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ABSTRACT

Collinearities for linear and nonlinear measurement error models are defined as small norms of
second-order moment matrices. For linear measurement error models, collinearities are a property of
the second-order moment matrix of the unobservable true predictor variables. For nonlinear
measurement error models, collinearities are a property of the second-order moment matrix of
derivatives of the nonlinear function. Diagnostics for the detection of collinearities are presented. These
diagnostics are similar to those used in traditional regression models, only they are applied to
estimated second-order moment matrices. Examples are discussed, one of which shows that
measurement errors can mask collinearities among the true predictors.
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1. INTRODUCTION

Classical assumptions for regression models (e.g., Gunst and Mason 1980, Section 6.1) require
that the predictor variables be nonstochastic and measured without error. When these assumptions are
reasonable, least squares estimation is applied to estimate model parameters and to draw inferences.
While one can still use least squares estimation and invoke conditional inferences when the predictors
are stochastic, conditional inferences do not obviate the need for alternatives to least squares when
predictors are measured with error (e.g., Fuller 1987, Section 1.1). Measurement error modeling is,
therefore, replacing least squares estimation in many applications in which predictor variables are
contaminated by measurement error (e.g., Battese, Harter, and Fuller 1988; Burr 1988; Carroll and
Spiegelman 1986; Carroll, Spiegelman, Lan, Bailey, and Abbott 1984; Gunst and Kelly 1990; Hung and
Fuller 1987; Hwang 1986; Stefanski and Carroll 1985).

Recent theoretical work in measurement error modeling is rapidly expanding its application.
Nonlinear models (e.g., Fuller 1987, Chapter 3; Wolter and Fuller, 1982), generalized linear models
(e.g., Schafer 1987, Stefanski 1989; Stefanski and Carroll 1987), robust regression (e.g., Amman and



Van Ness 1989, Brown 1982; Zamar 1989), and quasilikelihood estimation (e.g., Whittemore and Keller
1988) are but a few of the current research areas being investigated.

This paper focuses on a serious problem for traditional regression models that also affects
measurement error modeling procedures: collinearities among the error-free predictors. Collinearities
can occur with any linear or nonlinear measurement error models fit by maximum likelihood,
generalized likelihood, or quasilikelihood methods. Collinearities are fundamentally a property of the
predictors; none of these estimation methods necessarily protect against the occurrence of collinearities
or ameliorate their effects.

Collinearities in linear measurement error models are defined in Section 2. Estimators of model
parameters are presented in Section 3. In Section 4, procedures for detecting collinearities in linear
measurement error models are discussed. The results presented extend to maximum likelihood
estimation for generalized linear models and to quasilikelihood estimation, with suitable modifications
to account for the weight matrices used in each. Section 5 expands the discussion of collinearities to
nonlinear measurement error models. Examples are presented in Section 6 and concluding remarks are

made in Section 7.

2. DEFINING COLLINEARITIES

Traditional definitions of collinearities (e.g., Gunst 1983) must be modified for measurement error
models in order to accommodate the errors in the true variates. In this section, such modifications are
presented for ultrastructural linear measurement error models.

Define a linear measurement error model in terms of unobservable response ¥ and predictor x =
(myy Moy o v vy 7rk) variates as ¢ = =/ B + q, where q denotes equation error. If oqq > 0, the model is
referred to as an equation-error model; whereas if 6qq = 0 (i.e., ¢ = 0), it is referred to as a no-
equation-error model (Fuller 1987, Chapter 2). The observable model is y = x'8 + e, where y = ¢ +
v, X = T + u, with v and u denoting measurement errors. The model error term is e = q + v.- u/g.
Let z = (y x'), ¢ = (¢ «')!, and w = (v u') . Then z = ¢ + (q 0) + w.

For ease of presentation, both the functional (fixed 7) and the structural (stochastic 7) models
are represented by the following ultrastructural model assumption for a sample of size n (see Dolby

1976):
ﬂ'i ~ ID([li, E7r7r) i= 1,...,n . (2.1)

To accommodate the functional model, the degenerate normal distribution with X, = ® is permitted.

