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ABSTRACT

A class of stationary, long memory processes is proposed which is
an extension of the fractional autoregressive moving average (FARMA)
model. The FARMA model is limited by the fact that it does not allow
data with persistent cyclic (or seasonal) behavior to be considered.
Our extension, which includes the FARMA model as a special case, makes
use of the properties of the generating function of the Gegenbauer
polynomials, and we refer to these models as Gegenbauer autoregressive
moving average (GARMA) models. While the FARMA model has a peak in
the spectrum at f=0, the GARMA process can model long term periodic
behavior for any frequency 0 < f < .5. Properties of the GARMA
process are examined and techniques for generation of realizations,
model identification and parameter estimation are proposed. The use
of the GARMA model is illustrated through simulated examples as well

as with the classical sunspot data.
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1. Introduction

In recent years much attention has been focused on the study of
"long memory processes”. A stationary time series defined over t = 0,
+ 1, +2,... is said to be long memory if Z;=O|Y(k)| diverges, where
Y(k) is the autocovariance of the process. Otherwise the time series
is called a short memory process. See McLeod and Hipel (1978). An
essentially equivalent definition of long memory in terms of the
power spectrum‘is given in Definition 1 which is a slight extension of

previous definitions.

Definition 1. A discrete time series is said to be long memory if for

some wel0,n] the power spectrum, P(w), becomes unbounded.
Currently the most popular technique for analyzing long memory

time series is through the so called fractional difference,

V*, where
() = a-mtee) = £ CDOBY )
k=0
= £ (DO (0
k=0



since BKf(t) = f(t-k).

Using the definition in (1), Hosking (1981, 1984), Granger and
Joyeux (1980) and Geweke and Porter-Hudak (1983) have posed the
fractional autoregressive-moving average (FARMA) process as a model

for long memory data. A process is called a FARMA process if

$(8) (1-B)4(x(t)-p) = B(B)a(t), (2)

where a(t) is white noise and

BKX(t) = X(t-k)

$(B)

1-¢,B - ¢232 - el - 4>po (3)
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If ¢(B) is a stationary operator and d < 1/2, then it can be shown
that X(t) in (2) is a stationary process. If also d > 0, then X(t) is
long memory with an autocorrelation that is asymptotically equivalent
to 12971 a5 1 o ©, i.e. p(1) = 12471 45 qhe.  We will say f(1) =

g(t) as Ta= if limT*“ [f(t)/g(1)] = ¢ where ¢ is a finite, nonzero

2d as w+0. See Hosking

constant. Moreover in this event P(w) = w
(1981).

Even though a significant amount of work has been done making use
of the model in (2), it is doubtful that the FARMA model will furnish
a sufficiently broad base to address the long memory problem in
general without some significant extensions to the model in (2). Some

extensions have been suggested already. For example, Hosking (1981,

1984) suggested the model

$(B)(1-2uB + BH)M(X(t)-p) = 0(B)a(t) (4)



which clearly includes (2) and would allow long memory seasonal
behavior. This model however has not been investigated, presumably
due to the complexity in inverting the factor (l1-2uB + Bz)k.

In this paper we show how the fractional model can be extended to
include the factor (1-2uB + B2)A. This is accomplished by
making use of the generating function of the Gegenbauer polynomials.
The resulting linear processes are much more general than the
fractional model produces and they allow one to consider long term

periodicitities in the data.

2. Gegenbauer Polynomials

The Gegenbauer polynomials have a rich history in applied
mathematics due primarily to their orthogonality and recursion
properties. In this paper, however, it is neither of these properties
that we exploit but instead we make use of their generating function.

Although one can define these polynomials directly it is not
uncommon to define them through their generating function as we shall
do now. See Magnus, Oberhettinger and Soni (1966) or Rainville
(1960).

Definition 2. Let A # 0 and | Z|< 1, then for |u|< 1 we define the

Gegenbauer polynomials, Cgk)(u), by

(1-2uz + z2)™* = ¢ cr(l“(u)z“ . (5)
n=0

As stated previously, these polynomials can be defined directly.
Even though we will have no need for their definition apart from

Equation (5), for completeness we state the following result. From



(5) it can be shown that (see Rainville (1960))

[n/21] k n-2k
n k=0 k' (n - 2K)!
where (a.)n = %%%%El

3. The Gegenbauer Process

Let C(k)(u) be the Gegenbauer polynomial defined in
k

Definition 2 and let X(t) to be the general linear process given by

X(t) - p=2¢ ck(kzu)a(t—k), t =0, +1, +2,..., (7)
k=0

where a(t) is white noise with mean zero and variance og and A is
any real number +0. In the remainder of this section we will assume

without loss of generality that p = 0.

Note that from (5) and (7) we can rewrite X(t) as

X(t) = 5 cﬁ*)(u)ska(c)
k=0

= (1-2uB + Bz)_ka(t) s (8)

and also if X(t) is invertible, we can formally write

(1-2uB + BEY*x(t) = a(t) . (9)

Invertibility conditions for X(t) are given in Theorem l. We thus

have the following definition.

Definition 3. The discrete process X(t) given in (7) is called a

Gegenbauer process with parameters u and A and will typically be



denoted using the notation in (9).

