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Abstract

A saddlepoint approximation is derived for the cumulative distribution
function of the sample mean of n independent bivariate random vectors. The
derivations use Lugannani and Rice's saddlepoint formula and the standard
bivariate normal distribution function. The separate versions of the
approximation for the discrete cases are also given. A Monte Carlo study

shows that the new approximation is very accurate.

Some key words: Asymptotic expansion; Bivariate normal distribution;

Bivariate gamma distribution; Confidence region.

1. 1Introduction

Since Daniels' (1954) pioneering paper introduced the saddlepoint
method into the statistical literature, these accurate approximations have
gradually become popular among statisticians. More attention has been
paid to these approximations in the past decade. Barndorff-Nielsen and Cox
(1979) and Reid (1988) demonstrate the importance and usefulness of the
saddlepoint approximations in statistics. Lugannani and Rice (1980)
derive a very useful saddlepoint approximation to the cumulative
distribution of the sample mean of an i.i.d. sample. Recently Davison and

Hinkley (1988) apply the saddlepoint method to resampling problems.



Saddlepoint expansions for more general statistics have been considered by
Wang (1988) and Srivastava and Yau (1989). Most of the development of
saddlepoint theory and applications has been restricted to the univariate
problems because more technical difficulties arise in the multivariate
case.

The purpose of the present paper is to derive saddlepoint
approximations for the cumulative distribution function of the sample mean
of n independent bivariate random variables. Such approximations are
useful in statistical inference, e.g., constructing confidence regions,
when the exact distribution is intractable. The derivations make use of
some basic properties of analytic asymptotic expansions including Lugannani
and Rice's saddlepoint formula and the standard bivariate normal
distribution function. The computational aspect of the bivariate normal
distribution function has been well developed; see, for example, Owen
(1962).

In Section 2, we give a representation of the inversion formula for
the bivariate normal distribution which will be used in the subsequent
sections. Section 3 derives the new saddlepoint approximation for
continuous bivariate random variables in detail. Section 4 extends the new
formula to the discrete case. As an example, in Section 5 we use a
bivariate gamma distribution together with a simulation study to illustrate

the great accuracy of the new approximation.

2. The Normal Case

Assume that Z; = (X, Y;), ..., Z, = (X,, Y,) are independently and

identically distributed bivariate random variables. Without loss of

generality, suppose E(X]) = E(Y;) = 0. Let Z = (X, Y) = (n—lz? Xi’ n_IZTYi).



The density of Z can be expressed by the inversion formula as

n 2 c2+im c,+iw
(5;;) I [ exp{n(K(t,u)-tx-uy)} dtdu , (1)
cé—iw cl—ioo

fn(x,y)

where K(t,u) log E(etX*u¥) jg the cumulant generating function (CGF) and
(c1, cg) is within the convergent domain U of K(t,u) in R2 (c1 and cy are

real). As in the univariate case, t and u in (1) are extended to be complex

variables.

We wish to accurately approximate the distribution Fn(x,y) of z.
Analogously to the univariate case, we will use the standard bivariate
normal distribution as a useful tool in the approximations. 1In this
section, we develop a representation of the inversion formula for the
bivariate normal distribution function which will play a fundamental role in
the subsequent sections. We say that a random variable is standard
bivariate normal if its components have zero mean and unit variance. Denote
its density and cumulative distribution by ¢(=, =, p) and &(=, =, p)
respectively, where p is the correlation between the two components. The

corresponding CGF is
K(t,u) = t2/2 + ptu + u2/2 (2)

and its domain is U = RZ. We also denote the univariate standard normal

density and distribution by ¢(=) and &(=) and let

Fn(x,y) =Pr(X £ x, Y 57Y)



Lemma 1. Assume that Z has the distribution &(=, =, p). Then

Fn(x,y) = #(/nx, /ny, p)
2 b, +i= b +ie dz
2 1
- (—17) J 2 exp{n(22+ z,)/2} -
201° Ty _ie 'b ~ie b2 z +x-pu.—p(1-p2) 12,
dz
‘ 22 7% {2'!1(1—;32)1/2 $(/nx, v/ny, p)}, (3)
zy + (1-p U,

where tg = (x—py)/(l—pz), ug = (y-px)/(1-p2), by < -tg + p(l—pz)‘l/zbz and

by < -(1-p2)1/2y,.