The structural model occurs when B = bx and Xpy > ®. In all models, it is assumed that (all limits

are taken as n—o0)



exists, is at least positive semidefinite, and has strictly positive diagonal elements. Derivations of
asymptotic distributional properties of measurement error model estimators ordinarily require that the
second-order moment matrix I'yy be positive definite; however, the definition and detection of
collinearities only requires that it be positive semidefinite.

The error vectors are assumed to follow a common distribution, independently of the LAY

w, ~ IID(0, Byw) i=1,...,0 , (2.3)

ovv Zvu
Yww = ’
Tuv Zuu

and, independent of the LA and the w5,

where

Where needed for moment properties, the variates 5 in (2.1) and the errors w; and q; are assumed to
follow normal distributions. The normality assumption can be relaxed for the derivation of many
asymptotic properties (see Fuller 1987, Chapter 2).

Collinearities are defined in terms of the unobservable predictors. Unobserved rather than
observed variates are used in the definition of measurement error model collinearities because
measurement errors may mask collinearities. The concrete compressive strength example in Section 6

illustrates such masking.

Definition 2.1

Let mqy gy .00y Tr denote predictors following the ultrastructural model assumptions (2.1). Let Pryp

be the scaled second-order moment matrix,
-1/2 -1/2
Prx =Dgr / Prx Drx / ’ (24)

where Iy is defined by (2.2) and Dy is a diagonal matrix containing the diagonal elements of 'z .
If for a suitably small 7 > 0, there exists a k-dimensional vector ¢ # 0 such that
Prre=6x with ||6z||<n]lc]] , (2.5)

then a collinearity exists among the unobservable predictors.



Unlike the definitions of collinearities in traditional regression settings, this definition is posed as
an asymptotic result rather than for a fixed sample size n. It could be stated as a finite-sample result
by defining a scaled second-order sample moment matrix Py using I'pp in (2.2). The definition using
(2.5) permits the specification of diagnostic procedures that have reasonable asymptotic properties. It
also establishes the uniqueness of collinearities through the use of a fixed vector ¢, rather than one that
might depend on the sample size.

The following lemma provides a necessary and sufficient condition for the existence of a
measurement error model collinearity. The proof of this lemma and other theoretical results in this and

subsequent sections is contained in the Appendix.

Lemma 2.1
A necessary and sufficient condition for a collinearity among the unobservable predictors
satisfying the ultrastructural model assumptions (2.1) is that Apin < 7> where Amin 18 the smallest

in
eigenvalue of P .

In many applications of regression modeling in the physical and engineering sciences, interest is in
whether collinearities occur among the nonconstant predictor variables. In such cases it is common to
investigate the correlation matrix of the nonconstant predictors. Inequality (2.5) is necessarily satisfied

when collinearities occur among the nonconstant predictors, as the following theorem states.

Theorem 2.1
Let Rxy denote the correlation matrix among k-1 nonconstant predictors satisfying the
ultrastructural model assumptions (2.1). If for a suitably small » > 0 there exists a k-1 dimensional
vector d # 0 such that
Rrzd=ay with ||ag|[|<n|[|d]], (2.6)

then there exists a k-dimensional vector ¢ # 0 such that (2.5) is satisfied.

3. ESTIMATORS
In order to accommodate both functional and structural models through the ultrastructural
framework of (2.1), moment estimators will be used to estimate the model parameters. Define Mxx =
nt Exixi', and similarly for the matrices Myy, Mysx, and Mzy. Assume that the error covariance
matrix, Xyw in (2.3), is either known or unbiasedly estimated by a sample covariance matrix which
follows a multiple of a Wishart distribution having df degrees of freedom. In the estimator formulas

that follow, let Syw denote either the known or estimated covariance matrix. In the no-equation error
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formulation of the model, ww need not be completely known. If Zyww = owwTww, only Tww need
be known.