It should be noted that if u = 1, we have

(l—B)z*x(t) = a(t) (10)

so that X(t) is just the standard fractional process of order 2\ while

if u = -1, (9) becomes

(1+B) 2 x(t) = a(t) . (11)

Note that when u=l, the name "fractional difference" seems appropriate
but for u+l there is no such interpretation. On the other hand, the
process is Gegenbauer for all u.

In Theorem 1 which follows we provide stationarity and
invertibility conditions while in Theorem 2 we establish the long

memory behavior of a Gegenbauer process.

Theorem 1. (a) A Gegenbauer process is stationary
i) if |u|< 1 and A < 1/2

ii) if u = +1 and A < 1/4.

(b) A Gegenbauer process is invertible
i) if {u| < 1 and A > -1/2

ii) if u =% 1 and A > -1/4.

Proof: a(i) Suppose |u|< 1. Then

g 1
1-u“ . 4 (3-1)
( A ) Pk+k—%(u)

A
T(A+3)T(2A+Kk) )
KIT(2\)

ci*)(u) -

b

(

where Pkk)(u) is the Legendre function of the first kind.



See Magnus, Oberhettinger and Soni (1966), page 219. Now for fixed u

and f, as Re(a)+~ the following asymptotic result holds when |u | < 1.

p(u) = 2 T(otn+l) cos[(o+3)d - m/4 + trn/2][1 . 0(1/0)]
a /1 T(a+3/2) (2sin¢)%
where ¢ = cos™lu. Then
(3-1) 2 I'(k+l) cos[(k+A)d-An/2]
P (u) = = [1 +0oC1/)] . (12)
(k+A-%) /m D(k+A+1) (25in¢)%
Therefore
2
\) _2r(a + &) T(2A+k) 1-u” 1/4-A/2
Cp (W = TG T )
cos [(k+A)d ; An/2] [1+ 0(1/K)] .
(2sing)
Then by Sterling's formula
, 1A
e uy = 2 FI(,’(‘ZI)%)(IZ“) Y% cos[Genrg - 42 ] (13)
as k -+ =,
Now
o e(A) 2.2
Y(0) = £ [c." (W] . (14)
k=0

But from (13), when |u|< 1, the series in (14) converges if A < %,
which completes the proof for the case |u|< 1.
a(ii) The case u=1 was shown by Hosking (1981) and u=-1 follows

similarly.



(b) From the proof of (a) it can be seen that X(t) in (7) can be

written in the form

X(t) = a(e) - £ c{M (x(e-) (15)
k=1

if |[u| <1 and A > -1/2 or if A > -1/4 when u = ¥ 1, and thus the

result follows.

Theorem 2. A stationary Gegenbauer process is long memory if 0<A<#

and |u|< 1l or if |u|=1 and 0 < A < 1/4.

Proof: From (8), the spectrum, P(f) is given by

P(w) e21m FZK

62 | 1-2ue®¥ +
a

ui[h(cosw - u)2]~k . (16)

Then when w = cos™lu the spectrum becomes unbounded, i.e. the
covariance is not absolutely summable, and hence the process is long
memory. The frequency wg = cos~lu will be referred to as the
Gegenbauer frequency (G-frequency). When |u I = ], the results follow
from Hosking (1981).

In Figure 1 we show the range of u and A associated with
stationary, long memory Gegenbauer processes. These u and A values
are associated with the shaded region, i.e. 0 < A < .5 and |u |[< 1 as
well as with the u,A values along the solid horizontal line segments
where u = ¥1 and 0<A<.25. The fractional process of Hosking is

represented by the solid horizontal line segment at the top of the



rectangle in Figure 1 from (0,1) to (.25,1) in the u,A plane. This
figure illustrates the fact that the Gegenbauer process is a
substantial extension of the fractional process. As u and A move
along a path toward the boundary of the rectangle, the corresponding
Gegenbauer processes approach nonstationarity if the path terminates
somewhere along the dotted boundary. For example, if A is held
constant at A = .3, then as u approaches 1 from below, the processes
associated with these u and A values will progressively exhibit more
"near nonstationary" behavior. Thus it is clear that while u plays a
role of determining the Gegenbauer frequency, it also is involved in
the degree of "near nonstationarity" displayed by the model.

Note that when u = 1, the spectrum in (16) is the spectrum of
the fractional process given by Hosking (1981). As has already been
mentioned, in the case u = 1 it has been shown by Hosking (1981) that
p(1)=t4r=1 ag 1 4 =. 1In the following theorem we show that

22 Lgin(nr-2nkEq) where £

for a Gegenbauer process, p(T) =
is the G-frequency.

In the proof of Theorem 3 we will make use of the concept of a

slowly varying function.

Definition 4: A function b(w) is said to be slowly varying at wg if

for 8 > 0, the following two conditions hold:
(a) (w—wo)ﬁb(w) is increasing and
(w—wo)—éb(w) is decreasing

in some right hand neighborhood of wg



(b) (wo—w)ﬁb(w) is decreasing and
(wo—w)_ﬁb(w) is increasing in some left hand
neighborhood of ug.

A function is said to be slowly varying from the right if (a) holds.

Theorem 3. Let {X(t)} be a stationary, long memory Gegenbauer
process, i.e.
(1-2uB+B2)AX(t) = a(t)
(a) When u=l and 0 < A < 1/4, the autocorrelation function of

{X(t)} is

_ D-20)Tr(t+2))
P(T) = FEOT (=204 1)

As T - eo’ p("') el TL"A-—].

