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Abstract

A semi-analytical solution is developed for the steady-state
pressure in a three-region cylindrical composite medium containing
a point sinusoidal source. The geometry is such that conventional
analytical methods are not applicable. The scalar wave equation
for a viscous homogeneous fluid is solved by separation of variables
in each region of the composite medium. Infinite series are set up
from these solutions. A finite number of terms in the series are
retained for each region, and the interface boundary conditions are
applied at a selected finite number of interface boundary points, in
order to produce a set of algebraic equations which are linear in
the coefficients of the series. The solution of this set then leads
to an analytical approximation to the solution of the boundary value
problem.

A central problem in this method is the specification of the
eigenvalues in each region. There exist no general physically-based
procedures for this purpose. In this paper an arbitrary Sturm-Liouville
interface boundary condition is applied which enables a set of eigenvalues
to be determined. The practical consequences of this step, in terms of
numerical calculations, remain to be determined. These calculations are
planned in subsequent work.
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Stress-Wave Propagation
in a Three-Region
Cylindrical Composite Medium
by Danny R. Dixon and C. W. Tittle
Department of Physics
Southern Methodist University

Boundary value problems in geometries such as that of figure 1,
in which the geometry is of such complexity that conventional analytical
attacks will not work, it is the general practice to solve the differen-
tial equation, subject to appropriate boundary conditions, by numerical
iterative means or finite difference technigques using a digital computer.
It is a purpose of the present work to study and develop what might be
called semi-analytical procedures for handling problems of this type.
Galerkin's method (Collatz, 1960, p. 31 and p. 413) and the method of
Garabedian and Thomas (1962) are examples of such methods. In these
cases, solutions to the boundary value problem are built up from functions
which are not necessarily solutions of the differential equation itself.
The method to be applied here is an extension of one proposed by Bobone
(1967), in which the separated solutions of the differential equation,
expressed as series in each region of the composite medium, are tied
together at the interfaces by applying the interface boundary conditions
to the truncated series.

The specific purpose of the present paper is to deﬁelop the mathe-
matical model for the semi-analytical calculation of the steady-state
_pressure in a three-region composite cylindrical medium under the

influence of a point sinusoidal source. The geometrical arrangement of
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of the source and media are shown in figure 1. The media are each
viscous, homogeneous fluids, characterized by their density, p; velocity
of propagation, c; bulk modulous, B; and relaxation time, T. Regions 1
and 2 are concentric cylinders; a plane interface perpendicular to the
z—-axis separates region 3 from regions 1 and 2 at z = 0., The radius of
region 1 is a; the radius of regions 2 and 3 is b. The cylinder is
infinitely long.

The pressure source is located at z = -d. The variation of source
strength with radial distance is shown in figure 2.

The appropriate equation of motion for the scalar displacement

*
potential, ¢, for a viscous, homogeneous fluid is

2
s _ L1 2238

82
vV 3= CQBTQ'-T"B—EVQ. (1)
Let
(r,z,t) = ¢(r,z) elwt, | (2)

for harmonic time dependence. Substituting equation (2) into equation (1)

yields

2
Va¢ elut = - 2% elwt ¢
c

- ipT eiUJt V2¢ .

igt

2
Dividing through by e and collecting terms in V ¢ gives

(1 +iem v+ ¢ = 0.

c
Defining
2 2
kz o /c
: T 1+ diwT? (3)

*c is the speed of propagation and T the relaxation time of the medium.



we have

v2¢ + ka¢ =0 . (4)
We seek a solution to equation (4) with standard separation of variables
techniques. Assume a solution of the form

$(r,z) = R(X)Z(z). (5)

Substituting equation (5) into equation (4) yields

2 2

]

Z(z) [d B, 2 dglfr)] + RmEZEL L K Reyz(2) = o,
dr dz

since we are employing a cylindrical coordinate system. Dividing by

R(r)Z(z) and rearranging terms gives

2
dr dz (6)
Since the variable r appears only on the left side of equation (6) and
the variable z appears only on the right, each side of equation (6)

]
must be constant. Letting that constant be - , we have

2
d—g'l'}'gB'FQR:O (7)
R dr

dr
and
da 2

Z
~—5 +Bz=0, (8)
dz

2 -] 2

where B =k - o .

The solution to equation (8) is given by

z(z) = B e *P% 4 ¢ P7 (9)



where B and C are arbitrary constants. The solution to equation (7), a
form of Bessel's equation, is given by

R(r) = Jg (axr) + A Y, (ox) , (10)
where J, and Y, are zeroth-order Bessel functions of the first and second

kind, respectively, and A is an arbitrary constant. Hence, the solution
of equation (1) is

d(r,z,t) = [JO (oxr) + A Y, (arr)] [B e-iBz + C eiBz] ej‘(JJt (11)

Since A, B, C, and B can be complex, write

A=A +iA,, B= B + iBy, C=C; + iCyh, B = By + iBy

Then

&(r,z,t) = [Jo (or) + (A, + iAy) Y, (dril [cos wt + isin wt]
'{(B1 + iBy) [cos (B, + iBylz - isin (B, + iBz)z]
+ (G + icy) [cos (By + iBylz + isin (B, + iBQ)z]} . (12)