Proof. The first equation is trivial from the normal theory. For the

second equation, letting cj < 0, c9p < 0 in (1) and using (2), we have

vy X
Fn(X,Y) =_l _l fn(Cl, Cz) dCl dCZ
2 c,+ie b +i= dz
= (5%7) I ? I exp{nzz/Z} — eXP{n(UZ‘ZUY“tZ)/Z}QH ’
i . . 1 u
c,~i* "b,-i= z. +t
2 1 1
where t = x - pu, =z} =t - t and by < -Re(t) = -x+pcy. Let v = (l—pz)l/zu.
Then
2 c,¥ie® b +iw dz
1 2 2 1
F G0y = GG | | exp{nz)/2} 2 -1/2
c,—i= "b,-ie z.+ x — p(l-p7) v
2 1 1
- expin(v2-2(1-p7) " 2y (y-px))/2) &L exp(-x?/2)
2 b,+ie b _+ie dz
1 2 2 1
= (577) exp{nz’/2} Z
2nd Jbz—iw b -i= ! zl+x—p(1~p2) l/2[z2+(1—p2) 1/2(y—p><>]
dz
2 2 2 2
« explnz2/2) 73 exp{n(-x"+2pxy-y*)/[2(1-p*)1} , (&)
zz+(1—p ) (y-px)



where zp = v - (l—pz)"l/z(y—px) and by < —(l—pz)‘l/z(y—px). Lemma 1 then
follows.

Subroutine MDBNOR in the IMSL library can be easily used to calculate
#(x,y,p). Owen (1962) also supplies the details of computational aspects

as well as tables for various selected values.

3. The General Continuous Case
We now consider the case where the distribution of Z is continuous but
not necessarily normal. Assume that the convergent domain U of the CGF
K(t,u) contains an open neighborhood of the origin. Moreover, for fixed

(x,y) suppose that there exists unique (tg, ug) e U such that

Kt(to, uo) = X

(5)
Ky(tg, ug) =y
and that for each fixed u there exists t = t(u) such that
Ke(E,u) = x, (6)

where K¢ = 9K/dt, K, = 9K/3u. Note that dt/du = -Ky,/Ky,. Let Kj(t) and
Ko(u) be the CGFs of X and Y respectively. These general conditions are
implied by the assumptions in Skovgaard (1987). They will be assumed
throughout the paper.

The deviations of the main result given in Theorem 1 at the end of
this section are lengthy. We divide the derivations into four lemmas.
Briefly, Lemma 2 is the saddlepoint expansion of the inner integral of the
inverse formula which follows. Lemmas 3 and 4 provide the expansion of the
outer integral of the term of the integrand which involves &, while Lemma 5

shows this expansion for the term involving ¢.



We choose cj < 0, c¢9p < 0, so that

2 ¢, tiw ¢ +ie
1 2 1 dt d
Fn(x,y) = (EFI I exp{n[K(t,u) - tx - uy]} . EE . (7)
—ie Te —ie

¢ 1

2
Notice that the real functions ¢(') and ¢(*) may be extended to complex

variables in a natural way. Using "~" to indicate the error of

approximation as 0(n~1) relative to the main term as n » =, we have

Lemma 2. Under general conditions given above, for fixed u the inner
integral (in t) in (7) may be approximated by Lugannani and Rice's

saddlepoint formula so that

] Spti® 11 - .-1/2
Fn(x,y) ~ Smi IC i -le(/n wu) + &(/n wu)(wu -t {Ktt(t’u)} / )//n]
2
+ exp{nlKy(w) - wyl} &, (8)

where t is defined as in (6),
~ 1/72 ~
w, = {2[h(0)-h(t)]} sgn(Re(t)) (9

and h(t) = K(t,u) - tx for each fixed u.

Lemma 2 can easily be proved by using a standard saddlepoint
approximation (see Daniels, 1987) and the following transformation of

variables:
(w—wu)2/2 = h(t) - h(%) = Ktt(E,u)(t—E)z/z o, (10)

where sgn (Im(w-w,)) = sgn(Im(t-t)) so that w=0 and w, corresopnd to t=0

and t respectively. From (9) we obtain that



at/aw | _ = (K (F,017H?

u

which will be used in the proof. The details are omitted here.

In what follows, we' will expand the integral in (8). The expansion
for the first term is given in Lemmas 3 and 4. The proof uses Lemma 1.