An estimator of the second-order moment matrix is I'z5 = Myx - Suy for equation-error models
and T'yy = Mgy - ASyu, where X is the smallest root of | Mzz - ASww| = 0, for no-equation-error
models. If ¥ww is only known up to a multiple for no-equation-error models, Tww replaces Syw in the
estimator and in the determination of A. Let Dyy = diag(l's7). Then an estimator of the scaled

second-order moment matrix is:

-1/2 o - -1f2

Prr=Darr Prx Dax ‘ (3.1)

Application of Chebychev’s theorem and of stochastic order properties for sample moments of (not

necessarily iid) random variables establishes the following properties of the estimators:
. -1/2
Izx =Ton + Op(n ') (3:2)
- -1/2
Pgx = Ppn + Op(n / )

Assuming equation error, the vector of regression coefficients can be estimated as (e.g., Fuller

1987, Section 2.2.1):
E = (Mxx - Suu)_l(Mxy - Suv) - (3.3)

Under the no-equation error model assumptions, the estimator has a similar form (e.g., Fuller 1987,

Section 2.3.1):
B = (Mxx - :\Suu)-l(Mxy - :\Suv) ’ (3.3)

where X is the smallest root of | Mgz - ASww | = 0. If Bww is only known up to a multiple, the
estimator of § has the same form as (3.3) with the elements of Tww replacing the corresponding ones
of Sww and with X the smallest root of | Mgz - ATww| = 0. All of these estimators can be written in a

common form:

B=T7zT_ b (3.4)

Under very general assumptions, nl/z(ﬁ - pB) is asymptotically normally distributed. Assuming

normally distributed errors, the covariance matrix of this asymptotic distribution is



Qgg= Tax {(cqq + orr)(Tar + Zun)
+ ¢(1 + v) Zye Zeu + vorr Suu} Tox » (3.5)

where opr = oyy - 2Zyuf + B'Zuuf, ¢ = 1 for equation-error models, and ¢ = -1 and oqq = 0 for
no-equation-error models. The scalar ¥ = lim (n/d;) if Eww is estimated and ¥ = 0 if Ewy is known
or known up to a multiple. This covariance matrix can be consistently estimated (Fuller 1987,

Chapter 2). Of particular interest to this investigation is the insertion of T' 77 as an estimator of Ty yx
in equation (3.5).

The deleterious effects of collinearities on measurement error model estimators and asymptotic
properties are similar to their well-known effects on least squares estimation (e.g., Gunst 1983). Briefly,
the asymptotic variance formula (3.5) involves the inverse of the estimated second-order moment
matrix, Iz . The existence of collinearities among the unobservable true predictors will cause inflation
of the variances. Expressing the estimators in the common form (3.4) shows that signs and magnitudes
of coefficient estimates can be influenced by the presence of collinearities through the inverse of the
estimated second-order moment matrix. These characteristics and many others parallel those for least

squares. They are clearly illustrated in the examples in Section 6.

4. COLLINEARITY DETECTION

Rather than develop entirely new diagnostics for collinearity detection in measurement error
models, the purpose of this section is to establish that diagnostics that are already available for least
squares estimators can be applied to measurement error model estimation. One reason for preferring
such an approach is that if measurement errors are sufficiently small, the diagnostics will reduce to
their appropriate least squares equivalents. A second reason is that standard algorithms, perhaps with
minor modification, can be used to calculate the diagnostics.

Virtually all of the collinearity diagnostics that have been developed for least squares estimators
can be applied in the measurement error model setting to the estimated second-order moment matrix
or to one of its scaled or standardized modifications. The justification for this statement is the

following theorem, which can be proven using consistency arguments based on equations (3.2).

Theorem 4.1
Let {1ri} be a sequence of k-dimensional predictors following the ultrastructural model
assumptions of Section 2. Let Py, be the scaled second-order moment matrix, defined by equation

(2.4), and Py its consistent estimator, defined by equation (3.1). If a collinearity exists among the

predictors, with c defined as in (2.5), then



Prrc=6n with oplim||6y]|<n]|lc|] . (4.1)

Theorem 4.1 establishes that the criterion (2.5) will be satisfied with probability arbitrarily close
to 1 for a sufficiently large sample size. Alternatively, one can establish that the difference between
Prrc = 65 and Py ¢ = 6y is a term of Op(n-l/z). The proof of this result differs for functional and
structural model assumptions, but both proofs are based on limit properties of second-order moments.