If we define

E = B, cos(B,z ~ wt) + B, sin(Bz - wt),
F=2C; cos(Bz +wt) - C; sin(Byz + wt),
G = By sin(B;z + wt) - By cos(B,z + wt),
H = C sin(Blz - wt) + Cy cos(Blz ~ wt),
then
Re[<§ (r,z,t)] = Jp (o) [eBazE + e—BzzF] + Yo (or) [eBSZ(AiE + A G) (13)

+ePZar - AeH)]
and
. Im [@(r,z,t)] = Jy (ox) [—eBBZG + e-BazH] + Y, {ox) [esaz(-AlG + A E)

+eBeZan 4 AQF)] (14)



BOUNDARY CONDITIONS

In regions 1 and 3 the coefficient of Y, (ax) must vanish, since

1 he function must be finite at r = 0. Hence, for the real and imaginary
arts of &, respectively, we have

BaZ (A E + 2,00 + e P%@F - am) =0

and

PeZ(-n e + aE) + e Pe®@m + 2 F) = 0.

Solving for A, we get

2
B2z _ —ng Bgz - ‘Bgz
A1l 4+ Ge He = 0, where, A, = A, Ge He
geP2? 4 pe P

geP2? 4 pePa?
Hence, either the term inside the parentheses is equal to\J:I, which it
cannot, since all quantities involved are real; or A, = A5 = 0, in
regions 1 and 3.

Also, with respect to region 3, we require that % be finite at z = = ,

Since By turns out to be negative, this means that F = H = 0, or

Cy, cos(B,z + wt) - Cy sin(Byz + wt) = O
and
C, sin(Byz - wt) + C3 cos(Bz - wt) = 0.

This set of equations can be satisfied only for C; = C; = 0, in region 3.

=
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i [QJ =[J° (oD + B¥e (@p ﬂ [-Gaeszaz * Hae—Baaz] + Aa¥ (aar)[EzeB”z - er-Baaz]

ll

Jo (0 1) [Eleﬁialz + Fle-lez]

5

Jo () [ Gle Hle-Balﬂ

5

I

>

[Jo (agr) + By Y (ozar)] [E.‘,eB“’z + er'B°3Z]+ AgY, (ag¥) [GaeB”z - Hae'B“z]



Re [@s] = EgJy (ag¥) Paz?

m g

Rather than deal with the scalar displacement potential directly,

it is more realistic to work with some functions which are calculated

from &. Since the particle displacement vector, D, is defined by

D=VY%=ua +wa =-§9§ +§2§ B
r 2 or T dz =z

we can readily calculate the radial particle displacement, u, and the

axial particle displacement, w. Furthermore, the stress in a fluid is
given by p = pwa . The equations for u, w and p for each of the three
regions are given on the following pages.

We have the following interface and outerface boundary conditions:

(a) radial particle displacement vanishes at r = b in region 3;

{(b) radial particle displacement vanishes at r = b in region 2;
{(c) pressure is continuous across interface at r = a;
{d) radial particle displacement is continuous across interface
at r = a;
{(e) pressure is continuous across interface at z = 0;
(f) axial particle displacement is continuous across interface
at z = 0O;
(g) source normalization at z = ~4.
Condition (a) implies that
J; (ag b) = 0. (33)
This allows us to evaluate the eigenvalues in region 3.

Condition (b) implies (for real and imaginary parts)
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[ql(azb) + Ain(azb; (E,eP287 4+ FeP22%) 4 Ay (qb) (GueP22® - myeTPa2®)

and

Eﬁ(obb) + AIYI(beZ (-Gaesaaz + Hze—Baaz) + AyY, (agb) (EseBaaz + Fae_aazz) =

Hence, either
EaeBaaz + Fpe Paz® Gaeﬁaaz - Hae‘Baaz
- (G,ePR2% - p,e Pas%) g oPaa® 4 g o7Pas®
or
g (dab) + Y, (aab) = A,Y, (gb) = O.

Evaluating D, we obtain

2 2
D = (EaeBSZZ + Fae_BQBZ) + (GaeBQSZ - Hae‘Bazz) ,

and since all the terms in D are real, D must be a positive number (unless
we have the trivial case in which Eg,F,,G, and H, are zero). Hence,
Jl (aab) + A:]_Yl (dgb) =0
and
" AyY, (apb) = O.

' Consider the second condition. It implies that either Ag or Y, (ogb) is zero.

If Y; (gb) = 0, we have a set of eigenvalues %, = xn/b, where x is the nth

zero of Yl(xn) = 0. Then the first equation becomes J; (wgb) = 0. But for

:%the set of eigenvalues o this equation cannot be satisfied. Hence, we

wns
I

must have

By =0

=0
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3, (ogb)

If we now apply condition (c) term-by~term, we find that this requires

equality of the z-functions in regions 1 and 2. This means that
B = Py and By = PBaa-

This then implies that

2 2 2 2
o = ag +tk - ky,

and since k; and k, are complex, gy would be complex. This is certainly

mathematically reasonable, but Bessel functions with complex-valued
arguments are not readily evaluated numerically. Therefore, we shall
impose an arbitrary boundary condition designed to generate real
eigenvalues for regions 1 and 2; that is, that the sum of the pressure
and a constant times its derivative in region 2, evaluated at r = a,
be equal to zero:

pg (r=a) + Kpg (f:a) = 0,

Using eq. (30) we have

%where K is completely arbitrary and the subscript n has been added.

