table 1: Distribution of Dy )

Distributiog of X
Uniform

Normal

Double Exponential
Right Triangular

Density of X
f(x)=1; —}<x<}

f(x)=(27) '/ 2exp(-x?/2)

f(x) =exp(—|x|)/2
f(x)=1x+1

Density of Dy (t>0)
fp, (t)=2-2t ; 0<t<1
o, (t)=(x)"/exp(-13/4)
fDx(t)=exp(—t)/2+t exp{—t)/2
fDx(t)=§—t+lt—;

Exponential f(x)=exp(—x) ; x>0 fDx(t)zexp( —t)
Table 2: Asymptotic Relative Efficiencies
Distribution A&E@uﬂl
Uniform 222
Normal 5
Double Exponential 6328
Right Triangular 1.01
Exponential 3.35
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Table 3: Comparisons of the Type I error and power properties of the Siegel-Tukey, B,,, and

40

60

B tests for spread when sampling is from normal distributions and a=.05

_k_

statistics
Bw
Bg
S-T

Bw
Bg

S-T
Bw

S-T

o3
41

057
.049
050

050
044
021

057
.051
001

.052
.046
000

051
.054
048

.046
.042
.019

.050
.050
.001

.049
.048
.000

053
.046
.049

.051
052
021

.049
.046
.000

.050
.044
.000

16

079
078
.110

.089
.089
.054

.085
.081
.003

079
077
.000

111
.136
.187

114
139
097

114
137
007

A17
139
000

.147
197
.263

.158
.200
.147

170
.203
013

.154
.201
.000

.168
.181
270

.159
165
147

.166
.176
032

.164
175
.000

.281
.349
473

.280
.361
332

.276
352
071

.283
.361
001

396
518
661

404
519
497

.389
.519
133

.386
518
.003

.346
.395
.588

.359
407
.458

.348
394
.208

357
402
.037

.631
764
.888

627
755
811

626
.766
.486

631
767
.108

798
923
979

.803
923
943

.801
921
722

.805
918
193

3:00
675
751
907

679
764
.850

674
7147
687

.666
748
.399

936
.983
.998

932
981
995

933
.982
959

927
980
.780

989
999
1.000

.989
1.000
1.000

989
.999
997

.989
999
937



Table 4: Comparisons of the Type I error and power properties of the Siegel-Tukey, B,,, and
Bg tests for spread when sampling is from uniform distributions and a=.05

o
4

n k statistics 1.00 1.25 1.50 2.00 3.00

20 0 By 057 078 171 .364 .680

Bg 047 .080 191 434 776

S-T .049 .183 424 .782 .966

1 Bw .055 .086 .154 367 .678

Bg .050 085 .182 445 781

ST .017 .051 194 .655 941

2 Bw 054 .080 173 374 679

Bg .050 .080 .199 .448 778

S-T .000 .002 012 .204 .846

3 By .050 .081 .165 370 .666

Bg .045 .080 .187 .440 776

ST 000 .000 .000 .006 530

40 0 Bw .045 120 .290 .648 .930

Bg .043 .164 424 .819 .989

S-T .053 341 .726 978 1.000

1 By 048 126 .286 .638 930

Bg .046 170 421 .820 .989

ST 012 107 .429 .940 .999

2 By .049 .126 .290 .648 928

Bg .043 .169 429 .826 .986

S-T .000 002 031 .547 994

3 Bw 047 122 .291 .645 .936

Bg 049 .161 424 .825 .989

ST .000 .000 .000 025 905

60 0 Bw 053 .162 408 .824 .990

Bg 049 .248 626 .954 1.000

S-T .050 .460 .888 .998 1.000

1 Bw .049 .161 .409 .825 .990

Bg .051 .257 612 .959 .999

S-T .019 .156 .635 992 1.000

2 By .045 .154 .401 .834 .988

Bg 042 .246 .620 .961 1.000

S-T .000 .003 .069 .792 1.000

3 By .050 .165 411 814 .989

Bg .051 .258 .636 949 .999

ST .000 .000 .000 .061 .988
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Table 5: Comparisons of the Type I error and power properties of the Siegel-Tukey, B,,, and
Bg tests for spread when sampling is from Laplace distributions and a=.05