(b) When u=-1 and 0<A<1/4, the autocorrelation function of {X(t)}

is

T T(1-2A)T(t+2A)
T(20)T(1-2A+1)

(1) = (-1)

As T » =, p(1) = (—l)TTAA_l.

(c) When |u | < 1 and 0<A<1/2,
p(t) = sz_lsin(nk - Twg)
as T+« where wgy is the G-frequency.
Proof:

(a) Since the case u=1 is the fractional process, the result

was shown by Hosking (1981).



(b) When u = -1, (9) becomes (1+B)2Ax(t)=a(t), i.e. X(t)
= (1+B)_2ka(t). The ¥ weights in the general linear process

form X(t) = Z;=OW(k)a(t—k) can be written as

k T'(k+2A)

(k) = (-1) KIT(20)

-1 ¥n k)

where n(k) are the Y-weights found by Hosking (1981) in the case u=l
and the result follows by the proof of Hosking.

(c) We need the following lemma.

Lemma: -Let R(1) = IgP(w) cos (Tw)dw with T an integer.

Let wg £ (0,n) and suppose P(w) can be expressed as

P(w) = b(w) | w-u| P witho<g<1/2.

o

Further, suppose that b(w) is non-negative and of bounded variation in
(0,up-e) U (wp+e,n) for €>0. Suppose also that b(w) is slowly varying

at wg. Then, when T -+ =,

8-1 B

. 1 1
sin (55— - Two)[bl(;) + bz(;)]

R(1) = 1
with bl(x) = b(x+w0) and bz(x) = bl(—x).

Proof of Lemma: Consider

R(t) = Ig b(w) |w - w B ostudu

o

and let x = w - w, from which we obtain

0

R(1) = Jf;gob(x+w0) | x |~Bcos[1(x+w0)]dx

Let bj(x) = b(x+wp). Obviously bj(x) is slowly varying at x=0 from

the right and of bounded variation in (-ug,-€) U (g,m-uwgp). We can

10



write

R(t)

-ug

. sin(Tx)sin(TwO)dx

=8, -5, .
S1 = l?wo(—x)—sbl(X)COS(TX)COS(TwO)dX + Jg~w0(x)—8
=St S
Now, Slé = cos(TwO)[g—wox_sbl(x)cos(xx)dx

. v -8
= cos(TwO) IO X

bl(x)cos(Tx)dx

where bj(x) has been extended to (0,m) by letting

b;(x) = 0 for x € [mn-ug,n).

= lﬂ;go|x |_Bbl(x)(cos(1x)cos(1wo) - sin(tx)sin(tu,))dx

Iﬂ-wo | x |_Bbl(X)COS(TX)COS(TwO)dx - It;golxl—sbl(X)

bl(x)cos(rx)cos(TwO)dx

Then, it follows that bj(x) is of bounded variation in any interval

(e,n) where 0 < € < m, and by Theorem 2.24 Zygmund,

. i, . mp | B-1
S12 = cos(TwO) bl(T) sin( ) )T
Now for Sll we have
S = [0 (—x)—Bb (x)cos(tx)cos(Tupn)dx
11 ~ugQ 1 0

cos(Two) [gow_sbl(—w)cos(Tw)dw .

Let by(w) = bj(-w), and it follows that by(w) is slowly varying at @

from the right and of bounded variation in any interval (0, wg-e) for

0 < € < wg. Extending byp(x) to (0,m) by letting

11



by(x) = 0 for xelug,m],

then
S,.. = cos(Tw )I“ L (w)cos(tw)dw
11 07jo 2

Again by Zygmund, Theorem 2.24 and the same argument used for Sj,,

~ 1 ._mB, B-1
Sll = cos(TmO)bz(T) sin( 2)1
Hence
- ._mB, B-1 1 1
§, = cos(tugy)sin(=)t [bl(T) + b2(1)] .
Considering

S, = j“_m0| x| b (x) sin(u)sin(ru)dx ,
~u, 1 0

the same argument used for S1 shows that

sin(TwO)cos(!%)TB—l[bl(%) + bZ(%)]'

w
|

Therefore

R(t) =S, - §

¥

TB-I[bl(%) + bz(%)][cos(TwO)sin(l%)- sin(TwO)cos(gﬁ)]

TB_llbl(%) " bz(%)] sin(™3 - tu)

0

B-1 _. B 1 1
T s1n(%~ = Tug) [bl(?) + bz(;)] when T-=.

K]

R(T)

which completed the proof of the lemma.
Returning to the proof of (c), we see that for a Gegenbauer

process with |u| < 1, the spectrum P(w) is given by

P(w) = tjz[l;(coso)—u)zln)k

12



. -1
Letting w, = cos "u, then

0
- -
2 [ c 2 WY 2, YT J
P(w) = L 2 sin"( 5 ) sin (—~§=——) .
Write  P(w) = | u-ug] "'b(w)
2 -ap, 2 oy | Sim <w_2° 127
with b(w) = o, 2 [sin“( 5 )] ———6:66~———

We demonstrate that b(w) satisfies the conditions in the Lemma.

i) The fact that b(w) is of bounded variation in (0,wp-£)U(wp+e,n) can be
easily shown.