Theorem 4.2

Under either the functional or the structural model assumptions, if a collinearity exists among the

predictors, with c defined as in (2.5), then
- . -1/2
Prrc=bn with ||6all<nllc]|+0pe™? . (42)

Parallel results hold for the sample correlation matrix of the nonconstant predictor variables:

. ~ -1/2 ~ -1f2
Rer = D11 / (Sxx - Sn)Dn / ’ (4-3)

where

by, = diag(gxx - S11)
gxx = n—l Z(Xil - il) (Xil - 3{-1)'

and X; = n'}] X;,» and x;  is the ith vector of nonconstant predictor variables; i.e., xi' =(1 xi' ). The
matrix S, is the lower (k-1) x (k-1) portion of the known (EZyw) or estimated (Sww) error covariance
matrix.

In the examples in Section 6, least squares collinearity diagnostics are applied to the sample
correlation matrix (4.3). These diagnostics and others not illustrated in the examples can be applied to
the scaled second-order moment matrix if collinearities involving the constant term are to be assessed.
The importance of Theorems 4.1 and 4.2 is that they establish the ability to detect collinearities among
the true unobservable predictors L from sample second-order moment matrices based on sufficiently

large sample sizes.

5. NONLINEAR MEM MODELS
The results presented in the previous sections are readily extended to a variety of alternative

models. In this section, specific application is made to implicit nonlinear measurement error models of
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the form f(§,8) = 0, where £ = (¢ 7r’)' is again the vector of unobservable response and predictor
variables.

Britt and Luecke (1973) (see also Fuller 1987, Section 3.2) present an iterative estimation scheme
for the no-equation-error model with predictors satisfying the functional model assumptions and
normally distributed errors. Let f(§;, 5;), ﬂ(ft’ By), and £ f(ft’ B,) denote, respectively, the nonlinear
implicit function and column vectors of its first derivatives with respect to the unknown coefficients

and the unknown variates. The updated estimator for the regression coefficients can then be expressed

as:

B = By + {5 150 By 0715 Y'Y
(5.1)
: {E[él + f(ztia Bt)] 6tii-1fﬁ(zti’ Et)} ’

where & = f, (§;, By)' (3 - &) and &y; = Te(Ey;, By) Bwwle(Ey;, By)- |

In equation (5.1), the derivatives ff(f ti» P¢) perform the role that estimated variate values do in
linear measurement error model estimation. The estimated second-order moment matrix T'zq in
equation (3.4) is thereby replaced by the weighted sum of the products of the derivatives in the second
term of (5.1). This motivates the following definition for collinearities in implicit nonlinear

measurement error models.

Definition 5.1
Assume an implicit nonlinear functional relationship of the form f(€,8) = 0. Let f ﬂ(é,ﬂ) denote

the first partial derivatives of f(§,8), evaluated at the true parameter values and oy = E(Ei’ B)
zwwfév(fi,ﬂ). Assume that

Trp=limn" Y fﬂ(ﬁi,ﬁ) ”ii-lfﬁ(fi,ﬂ)’ (5.2)

exists, is at least positive semidefinite, and has strictly positive diagonal elements. A collinearity exists
among the variates in the nonlinear model if for a suitably small 5 > 0 there exists a nonzero vector of

constants ¢ such that

Prrc=6x with [|éz]|]|<nllc]|], (5.3)

1/

1/

Whel'e P7r1r = D7r7r— 2 F1r1r D1r7r_ 2 and Dﬂ-ﬂ' = diag(l‘,nr).

This definition does not define a collinearity among the predictor variables as does Definition 2.1.

The existence of a collinearity is model dependent, through the partial derivatives, and may not
8



indicate any relationship among the predictors themselves. A parallel in linear regression is the
occurrence of collinearities among polynomial functions of predictors in polynomial regression when no
strong collinearities exist among the predictors themselves (e.g., Bradley and Srivastava 1979). Linear
measurement error model collinearity diagnostics can be adapted to nonlinear models. Convergence and
consistency properties of the estimators (5.1) are assumed in this context, properties which can be
proven as in Fuller (1987, Section 3.2), which also contains estimating equations for the true variate
values £;. The following theorem generalizes the results of Section 4 to implicit nonlinear measurement

error models.