For each u we select a real value b such that by + Re(wy) < 0. It is

readily seen that

wu n Cc.+ie 2
Q(anu) = J T exp{n(w™ - 2wy)/2} dwdy
1
C +iw
2 dw
= omi I . exp{n(w™ - 2wwu)/2} —
c,-i
b,+i= dz
_ 1 2 1 2 1
= i exp{ nwu/2} l ‘ exp{nzl/Z} e (1)
bl—lw 1 "u
We let
vo = {2[2(0) - 2(ug)1}1/2 sgn(ug)
= {-2[K(tq, ug) - Kij(tg) - (tg - to)x - ugyl}1/2 sgnlup), (12)
where EO is the solution to Kj(t) = x and (u) = K(E,u) - tx - uy, and
introduce a new variable v as
(v=v)2/2 = 2u) - 2(u) (13)
0 ; 0

and Im(v-vg) = Im(u~up). It is easily seen that v=0 and vy if and only if

u=0 and ug respectively. Furthermore,

_ B 2 -1/2
du/dv L=v0—(Kuu (Ktu) /Ktt) L=VO.



We now derive the expansion for the first term in (8). From (11),

and (13),
c,tim
1 2 du
i [C i - &(/n wu) exp{n[Kz(u) - uyl} "
2
2 c +ie b +ie dz
1 2 1 2 2 du
= (2“1) I ) I ) exp{nzl/Z} J—— eXP{"n[Wu/Z - Kz(u) + uyl} -
cymix bl-loo 1 "u
2 c,+i® b +iw dz
1 2 1 2 2 1 d
=G | . J exp{nz7/2} ———exp{n(v7-2vwv ) /24n (K, (t)-t X))o
c2—1°° bl—lw 1 'u
2 b,+i= b +iew dz
1 2 1 2 2 1 1 du
T ot 2mi l A [ . exp{n(zl+zz)/2} z. . +w(z,) u dv dzZ
b2—1w bl—lm 1 2

. exp{n[K(to,uO) - tox - uoy]},

where z9 = v - vg, by < -vg and w(zp) = w, as a function of z3. We have

then proved the following intermediate result.

Lemma 3. Assuming the same conditions as in Lemma 2,

Cntie

_ 1 2 _ du _
Il = " w1 l ' @(/nwu) exp{n[Kz(u) uyl} T Ill + 112,
c, =i
2
where
2 b, +ie b_+ie Y (z,)
o 2 2 2 K %2
I = G |7 | exeln(zirzy)/2} 0 dzydz, q (to,u),
b2—1°° bl—loo 1 2

V1(z9) = (29 + vo)~l,  Wy(z9) = u™l du/dv - Wi(zy) and

an(tg,ug) = exp{n[K(tp,ug) - tox - ugyl}.

(9

4 dv

(14)

(15)

(16)



Continuing from Lemma 3, we now prove the following important lemma.

Lemma 4. Under the conditions given in Lemma 2,
Iy~ é(Jnxl,Jnyl,pl) , (17)
T1p = #(/nwy ) (vave) (vl - (uge)~1}/vm (18)
_ ~ o 2.1/2 __ 2.1/2
where x = w(—vo) =W, lu=0 , Yy = (VO bxl)/(l+b P b/(1+b ,
b=(w(0)=w(~v ) /v, G=(k -(k._)2/x /2] and v2 = - 2(K,(u.)-u.y).
0 0’ uu tu tt 2°70 0

(to,uo) 0

Proof. We first notice that the integrands have two critically important
points in zp (z2=0 and zy = -vg). Let a = w(0) = Yug and

01(z1,29) = {(zy + w(zz))'l - (zy + a + bzz)“l}/(zz+vo)

Then 61(z1,0) = 0 and 1lim 6;(z],z9) = c(z)) for each fixed z; with
227Vo

Re(z}) = b? and some analytic c(zy), where b? is small enough to avoid any
possible singularities. Therefore 01(z}],z7) has a removable removable
singularity at zp = -vg. For each such fixed z; defining Gl(zl,—vo) =
c(z1) guarantees 01(zj,zp) to be analytic in a neighborhood of zp=0 that

may contain zg=-vg. Furthermore

61(21,22) = 29 81(21’22) (19)



for some analytic gj(z1,z9) in zp in a neighborhood of z5 = 0. From (16),

] (2 botiw byric 22 -1
=G | 7 [ 7 expin(zi+z,)/2}{[(z +avbz, ) (zy)+v)] "+ 0, (z,2,)}dz,dz,
b2—1oo bl—1°°

* qu(tg,ug)