ii) To show that b(w) is slowly varying at wy we consider the case

w > wp. Let

1(w) = (w—wo)ob(w)
P SR ) Y _ 2)-A 2
= 4 "(w wo) [(cos w - cos wo) } a
Then,
dauw)_ 2 ,-A, .\ §+2A-1 _ -2A-1
du g 4 (v wo) (cos Wy cos W)
[(8+2A) (cos wy ~ cos w) - 2k(w—wo) sin w].
When o > Y (m—(»)o)ﬁ-'-ZA_1 and (cos Wy = cos w)_z "% are positive.
For (8 + 2A)(cos wo—cosw)—Zk(w—wO)sin w, when w v, both terms

approach zero. However using L'Hospital rule it can be shown that

ZA(w—wo) sin 21

Lim (0+20)(cosw, - cos w) Y5 < 1
w¢w0 0

Hence when w approaches w, from right and is sufficiently close,

0

(6+2A)(cos w, - cos W) - ZA(w—wO) sin w > 0,

0

13



d2(w)

i)
™ and (w-wo) b(w)

Thus > 0 in some right-hand neighborhood of w

0

is increasing when ®w approaches w, in some right-hand neighborhood of

0

] Similarly (w—wo)-ﬁb(w) decreases in some right-hand neighborhood

0
of wg. Using the same argument, it can be shown that (wo—w)db(w)
decreases and (wo—w)—ﬁb(w) increases in some left-hand neighborhood

of wg when w approaches wp. Therefore b(w) is slowly varying at ug

and by the Lemma, p(t) has the property that
~ 2x-1 . 1 1
p(t) = sin(mA - TwO)[bl(T) + bZ(T)]

as T » ». However, bj(1/1) + bo(l/1) approaches a finite, nonzero
constant as T-=, and thus as T-e~,

p(t) = TZA_lsin(nA—Two)

4. The GARMA Process

In the same manner that the fractional process has been extended
to FARMA processes, we now extend the Gegenbauer process by combining

it with the ARMA process. This leads to the following definition.

Definition 5: If ¢(B) and 6(B) are defined as in (3), then we

define the Gegenbauer—ARMA (GARMA) process by

$(B)(1-2uB + BHHM(X(t)-p) = 8(B)a(t). (17)

Theorem 4 summarizes properties of the GARMA process.

14



Theorem 4. Let {X(t)} be a GARMA (p,u,A,q) process (A$0) and let all

roots of ¢(Z) = 0 and 8(Z) = 0 lie outside the unit circle. Then

a) {X(t)} is stationary if A < 1/4 when u = + 1 or A < % when |u | < 1;

b) {X(t)} is invertible and if A > -1/4 when u = + 1 or A > -} when
[u]< 13

c) if 0 < A < 1/4 when u =+ 1or 0 < A < % when |u|< 1, then {X(t)}
is a long memory process.

d) (i) if |u I <1, limm»wo (w—uO)ZAP(w) exists and is finite.

(ii) if Iu |= 1, 1 (w—wo)akP(w) exists and is finite.

1mm#m0

e) as T » =,

(i) p(1) = t**"1 when u=1 and 0<A<1/4

n

(-4 Ghen u=-1 and 0<A<1/4

sz_lsin(mk—Two) when | u | < 1, 0<A<1/2 and wg

(ii) p(r)

1?

(iii) p(1)

is the G~frequency.

Proof: The proofs of (a) and (b) are obvious (cf. Hosking (1981),

Theorem 2). For part (c¢) note that

iy 2 : i
oi LQSE__lL— |1—2uelw + ele r2k
4t 2
iwy 2
oi LQSS__H___— [2(cosw—cosw0)]_2A
| 4™ P

P(w)

where Wy = cos_lu, is the G-frequency.

Part d(i) can be seen by writing P(w) as

iw 2 W-W 0+
P(w) = 02 LQSET—l—L—~ [4sin( O)sin( 0 )]—ZA
a |¢(e1w) |2 2 2

15



while d(ii) follows from Hosking (1981). The proof of e(i) was given
by Hosking (1981) and e(ii) follows along the same lines. Result

e(iii) is shown using the Lemma in the proof of Theorem 3c¢. That is,

iw 2
P(w) = 62 L§i§7—lJ—— [4(cos w - cos w )2]_k
a iw 2 0
| 6¢e™) |
can be written in the form P(w) = |uw - wOI_ZAb(w) where b(w)

is of bounded variation in (0,wp-€)y (wg+e,n) and is slowly varying at

ldo.

5. Simulated Realizations from GARMA Models

(a) Generating Realizations from GARMA Models

Hosking (1984) suggests an algorithm for simulating realizations
from a FARMA model which utilizes the autocovariance function. Since
there is not a closed form expression for the covariance of a
Gegenbauer process, it was decided to generate the realizations
directly from Equation (7). Of course in practice this infinite
series will require truncation, and our realizations X(t) were

generated using

M
x(t) =p+ 52 cMwale-k) (18)
k=0 K

with M = 290,000. Using this truncation, the variance of the process
appeared to be correct to at least two decimal places for the models
considered here. As can be seen by inspecting the figures which
follow, the sample correlations verify that the simulated series

posses the proper correlation structure. Although this procedure is

16



time consuming, one advantage to computing the realizations in

this manner is that each realization can be generated from the same
random number seed, and thus differences in the realizations are due
entirely to the differing parameters and not the noise.