o
7

n k statistics 1.00 1.2% 1.50 2.00 3.00

20 0 By .051 082 .143 .300 .607

Bg .039 075 144 315 .654

S-T 046 .082 A7 404 .769

1 By 057 072 135 .303 .608

Bg 050 067 134 .322 659

ST 049 064 .126 .340 .699

2 By 053 .081 .136 297 .598

Bg 048 074 .135 319 .655

S-T .007 016 040 .161 518

3 By .052 074 139 .288 587

Bg .045 073 143 310 .639

S-T .001 .001 010 .052 .289

40 0 By .048 112 225 .532 .882

Bg 047 117 .265 .626 947

S-T .051 131 .328 726 .980

1 By 047 104 219 534 .888

Bg 047 111 .260 .629 951

ST .046 .096 .246 .631 .956

2 Bw 048 .100 217 .526 .893

Bg .044 .109 .255 .622 .955

S-T .008 022 081 .355 .839

3 Bw .054 .105 219 .539 .893

Bg .052 110 .260 624 947

S-T .000 002 013 112 .610

60 0 By .048 137 328 .708 977

Bg .050 .153 .398 .820 994

ST 051 .182 472 .888 .998

1 Bw 049 130 .332 719 977

Bg .052 .149 .400 .824 .995

S-T .045 .128 .367 .812 .992

2 Bw 044 .136 329 .716 975

Bg .043 .155 .392 .825 993

S-T .008 035 144 .554 .959

3 By 047 .128 315 722 975

Bg .049 .146 390 817 .995

S-T 000 002 013 .186 .813
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Table 6: Comparisons of the Type I error properties of the Siegel-Tukey, B, and Bg tests
for spread when sampling is from an exponential distribution and a=.05

B3y

2
_n_ statistics 0.0 1.0 2.0 3.0
20 Bw 054 .054 .053 .050
Bg .050 .048 044 .045
ST .049 449 .146 017
40 By .051 .050 .046 047
Bg .052 044 044 .050
S-T .052 .816 319 .034
60 By .054 .045 .051 .048
Bg .047 .045 .052 .045
S-T .045 961 .053 041

Table 7: Comparisons of the Type I error properties of the Siegel-Tukey, B,,, and Bg tests
for spread when sampling is from a chi-square (df=1) distribution and a=.05

Be-fy

2
n statistics 0.0 1.0 2.0 3.0
20 By .048 .051 .050 056
Bg .043 .045 .045 .048
ST .051 617 .190 037
40 By 048 044 .048 057
Bg 048 045 .049 .060
S-T .054 930 373 061
60 By .050 .057 .053 .049
Bg .051 057 .052 .048
S-T .050 991 .559 .089
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Table 8: Comparisons of the Type I error properties of the Siegel-Tukey, By, and Bg tests
for spread when sampling is from a right- triangular distribution and a=.05

Ba-#y

=21
n statistics 0.0 10 2.0 3.0
20 By .049 051 047 .056
Bg 044 045 .037 049
S-T .049 087 .000 000
40 By 050 051 049 048
Bg 050 045 .047 .050
ST 054 214 .000 .000
60 Bw 049 051 055 .055
Bg 045 047 .052 049
S-T .045 367 .000 .000

Table 9: Comparisons of the power properties of the Siegel-Tukey, B,y and Bg tests
for spread when sampling is from an exponential distribution and a=.05

)

£
n statistics 1.25 1.50 2.00 3.00
20 By 070 117 .239 .523
Bg .064 115 .253 .557
S-T .060 .058 .066 .082
40 By .086 .182 .436 .809
Bg .093 214 .506 .890
ST .053 .080 114 .165
60 By 112 279 .623 .939
Bg 123 .326 721 977
S-T 070 .107 175 273
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Table 10: Comparisons of the power properties of the Siegel-Tukey, B, and Bg tests
for spread when sampling is from a chi-square (df=1) distribution and a=.05

o
73

n statistics 1.25 1.50 2.00 3.00

20 By .065 .100 .188 .361

Bg .063 .091 .194 .398

S-T .055 .058 074 104

40 By 071 .136 322 .648

Bg 078 .156 377 739

S-T .060 .080 127 .206

60 Bw .084 .184 .455 817

Bg .100 218 539 .906

S-T .066 090 .165 .322

Table 11: Comparisons of the power properties of the Siegel-Tukey, B,y and Bg tests
for spread when sampling is from a right-triangular distribution and a=.05

93

7
n statistics 1.25 1.50 2.00 3.00
20 By .086 .156 338 .640
Bg .083 170 .399 732
S-T 070 .100 .167 .189
40 Bw 116 .249 607 919
Bg 146 .356 .766 979
S-T 100 207 372 .486
60 By .148 .380 774 .986
Bg .204 544 925 1.000
S-T 137 .290 .582 .739
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