:to indicate that there is a discrete set of values yn = abn/a which

a
&
B

§satisfy the transcendental equation (34).

Now if we apply condition (c), we get for the real parts

P13 (g @) [Elesalz + Fle-an] = E Pa [Jo (aga) + Ay Y, (ozaa)][EaeB"Z+er-B"z] . (35)

n n

ubstituting eq. (34) into (35) yields



I VA

Zplao (@, 2) [Elesalz + Fle"aﬂlz] = D X0a0, [J1 (@ga) + B,Y, (aaa] lEEaeB”Z+ Fae-Baaz] .
m n

(36)

Condition (d) gives, for real parts,

2011‘71 (y2) [EleBz1Z + Fle_Balz] = Zaa[Jl (@ga) + AYy (daa} Eaeaaaz_'_ Fae"Baaz] ]
n

m

(37)
Egs. (36) and (37) can be combined to yield
Z [leO (ma) = Kpgay Jy (0113)] [Elesalz + Fle_salz] = 0. (38)
m (a
Since eq. (38) must be true for all z, we must have
P1Je (alma) = Kpgoy Ty (ozlma) = 0, (39)
where we have added the subscript m to indicate that there is a discrete
set of eigenvalues that satisfy eq. (39).
For convenience, redefine the following:
Uy = % Blim = An Brim = Sn
%n ~ Bn B12n = By B22n = gn Aln = An
By = Yy BlB\J - n\) B23\) = S Zp (yn) - Jp(yn> * Aan(yn)

Then for the determination of the eigenvalues we have

P1Jo (Olma) - KpaamJl (otma) = 0,
Zo (B ) ~ KB 2, (B a) = O,

and

3y (v,b) = O.

In addition, we have the following relationships:



-]3=

1
2 2—2-
m

1
2 3 - .
A, HAE = Oy - )?, by A0 = ky - BE, M, +de, = kg - y)2 .

Again, for convenience, define the following:

Biim ™% B B S ™S Qw7 D
Bion "B Baon = Fn Con TG Copn T H,
B13\) = Pv B23\) = Tv

Now, we can write out the boundary conditions (c¢) through (g)
explicitly, resulting in two equations for each condition, since the
conditions must hold for both real and imaginary parts. Note that
we must write different relationships for various regions when applying
conditions (e) through (g). The equations were given on the following
pages.

If we retain M, N, and L terms in the summations over m, n and v,
respectively, then we have 10[2(M + N) + L] coefficients to evaluate
with 10 equations. Hence, we need to specify.Z(M + N) + L points along
the various boundaries in order to evaluate those coefficients. Having
done that (via computer), the solution for the pressure at any point is
calculated by summing over the range of eigenfunctions for the region

of interest.
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CONCLUSIONS

The practical validity of this mathematical treatment of
the stress-wave propagation in a three-region composite medium
can be judged by the accuracy of the numbers it generates, at
least with respect to comparisons with either experimental results
or the results of purely numerical calculations. Such comparisons
have not yet been made.

It may be observed that imposition of the arbitrary Sturm—
Liouville interface boundary condition is not justified on physical
grounds. While it does allow determination of a set of eigenvalues
and the ultimate mathematical solution of the problem, the numerical
consequences of this step remain to be studied.

Although use is never made of the fact (it is difficult to see
its utility), it turns out that the eigenfunctions in region 1 also
form an orthogonal set over region 1, a somewhat surprising result.
Proof of this is given in Appendix A.

It might be possible to avoid the complex arguments of the
Bessel functions which arose in one treatment of the problem by use of
a more wisely chosen r-function in the separation of variables procedure.
It may be observed also that the complex arguments would not arise if
the absorption term, containing T, invthe differential equation were

not present.
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APPENDIX A
Orthogonality of the Eigenfunctions in Region 1

In order to prove that the eigenfunctions Qm are orthogonal
over their interval of validity (0,a), it is only necessary to show

that

a
S & r dr = 0.
o mn

Thus, we have

a a
S Jb(ahr) Jb(ahr) fm(z) fn(z) r dr = fm(z) fn(z) S Jo(ahr) Jo(dhr) r dr
0 .

0
a
= £ (2) £ (2) T‘_—E[a’m% (@) Jola @) = o Jy (o @) Jy (%a)J
% = %
(Jahnke and Emde, 1945).
| . ' 1 Pa
By the use of eq. (39), which states that qul(qha) =K 3; Jo(aha):

we have that

P

a P

a 1M1 1

SO Qan,r dr fm(z) fn(z) ;‘a—_'? [K E; Jo (%a) Jo (c{na) - X oa Jo (ana) Jo (dma)]
m n

0, Q.E.D.
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