Realizations from the GARMA model were obtained using a procedure
described by Hosking (1984) for the FARMA model. 1In particular, in
order to generate a realization from the GARMA model in (17), we,
first rewrite this model as

$(B)(X(t)-p) = (1-2uB + B2) Ag(B)a(t)

0(B)Z(t)

where Z(t) = (1-2uB + Bz)—Aa(t), i.e., Z¢ is a Gegenbauer process

given by (1-2uB + Bz)*z(t) = a(t) and a realization from this

process can be simulated using the technique described in the preceding

paragraph. A realization from the GARMA process X(t) can then be obtained

using
P q
X(t)-p =% ¢.(X(t-j)-p) + Z(t) - £ 6,2(t-j) (19)
j=1] J j=1 J
] ]
From (19) it is obvious that the starting values Z(k), k=0,-1,...,1-q
will be required along with X(k), k=0,-1,...,1-p. While starting

values Z(k) are easily obtained from (18), the starting values X(k)
are not as easily obtained. Hosking (1984) recommends a procedure for
initializing the X(t) process with p starting values of zero,
generating n+L values of X(t) using (19) and retaining the last n of
these values of X(t) as the realization X(t), t=l,...,n. Hosking
provides guidelines for the selection of L. 1In the realizations shown

here we take L=150.

17



(b) Simulation Results

The simulated realizations shown in this section are based on pu=0.
Also, in the remainder of this paper we find it more convenient to use
normalized frequency, i.e. f = w/(2m). Thus, we use the notation, fy,
to denote the normalized G-frequency, i.e. f = wg/(2m). Figure 2a
shows a realization of length 500 from the Gegenbauer process with u =
.8 and A = .45, and a(t) ~ N(0,1), i.e.

(1-1.6B + B2)0.45x(t) = a(t) . (20)
The operator in the parenthesis has a G-frequency of fg = .10
associated with it. The periodicity induced by this operator is
apparent. Figure 2b shows only the first 100 of these same sample
values. On this larger scale the periodicity just referred to is more
apparent.

Figure 2c and 2d show the resulting true and sample auto-
correlations. The agreement is quite good. An ARMA process was fit
to this data via the S-array method (see Gray, Kelley and McIntire
(1978)) and thé model obtained was

X(t) - 1.555X(t-1) + .943X(t-2) = a(t) + a(t-1) , (21)
which also has a system frequency of fp = .10 associated with it. It
is interesting to note that the periodic nature of the data is
captured in (21) but that the autocorrelation associated with (21)
would decay much too fast even though it is very close to the
nonstationary region.

Figure 3a shows a realization of length 500 from the Gegenbauer
process with u = -.8 and A = .45. This is much higher frequency data
than that of Figure 2, having a G-frequency of fg = .40 associated

with it. The data and the true autocorrelation, shown in Figure 3b

18



clearly reflect this difference. The sample autocorrelation for this
data is given in Figure 3c.

The realizations shown thus far have shown the impact of changing
u in the Gegenbauer process. Figure 4a shows the first 100 values of
a realization of length 500 from a Gegenbauer process, again with u =
.8 but this time with A = .2. Clearly the G-frequency is not as
persistent in the data as when A = .45. Fitting an ARMA process to
this data leads to the MA(2) model

X(t) = -.342a(t-1) - .118a(t-2) + a(t)
which completely misses the presences of a periodic component. Thus
unless the process is near the nonstationary region it appears that
fitting an ARMA model to the data would lead not only to a model for
which the memory is too short, but to a model which total misses the
most salient features of the data. Figure 4b gives the true
autocorrelations and it can be seen that although these
autocorrelations are small, they do damp slowly. Figure 4c gives the
sample autocor;elation where the sinusoidal behavior is not as
evident but is still discernible.

In Figure 5a we display a realization of length n=500 from the
GARMA process

(1-.9B) (1-2uB+B2)*x(t) = a(t) (22)

where u = .8 and A = .45. Thus, the Gegenbauer component of this
GARMA model is the same as that in the Gegenbauer process in (20)
which is displayed in Figure 2. From Figure 5 we can see that the
effect of the autoregressive factor 1-.9B is to induce a certain
amount of wandering, nonperiodic behavior to the realization. 1In

Figure 5b and 5c we show the true and sample autocorrelations from
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this model. There it can be seen that for smaller lags, the damped
exponential contribution associated with (1-.9B) is evident. At
larger lags the sinusoidal nature of the autocorrelations is
predominant, and although the amplitudes are smaller than those in
Figure 2 they still tend to damp very slowly.

In Figure 6a we show a realization from the GARMA process

(1-.9B) (1+.8B) (1-2uB+B2)*x(t) = a(t) . (23)

where u = .8 and A = .3 while in Figures 6b and 6c we show the true
and sample autocorrelations. While the purpose for introducing the
FARMA and GARMA models was to model long memory behavior, it can be
seen that the GARMA model of (23) shows no strong indication that the
autocorrelation damps slowly. It seems possible, therefore, that the
GARMA model might also prove to be useful for modeling time series in
which long memory is not apparent.