Theorem 5.1

Let (Eti’ Bt) denote the estimates after t iterations. Define, for a fixed sample size n, the

estimated weighted second-order moment matrix of partials from the tth iteration
Pn,t =n'} fﬂ(fti, By) lfﬁ(fti, Bi) s (5.4)

and assume that the diagonals of f‘n ¢ are strictly positive for all (n,t). Let f‘n,oo denote the estimated
)
second-order moment matrix using the converged estimates (Ei, B) Assume that I'yyr = lim fn,oo .

If a collinearity exists in an implicit nonlinear measurement error model, then for n and t sufficiently

large

Pote=06y¢ with plim| |6, ||l<nllec|| , (5.3)

/

~ ~  -1/2 -1/2 ~ . =
where Pn,t = Dn,t Pn,tDn,t and Dn,t = dlag(I‘n’t).
Amemiya and Fuller (1988) propose a second-order bias adjustment to the nonlinear estimator. If
this adjustment is made, the principal results of this section remain valid, although some definitional

and implementation details must be modified. Diagnostics computed on the matrix of first partial

derivatives can still be used to screen for collinearities.

6. EXAMPLES

6.1 Concrete Compressive Strength Data

Figure 1 is a plot of compressive strength (psi) measurements of samples of concrete two and

seven days after pouring. The data were collected in order to investigate prediction equations for



strength measurements of the samples twenty-eight days after pouring. One sample in the original data
set is clearly an outlier and has been removed; 40 observations remain and are displayed in Table 1.

The plotted points do not suggest that the two predictors are collinear. Least squares collinearity
diagnostics reinforce this supposition: the pairwise correlation between the variates is .72, the smallest
eigenvalue of the correlation matrix of the predictors is .28, and the variance inflation factors are 2.10.
The least squares estimates and their estimated standard errors are shown in Table 2. Calculated t
statistics for the predictors indicate that the Day 2 strength measurements can be deleted from the
model (p = .24).

A structural no-equation-error measurement error model can also be fit to the data with the
assumption that the measurement errors are uncorrelated and the error variances are equal; i.e., Tyww
= owwl with oww unknown. The estimated regression coefficients are shown in Table 2 along with
their estimated standard errors. The estimates are strikingly different from the least squares estimates.
In particular, the coefficient estimates are an order of magnitude larger, approximately equal, and
opposite in sign. The estimated standard errors are almost two orders of magnitude larger than those
for least squares. These are the classical symptoms of collinearities.

Using the correlation matrix of the estimated error-free true predictors, the collinearity
diagnostics clearly indicate severe collinearity between them: the pairwise correlation between the
variates is .994, the smallest eigenvalue of the correlation matrix of the predictors is .006, and the
variance inflation factors equal 85. Figure 2 is a plot of the estimated error-free predictor values. The

plotted points fall very near to a straight line, visually confirming the presence of the collinearity.

6.2 Prosthetic Hip Data

An example of an implicit nonlinear measurement error model is the prosthetic hip data of Reilly
and Patino-Leal (1981) (see also Fuller 1987, p.245). The data are x-y coordinates of an x-ray image of
implanted hip prostheses. A five-parameter ellipse of the form

B3y - B1)* + 2B4(y - B)(x- B3) + Bs(x- By)*-1=10
was fit to the data using the methodology of Section 5. The parameter estimates and their estimated
standard errors are shown in Table 3. These estimates are based on the fitting methodology of Section
3. Bias-adjusted estimates were also computed. They lead to substantively the same conclusions as
the unadjusted ones.

The variance inflation factors in Table 3 suggest the presence of a collinearity among the at least
the first two partial derivatives. This is not surprising because both derivatives are linear combinations
of y-8; and x-#,. While there is no extremely large correlation between pairs of the estimated
derivatives (maximum correlation = .72), other diagnostics confirm the presence of the collinearity. For

example. the smallest eigenvalue of the correlation matrix of the derivatives is .018. Its corresponding
10



eigenvector is ( .59 -.58 .32 -.34 .33). Thus, all the partial derivatives are indeed collinear with one

another.