2 b,tiw b +i=

1 2 2 2 -1
~ (51 Jb _inb "wexp{n(zl+zz)/2}{[(zl+a+bzz)(zz+vo)] }dzldz2 qn(to,uo)
2 o™t
= Q(/nxl,Jnyl,pl)

The last equation follows from Lemma 1 with a = xl—pl(yl—plxl)/(l—p%)

b = _pl(l_p%)—1/2 and vg = (l—p%)“l/z(yl—plxl) and the identity
K(t ,u.) - t.x - uy = —(x2 - 2p.x,y, + y2)/{2(l—p2)}
0’70 0 0 1 17171 1 177

The above asymptotic expression holds by using the property (19) of 6; and
applying Watson's lemma (see Daniels, 1954) to the integral in z, after
interchanging the integrals together with some continuity arguments.
Therefore expansion (17) holds.

We now employ the above technique to prove (18). Let
0,(z,,2,) = [z +w(z,)) " = (z,+w(ON™'} ¥ (z,)
27172 1 2 1 2°727

where Vy(zp) is defined as in (16). It is easily seen that 1lim Yo(zp) =
constant. Therefore 8(z],z9) has the same analytic propert?zg;vgl(zl,zz),
so that for fixed zy,

82(z1,22) = zp 82(2},22) (21)
for some analytic gz(zl,zz) in zp in a neighborhood of z9 = 0 that may

include z9 = -vg. It follows from (16) and the same arguments as in (20)

that

10



1 2 b2+i°° b, +ie 5 o
112~(§;T) J . I . exp{n(zl+zz)/2}lllz(zz)/(zl+wu )dzldz2 qn(to,uo).(ZZ)
b2—1w bl—l°° 0

By Watson's lemma and (11),

2 WZ(O)
1 ~ -¢(/n w_ ) exp{nw /2} ——— q (t,,u.)
12 U, U, (2nn)1/2 n 0’0
-1 -1
= #(/nw_ ) $(/av ) {v, - (u.G) “}//n . (23)
U 0 0 0
This completes the proof of Lemma 4. o

Notice that the technique used in the above proof is similar to that
of using a linear function to approximate a general analytic function used
by Bleistein (1966) and Skovgaard (1987). Also see Wang (1988, Chapter 6).

To approximate F,(x,y) we also need to perform the expansion for the

second integral in (8). The next lemma is devoted to this need.

Lemma 5. Assume the same conditions as in Lemma 2. Then
c, tiw
_ -1 (%2 S R PN V) oy du
I, = a1 I L ¢(/nwu)(wu t K (t,u)} ) exp{n(K,(u)-uy)}-—=
c, =i
~ Ip31 + Igo, (24)
where
I = #(/av) $(/nx)(w b - £ K (t.,u)} Y2y /m (25)
21 0 1 uy 0 tt 0’70 ’
I, =exp{n[K(t.,u )=t x-u.y]}(w —t K. (0} 2y [vito(u.c) " /2w, (26)
22 0’70 0 0 U, 0 tt” 0’70 0 0 ’

and x| = {—2[K1(t0)—t0x]}l/zsgn(t0)=wu ‘u=0 as in Lemma 4.

11



Proof. We first assume ug < 0 and let cp = ug. Using transformation (13)

we have

:__;:L___Iv0+lw
2 (2n)3/2i vo—i°° 0

-1/2

1 )_gz

/nv

exp{n(vz—Zva)/2+n(Kl(tO)—t0x)}(w;l—t—lK (t )

0 “tt 0’Yo

1 I"o+i°°
372,

- exp{n(v2—2vv0)/2 + n(Kl(tO>_tOx)}
(2m)

v, —ie
0

-1/2 ~1/2) ~1dv

-1 ~=1 ~
. {[wu -t {Ktt(t,u)} 1v In

-1 -1 -1
lu “du/dv - [wuO —tO {Ktt(to,uo)}

~ 121 + I22,
by (12) and Watson's lemma. Expansion (24) is easily verified for ug > 0

by proper handling of the pole at v = 0 in the usual way. o
Summarizing Lemmas 2-5, we finally reach the following main result.
Theorem 1. Under the general regularity conditions, the distribution

function F,(x,y) of (X, Y) can be approximated by the bivariate saddlepoint

formula as follows:
Fp(x,y) ~ I11 + I1p + Ip) * 129, (27)
where Iij’ j=1,2, i=1,2, are given in (17), (18), (25) and (26).
Examples and discussions will be given in Section 5.