In Figure 7a we display a realization from the GARMA process
(1+1.BB+.8B2)(1~2(.8)B+Bz)'45x(t) = a(t) while in Figures 7b and 7c¢ we
show the true ;nd sample autocorrelation respectively. These
autocorrelations display a very interesting pattern which deserves
discussion. For low lags, i.e., T & 25, the autocorrelation clearly
shows a high frequency behavior and not so clearly, a low frequency
behavior. However, for higher lags, i.e., T > 25 there is a definite
low frequency behavior associated with a frequency near .1 and little
or no high frequency pattern. Thus, for this model, the
autocorrelation function is dominated by the ARMA component, i.e.
(1+41.3B + .8B2) for lower lags, but Que to the slower decay associated
with the Gegenbauer component, the factor (l—l.6B+B2)'45

dominates for higher lags. This asymptotic behavior of p(1) is
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consistent with Theorem 4 part e(iii).

6. Parameter Estimation and Model Identification

In order to estimate the parameters of the GARMA (p,u,A,q) model
in (17), we will use maximum likelihood (ML) methods. 1In this section
we assume that p and q are known and that the white noise is normal.

The problem of identifying p and q will also be discussed.

ML Estimation

The exact ML estimates can be found by the direct maximization of
the likelihood function on the basiskof the p+q+4 parameters
¢1,...,¢p, 81,...,08q, W, o%, u and A. However, this is a very
tedious procedure even in the FARMA case (see Hosking 1984}, and in
practice we use procedures for obtaining approximate ML estimates.

When obtaining approximate ML estimators, we first estimate u by
X and then follow the procedure used by Hosking (1984) for
splitting the ﬁodel into its Gegenbauer and ARMA components. Let B =
(¢1,...,¢p, 91,...,6q, og)' and a« = (8; u, A)'. Given u and A, we

transform to obtain

w(t) (1-2uB + BZ)A(X(t) - X)

I m.(X(t-j) - X). (24)
j=0

The resulting process, Wy, is ARMA (p,q), i.e.
$(B)W(t) = 8(B)a(t) (25)
where ¢(B) and 6(B) are as in (17). Since the Jacobian of the

transformation in (24) is approximately one, it follows that
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L(x,o) = L(w,8)
where L denotes the appropriate likelihood function. Since L(w,8) is
the likelihood of an ARMA(p,q), ML estimates of the parameters B can
be found using ARMA-based maximum likelihood methods. In our
implementation, we used IMSL subroutine FTML to obtain conditional ML
estimates of 8. The procedure for obtaining approximate ML estimates
is to examine a grid of values for u and A, transform to W(t) for each
(u, A) pair and maximize the likelihood function L(w,8) for the
transformed data. The approximate ML estimates of u and A are the
pair (4, R) in the grid associated with the largest of the
maximized likelihoods, and the approximate ML estimates of the
parameters B are those which produced the largest maximized
likelihood.

In order for the transformation in (24) to be used in practice,
Hosking (1984) recommends truncating the series in (24) at M where M
is chosen to be sufficiently large. He also suggests the use of
backcasting to’estimate X(-1),...,X(-M) based on the given data. 1In
our implementation, we backcast by fitting an AR(12) model to the X

series.

Model Identification

The maximum likelihood estimation involves known p and q, but of
course in practice, p and q will not be known. Hosking (1984) used
Akaike's (1974) AIC for identifying the orders p and q of a FARMA
model, and we have considered an adaptation of this method to the
GARMA model. AIC for the GARMA model in (17) is

AIC = -2logLpax + 2(p+g+d) (26)
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where Ly, is the maximized likelihood of the fitted model and & = 2
if a GARMA model is fit to the data, while 8§ = 0 if the model is
constrained to be ARMA (i.e. A = 0). The implementation of the AIC
model in practice would involve selecting several candidate models
(possibly including cases in which A = 0 and in which A + 0,
calculating the AIC criterion in (26) and selecting the model for

which the AIC criterion is minimized.

7. Examples

In this section we consider the procedures discussed in Section 6
through three examples, two of which involve simulated realizations
from GARMA models. The third example to be considered is the

classical sunspot data.

Example 1.

In Figure 5 a realization of length 500 and the autocorrelations

from the GARMAkmodel
(1-¢1B)(1-2uB + B2)A(X(t)-u) = a(t) (27)

where ¢l = .9, u= .8, A = .45 and p = 0, were displayed. For the
data of Figure 5, p and q are selected and the maximum likelihood
estimates of u, A, the ¢i and the 6; were computed by the methods
described in Section 6. Table 1 shows the AIC values for GARMA models
with 0<p<3, 0<q<2 and for strictly AR(p) models, 1<p<3. By that table
we see that the AIC choice of models yields GARMA (1,0). The
corresponding maximum likelihood estimates for the remaining
parameters are G4 = .8, i = .48 and $1 = .89. The estimated

model is therefore
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(1-.89B)(1-1.6B+B2)*48(x(t) - X) = a(v), (28)

which is very close to the true model. Obtaining the result of
Equation (28) is very computationally extensive. For this reason, we
will now make some observations which will often lead to a substantial
reduction in computation time with very little degradation in the
resulting estimated model. 1In this case inspection of the sample
autocorrelations in Figure 5(c) showed a clear persistence in the data
in the neighborhood of f = .1. Since f = .1 corresponds to u = .8,
the values of u considered could be restricted to .7 < u < .9,
substantially reducing computer time. However, even with this
reduction, the computation time would still be extensive. When there
is a clear persistence in the sample autocorrelations, the method of
overfitting an AR(p) process discussed by Gray and Woodward (1986) can
be used to estimate u. That is, one fits a sequence of AR(p)
processes for several large values of p and tables the factors by
order of the proximity of their associate roots to the unit circle.
One then considers only those factors with roots very near the unit
circle as candidates for the "Gegenbauer factor" in the model. For
the data shown in Figure 5, the corresponding factor table is given in
Table 2 for an AR(20) fit. The factor associated with the frequency
f=.10 is clearly the top contender for the Gegenbauer factor. The
frequency f=.02 is also a possibility. Therefore one could limit the
MLE range of consideration to the two values u = .8, u = .99. Also a
quick glance at the sample autocorrelations in Figure 5(c) suggest
that A is not small, so it probably suffices to limit .3 < A < .5.
Taking A = .3 and u = .8 as trial values and using the GPAC and