7. CONCLUDING REMARKS

The presence of collinearities among the true error-free predictors poses interesting questions for
the conduct of measurement error modeling. Accommodation of collinearities can be accomplished in
many ways, from the deletion of variables to the use of traditional biased regression estimators such as
ridge regression (e.g., Jagpal 1982). The assumptions traditionally made with measurement error
models imply that any collinearity would be population-inherent (e.g., Gunst 1983). If so, variable
selection is a viable accommodation strategy.

One must, however, recognize the burden placed on the traditional assumptions when small data
sets are fit with measurement error model techniques. The two examples presented in Section 6, in
spite of their small sample sizes, can be reasonably argued to contain population-inherent collinearities,
the first because of the measurement process used and the second because of the polynomial model
used. In the first example, deletion of one of the predictors is defensible. In the second, there is no need
to delete variates if the primary purpose is to fit the ellipse and not to provide a meaningful
interpretation of the individual coefficients. The question of estimation alternatives for collinearities

that are not population-inherent merits theoretical investigation.
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APPENDIX: PROOFS

Proof of Lemma 2.1:

A collinearity exists if (2.5) holds. Then
[6x | |2 = 57r,57r = CIP%"A'C'
By the Courant-Fischer min-max theorem (Fuller 1987, p. 391):
Ain®rm) el P < Prae=1éx | P <n’l|c]

Necessity follows because Pyy is symmetric and at least positive semidefinite, implying that

/\min(P%—ﬂ-) = {,\min(P,m)}z. Sufficiency followls1 by letting ¢ be the eigenvector corresponding to



Amin(Pr)

The proof of Theorem 2.1 uses the following lemma.
Lemma A

Let G = D*EY/? = diag(gyy, - - - , gmm) and H = D’ = diag(hyy, - - . ;hmm), with &;
>1land 0 < hjj < 1. Let v be any m-dimensional real vector. Then (i) | | Gv || > || v || and (ii)
1BV || <][v]]
Proof of Lemma A:

[HGv|PP=X]| giv;I* > 2| vil* =1 v||* Similarly for (i).

Proof of Theorem 2.1:

Let the first element of = represent the constant term, 1. Partition 'z 4 as follows:

1 #1’
Pax = ’
I Iy

where pr = (1 ') = lim o'} m;- Let Dy contain the k-1 elements of Dyy correponding to the
nonconstant predictors. Define Agqg = Tyx - figpihr, with A,; denoting the lower (k-1) x (k-1) corner

of Apg. Let Dy, denote a diagonal matrix containing the diagonal elements of A,;. Then

-1/2
1 m'Dgg /
Prx =

-1/2 -1/2 )
Dss * Dss * TuDgs

-1/2 -1/2 -1/2 -1/2
and Rgz = Dyy / A11])11 =Dy, (rn - I‘1I‘1’) Dy, / .
1/

2D11-1/2d a.nd Cy = -ﬂllDéé—l/z

0
('P1P1’ + Pyy)ey

where Py, is the lower kxk corner of Pxz. Now, | |c|]| > || ¢, | | and from Lemma A(i), | | ¢;| | >

[1d]|]|. Straightforward algebra yields

Next, let ¢! = (cq ¢,), where ¢; = Dgs ¢; = -p;'c;. Then

-1f2_ -1/2
(-p1p1’ + Pri)ey = Dgs / Dy / Rpzd

so that, invoking Lemma A(ii), | | 67 | | < | | ax | |. The conclusion follows from the premise of the

theorem since | |c || > ||d]].
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Proof of Theorem 5.1:

Let | [8x |1 =(n-mo) | |c||forsome 0 < ny < n.Since I'p oo converges to I'zxq and Pn,t is
a continuous function of the elements of Fn,t’ for every § > 0 there exist n 5 and tp such that for n >
ng and t > ty, Pr{ | | (Pn,t -Pra)c| | <m||c|]| > 16 Consequently, with probability
arbitrarily close to one, | | 6, | | = || Pyee || < |1 (Pyg-Pame ||+ Pane||<nollell+
(m-m) llcll=nllell
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