4. Discrete Variables

So far we have dealt with continuous variables. It is often useful to

consider the case where at least one of X and Y is discrete. The proof in

12



Section 3 can simply be modified for the current situation in a standard
way used by Daniels (1987) and Skovgaard (1987).

First assume that one variable is discrete and another is continuous.
Without loss of generality assume that X is discrete and that the integers

are a minimal lattice for X. Formula (7) then is replaced by

Ch+ie ¢, +im

1 2 2 1
Fn(x,y) = (=) l l exp{n[K(t,u)-tx-uy]}

Zmi c,—1= "c.-im l-e
2 1

dt du
-t u

(28)

Applying the discrete version of the Lugannani and Rice formula
(Daniels, 1987) to the inner integral in (28) and following the rest of the

proof in Section 3, we obtain the following theorem.

Theorem 2. Assume the same conditions as in Theorem 1 except that X is

discrete. Then

Faley) = T+ T+ Iyy + 1oy s (29)

where I;; and 119 are given in (17) and (18), I5; and Ipy are obtained from
(25) and (26) respectively by replacing the factor w_l - t—l{K (t.,u )}-l/2
uOOttOO
-t, -1
-1 0
by qu - (l-e ) {Ktt(t

-1/2

It is straightfoward to extend to the case where both X and Y are

discrete. The proof is analogous to that of theorem 2.

Theorem 3. Assume the same conditions as in Theorem 1 except that both X

and Y are discrete. Then

13



FLoGGy) = Ty o+ Ty + Iy * Iyy s (30)

1 1 L]

where Ill is given in (17), 112, 121 and 122 are obtained from (18), (25)

. . -1 -1 ~1/2
and (26) respectively by replacing the factors v ts {Ktt(to,uo)}

0

-t ~1 -u -1
1 by w;1 - (l-e O) {Ktt(to,uo)}_l/2 and vgl{(l—e O)G}

and v_1 - (u.G)~
0 0

0
respectively.

Analogously to the univariate case or conditional distribution case
(see Daniels, 1987 and Skovgaard, 1987), we can introduce a continuity

correction to each discrete variable. The details are left to the reader.
5. Examples

It is seen that the bivariate saddlepoint formulas developed in the
previous sections are easily computed once the CGF K(s,u) is available. We
now demonstrate the usefulness and accuracy of the bivariate saddlepoint
approximations in some special situations.

We start with the case where X; and Y; are independent so that K(s,u)
= Ky(s) Kp(u). Then w(zp) = Wugs G = {K;(uo)}l/2 and v = ;O' Therefore
y1 = vg, p] = 0. The bivariate saddlepoint formula is hence the product of
Lugannani and Rice's first order saddlepoint approximations for Pr(X s x)

and Pr(Y s y) in both continuous and discrete cases.

Another special case is that (X;,Y;) has bivariate normal distribution

. . . 2 2 . .
with correlation p and variances 6y and d¢y. It is easily seen that Ij;

14



Ip; and Ipp in Formula (27) are all zero. Therefore the saddlepoint

approximation (27) to Fp(x,y) becomes

I11 = ¢(v/n x1, /n yp, p1) = 8(/n x/dy, /n y/oy, e) ,
which is exact.

In the rest of this section we consider a nontrivial example in some
detail. Let Uy, U; and Uy be independent and exponentially distributed
random variables with mean 1. Put X = Ug + Uy and Y' = Up + Uy. Then
(X',Y') has a bivariate gamma distribution; see Johnson and Kotz (1972,
p.217). The random variable (X,Y) = (X'-2, Y'-2) satisfies the conditions

in Theorem 1. It is easily calculated that the CCF is
K(t,u) = -log{l - (t+u)} - log(l-t) - log(l-u) - 2t - 2u.

The unique solution (tg,ug) e U = (t,u) [t <1, u< 1, t+u < 1} satisfying

(5) for fixed x and y is obtained by solving the cubic equation
—(x+2)(x-y)a3 + [(x+4)(x-y) + 2x + 4]a2 + (y-2x-5)a + 1 = 0O

for o and using the relation l/a - 1/8 = x-y, where ¢ = 1 - t and 8 = 1 - u.
It is straightforward to compute the rest of the quantities used in formula
(27).