S—-array method to estimate p and q on the tranformed data, W(t), leads
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immediately to the estimate p = 1 and q = 0. With this examination
one could probably feel comfortable in restricting the parameter space
to {u=.8, A > .3, p=1, q =0}U{u=.99, A > .3, p <3, q <2}. This
leads to the same model as determined in (28). 1In short, a little
prior analysis by the analyst may significantly reduce the compulation
time with little appreciable degradation in the results. The sample
autocorrelations in Figure 5d could be used to give an initial
estimate of A using the results given earlier concerning the form of
the autocorrelations of a Gegenbauer process. For a Gegenbauer
process, p(k) = kZA—lsin(mk—Zﬂka), so it follows that the

distance from a peak down to the next trough of sample
autocorrelations should fairly closely estimate 2Ck2k—1 where

k is the location of the peak and C is a finite, nonzero constant.
Thus, if the '"peak to trough" distance is found for two values of k,

say k) and kg, then if h; is the "peak to trough" distance associated

with k;, we have

2A-1
k) oy

=1 h
ok’

2C

2
so that

A= 1n(hl/h2)

— 4 ] /2.
1n(k1/k2)

Using this approximation on the sample autocorrelations in Figure 5c
based on k) = 49 and kyp = 88 we obtain A = .41. Other

techniques for obtaining preliminary estimates of A are possible.
Basically, this estimation is based on the use of the sample

autocorrelations to measure how fast the autocorrelations are damping.
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In some cases this preliminary estimation of A is not possible. We
have seen that the GPAC identification of p and q using transformation
to W(t) based upon preliminary estimates of u and A, is quite
insensitive to i as long as u is estimated reasonbly well.

In the remaining examples such methods as described here were
used to limit the number of models under consideration and the maximum
likelihood estimates were obtained only for this reduced collection of

models.

Example 2. 1In Figure 6 we showed a realization and the
autocorrelations for the GARMA model

(1-.9B)(1+.8B) (1-2uB+B2)*X(t) = a(t)

(1-$1B-42B2) (1-2uB+B2)*x(t) = a(t)
where u=.8 and A=.3, ¢;=.1 and ¢9=.72. There it was seen that the
sample autocorrelations were not clearly slowly dampling so that
visually, theré may not have been an indication that the process in
Figure 6a was from a GARMA process. The factor table for an AR(20)
overfit is given in Table 3. There it can be seen that two
frequencies appear to be strong, one around f=.1 and the other near
f=0. These frequencies are associated with values of u near .8 and 1
respectively and thus we have restricted the range of u values in the
ML search accordingly. Considering GARMA models for 0 < p < 3 and 0 <
q < 3 using the grid of (u,A) values with 0.7 s u s 0.99, 0.20 s A =
0.45 with .0l increment and strictly AR(p) models with 1<p<4, AIC
picked p=2 and q=0. The ML estimates were G4 = .80, X = .34,

$1 = .06 and $5 = .74. Transforming X(t) to obtain W(t) resulted
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in ARMA(2,0) identification by GPAC as long as the @ used in the
transformation was close to .8. It should be noted that estimation of
A from the sample autocorrelations does not seem plausible in this

case.

Example 3. Sunspot Data

In Figure 8 we show the 176 yearly sunspot averages from 1749 to
1924 along with the sample autocorrelations. The data shows the
pseudo-periodic behavior which has interested scientists for
centuries, and the autocorrelations have a slowly dampling sinusoidal
appearance similar to the autocorrelations to Gegenbauer and GARMA
processes shown earlier. 1In Table 4 we display the factor table
associated with an AR(15) overfit from which we estimate u to be
approximately cos[2m(.09)] = .84. Preliminary estimation of A as in
Example 1 suggests that A is approximately .3. Transforming the
sunspot data using these values of u and A, the GPAC array for the
resulting W(t):series indicates an ARMA(8,0), ARMA(8,1) or possibly an
ARMA(1,0). 1In the literature, several ARMA models have been proposed
for the sunspot data. Box and Jenkins (1975) suggest an ARMA(2,0),
Ozaki (1977) found an ARMA(8,0) to be the model selected by AIC and
Woodward and Gray (1978) recommended an ARMA(8,1) on the basis of the
S-array. We thus used AIC to compare the six models ARMA(2,0),
ARMA(8,0), ARMA(8,1), GARMA(1,0), GARMA(8,0) and GARMA(8,1). AIC
values for these models are shown in Table 5. On the basis of this
comparison AIC selects the ARMA(8,0) with a GARMA(8,0) and GARMA (1,0)
being a very close second and third choice. Thus the GARMA (1,0) is

an attractive choice due to its parsimony and low AIC value. In Table
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5 for each GARMA model, we show the ML estimates of u and A. We have
also tabled the dominant frequency for each model considered. For the
GARMA models this is the Gegenbauer frequency, fp, while for strictly
ARMA models we table the frequency associated with the roots closest
to the unit circle.

We also used the models mentioned in the preceding paragraph to
produce forecasts. The procedure used for forecasting using the GARMA
model was to transform the ARMA process W(t) = (l—2uB+B2)AX(t), find
forecasts for the W(t) process using ARMA techniques and convert these
to forecasts for X(t) using the fact that X(t) = (1—2uB+B2)_AW(t) and
truncating the operator to a finite number of terms. 1In Table 5 we
display mean square forecast errors for each model associated with
forecasts from three blindly chosen forecast origins, tp = 156, 146
and 141. From each origin we forecast to the end of the realization,
i.e. from tg = 156 we forecast 20 steps ahead, from tp = 146 we
forecast 30 values while 35 forecast were obtained from ty = 1l4l1. It
is clear from ghe table that from these forecast origins, the GARMA

forecasts are superior.

8. Concluding Remarks

The FARMA process has been extended to the GARMA processes, and
the latter has also been shown to be long memory. The significance of
this extension is the inclusion of periodic or quasi periodic data in
the long memory model. A more general GARMA model is currently being

investigated which involves m>1 Gegenbauer factors, i.e.

m
$(B) M (1-2uyB + B)Mix(e) = o(B)a(t).
i=1
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An additional area of potential interest concerns the models on the
dotted boundary of the stationary, long memory region shown in Figure
1. These are nonstationary processes which border the stationary
region much as the first order process (1-B)X(t) = a(t) borders the
stationary region for AR(1l) processes. It is interesting to note that
this nonstationary AR(1l) process is represented by the upper
right-hand corner of the stationary, long memory region shown in
Figure 1. It remains to be seen whether other nonstationary models on
the boundary of the rectangle in Figure 1 will provide useful

nonstationary models.
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TABLE 1
AIC Values for Models Fitted to the
Realization of Example 1

GARMA Models

P
0 1 2 3
- ~49.60 ~-47.10 -44.38
339.69 | -47.64 -45.06 -42.36
153.03 | -46.08 -43.17 -45.63

AR (p) Models

1

P
2

3

I
808.69 | 152.95 | 77.63
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Absolute Reciprocal

Table 2

Factor Table for GARMA Realization

of Example 1

of Root (V) Frequency (f) Factors
.9894 .10 1 - 1.579B + .979B?
.9534 .01 1 - 1.896B + .909B?
.9107 .07 1 - 1.671B + .829B?
.8936 .15 1 - 1.007B + .798B?
.8846 .37 1 + 1.212B + .783B?
.8837 .30 1 + .569B + .781B?
.8681 .21 1 - L424B + .754B?
.8119 A7 1 + 1.605B + .659B?
.7929 .26 1 + .084B + .629B?
.7823 .43 1 + 1.430B + .612B?
Table 3
Factor Table for GARMA Realization of Example 2
Absolute Reciprocal
of Root (V) Frequency (f) Factors
. 9405 .02 1 - 1.870B + .88B4B?
.9381 .10 1 - 1.4908 + .880B?
.8819 .38 1 + 1.255B + .778B?
.8774 .16 1 - .921B + ,770R?
.8751 .07 1 - 1.588B + .766B?
.8742 .22 1 -~ .331B + .764B?
.8652 .49 1 + 1.725B + .749B?
.8589 .45 1 + 1.616B + .738B?
.8415 .29 1 + .406B + .708B?
.7674 .31 1 + .565B + .589B?
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Table 4
Factor Table for Sunspot Data based on p=15

Absolute Reciprocal

of Root (V) Frequency (f) Factors
.9538 .09 1 - 1.593B + .910B
.9278 .00 1 - .928B
.8741 .35 1 + 1.037B + .764B
.8371 .26 1+ .109B + .701B
.8313 .19 1 - .575B + .691B
.7965 .45 1 + 1.500B + .634B
. 7787 .50 1 + .779B
.7208 .13 1 - .996B + .520B
.5500 .00 1 - .550B
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Figure 1 Stationary Long Memory Region of the Gegenbauer Process
in (14)
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Figure 3 - Realization and Autocorrelations from the
Gegenbauer Process (1—2(—.8)B+B2)'45 X(t) = a(t)

6.88— 1.88—
.50
.88 TH '

*
= 58—' LB

Bl  ,‘!1 AN
i L ll‘j;‘.}‘. i .W |

-1.08

i | | l | | l |
B8 125.88 258.88 375.88 B8 25,88 58.88 75.68
(a) Realization ) (b) True Autocorrelations
1.88—
58—
88— MWWM
-.5A—
-1.08

l i |
.88 25.08 58.8@ Y5.88

(c) Sample Autocorrelations

e s s - . PR . PN JUR - RN .. e ek e e . A ———E T 1~



3.88—
1.58—~

-1.58°

-3.88

Figure 4 - Realization and Autocorrelations from the
X(t) = a(t)
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Figure 5 - Realization and Autocorrelations from the GARMA Model
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Figure 6 — Realization and Autocorrelations from the GARMA Model
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Figure 7 - Realization and Autocorrelations from the GARMA Model
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FIGURE 8

Yearly Sunspot Numbers from 1749 to 1924
and Sample Autocorrelations
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