1/2

. _ -1 -1 -
Notice that when t, = 0, the factor W, tO {Ktt<t0’u0)} should

0
0
be replaced by its limit, as tg -+ O, Kttt(O,uO)/{Ktt(O,uo)}3/2/6. The same

argument applies to the quantities v61 - (uOG)"l, and b when ug = 0. The

15



limits may well be approximated by the corresponding values evaluated at u
= u0 very close to zero.
Subroutine MDBNOR in the IMSL library was used to compute #(/nxj,
/n yi, p1). Table 1 provides the numerical results of the saddlepoint
approximations (27) and the normal approximations to Fp(x,y) in the
bivariate gamma case with n=10. The "exact" values were also given which
were obtained from 10® simulated samples. The estimated standard error of
the simulated estimate P is /6?1:53/103 so that the simulation
results in Table 1 are reliable to the digits given. Because Fp(x,y) is
symmetric, i.e. F,(x,y) = Fo(y,x), only the upper triangle of Table 1 is
needed. Table 1 indicates that the saddlepoint approximations are very
accurate, far more accurate than the normal approximations. The values of
Fn(x,y) in the four corners of Table 1 are of particular importance in
statistical inference such as constructing confidence regions. The
saddlepoint approximations are extremely accurate in the corners.
Numerical examples show that when Yug becomes big in the positive
direction, the ignored term in (20) involving 6; could be significant

although it still has the same error rate. This potential drawback can be

%

*
remedied by taking the following strategy. Let (X;, Y;) = (Yy, X;) and

) 0 kS
*y7), where F, is the cumulative

( % ¥ - _ *
x",y") = (y,x). Then Fo(x,y) = Fo(x

distribution function of (i*, Y*). Using superscript * to denote
3 3 * X 3
quantities for Fn’ we compute w . in the same way as v, We recommend
u
0 0
%
that if wu £ w , , one uses (27) to approximate Fn(x,y); otherwise one
0 Uy

% . ‘. ) 4 :
should use the corresponding formula for F,(x*,y*) with the CGF K*(t*,u*) =

K(u,t), where t* = u, u- = t. This treatment is the same as interchanging

16



the integrals in (7) and then applying the Lugannani and Rice formula to

the integral in u instead of t. The results are usually satisfactory. 1In

the present example, v, sw , for x 5y.

0, ug

6. Concluding Remarks

In this paper we have derived accurate bivariate saddlepoint formulas
for the cumulative distribution function of the sample mean of a bivariate
sample. Although the derivations require some analytic considerations, the
resulting formulas are easy to use in practice. Therefore, these
approximations are useful in statistical inference involving more than one
parameter, especially when the sample size is small to medium. Some care
is needed in applying these formulas, as is pointed out at the end of
Section 5. In principle the theory developed here can be extended to the
higher dimensional case. The results developed here can be used to
approximate the bootstrap distributions. The validity of such
approximations in the bivariate bootstrap setting can be shown using

techniques employed by Wang (1989) in the univariate case.
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Table 1.

Comparisons of the bivariate saddlepoint approximations and
normal approximations to the cumulative distribution of the sample mean of
bivariate gamma random variables with n=10.

For each x and vy,

the first

value is "exact" which was obtained from 100 simulated samples. The second
and the third are the saddlepoint approximation and normal approximation
respectively. ‘
X
y -1.2 -1.0 -0.8 -0.5 0.0 0.5 1.0 1.5 2.0
2.0 .00026 .0035 .021 .125 .530 .866 .978 .9975 .99962
.00027 .0036 .022 129 .539 .871 .979 .9976 .99955
.00365 .0127 .037 .132 .500 .868 .987 .9996 .99999
1.5 .00026 .0035 .021 .125 .530 .865 .976 .9955
.00027 .0036 .022 .128  .537 .869 .977 .9949
.00365 .0127 .037 .132 .500 .868 .987 .9992
1.0 .00026 .0035 .021 125,527 .857 .96l
.00026 .0036 .022 127  .532 .857 .958
.00365 .0127 .037 132 .499  .863 .976
0.5 .00026 .0035 .021 123 .503 .783
.00026 .0035 .022 124,504 .778
.00364 .0126 .037 130 .476  .784
0.0 .00025 .0033 .019 104 364
.00025 .0033 .019 104,360
.00349 .0118 .033 .108 .333
-0.5 .00018 .0021 .010 .042
.00017 .0020 .010 .042
.00243 .0073 .018 .048
-0.8 .00008 .0008 .0033
.00008 .0008 .0032
.00134 .0036 .0079
-1.0 .00003 .0002
.00003 .0002
.00073 .0018
-1.2 .00000
.00000
.00032
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