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ABSTRACT

Using a random walk model for single server queues with Bernoulli arrivals and geometric service
times is an analysis technique well known in queueing theory. When the arrivals and departures are
Markov dependent, the number of customers in the queue can be modeled as a correlated random walk
(CRW). Previous investigations of CRW have used mostly transform techniques. In this paper, using
a CRW model for the queue, representing it as a bivariate Markov chain, and exploiting the structural
properties of its transition probability matrix, explicit results for the equilibruim solution and some
first passage characteristics, including the mean busy period, have been obtained in the following cases:

(i) with no restrictions on the waiting space and (ii) with limited waiting space.

Key words: Queues with correlated arrivals and departures, correlated random walk, steady state

solution, busy period.



1. Introduction
Consider a single server queueing system in discrete time at epochs 0, t, 2t, 3t, ... . Let the
arrivals of customers at time epochs nt and (n+1)t (n =0, 1, 2, . . .) follow a two state Markov chain

with states A (arrival) and A (no arrival), and transition probability matrix

A A
Alla a
i b Lb (1.1)
6<ab<l

When there are customers in the system, let their departures at time epochs nt and (n+1)t (n=0,
1, 2, ... ) also follow a two state Markov chain with states D (departure) and D (no departure), and

transition probability matrix

D D
Al lc o
1.2
D d 1d (12)
0<¢c,d<1.
With these assumptions, the correlated arrival process has the following properties:
(i)  The probability distribution of an arrival at nt, as n — o is given by ( a—_li’_—b, ﬁ ).
(i)  Assuming that the arrival process starts with the limiting distribution in (i), its serial
correlation (of lag j) is given by
py=(1-a-by (1.3)

(iii)  The interarrival time X A between sucessive arrivals has the distribution



P(X, =1)=1a’
(1.4)
P(X, = k) = ab(1-b)k-2 k=23,...

Similar properties hold for the departure process as well, when appropriate.

Queueing systems with the Markovian arrival process similar to the one described above (but
with a = b) have been considered by Chaudhry (1966, 1967) and Sharda (1981). Both these
researchers use transform techniqlues to derive equilibrium properties of various systems with the
standard departure process. Other types of dependence incorporated into the arrival or the service
process have been through making the interarrival times or service times sequentially dependent. In
this context we may cite Runnenberg (1961), Cinlar (1967a, b), Pestalozzi (1968), Tin (1985) and
Langaris (1986). Conolly (1968) and Conolly and Hadidi (1969) assume that the inter-arrival time and
the service time of the same customer are correlated.

For the discrete time single server queueing system with Markovian dependence in both the
arrival and service processes, we determine the limiting distribution and the mean busy period in the
following sections. In section 2 we discribe the correlated random walk (CRW) model for the number
of customers in the system. In section 3, the equilibrium solution and some first passage
characteristics, including the mean busy period, are given for a queue with unlimited waiting space
and in section 4 similar results are obtained for a queue with limited waiting space.

2. A CRW Model for the Queue

When the arrival and departure processes are Markov dependent with transition probabilities
given by (1.1) and (1.2), the number of customers in the system, if greater than 0, changes by +1, 0 or
-1 between time epochs nt and (n+1)t, also as a Markov chain. Corresponding to the four different
combinations of arrival and departure states of (1.1) and (1.2), consider a process {Up, n =0, 1, 2, ...}
with the following states representing the change: (AD, AD, AD, AD) = (+1, +0, -0, -1). Note that

the state 0 of change results from two arrival-departure combinations AD and AD. The transition



probability matrix of the Markov chain {Up} is given below, along with a notational change, made for

convenience.
_+1 +0 -0 -1
+1 [(1-a)(1-d) (1-a)d a(1-d) ad
+0 (1-a)c (1-a)(1-¢c) ac a(l-c)
(2.1)
Py=-0 b(1-d) bd (1-b)(1-d) (1-b)d
-1 be b(1-c) (1-b)e (1-b)(1-c)
al a2 a3 a.4
b b b b
1 2 3 4
= » Say, (2.2)
¢ <y c3 <y
d; dy dq dy

wherea4=1-a1-a2-a3, b4=1-b1-b2-b3, c4=1-c1-c2-c3andd4=1-d1—d2-d3.
Let Qp be the number of customers in the system at time epoch nt. For consistency of definition
we assume that the system is observed just after the transition. Define the bivariate process {(Qp,
Up),n=20,1,2,...};clearly it is a Markov chain and may be identified as a correlated random
walk with the transition probability matrix P given below. When Q = 0, the state (0, -1) should be

interpreted as simply the combination of events Q; = 0 and no arrival.



(0,-1)  (1,41) (1,40) (1,-0) (1,-1)  (2,4+1) (2,+0) (2,-0) (2,-1) ...

(0,-1) 1-b b 0 0 0 0 0 0 0 T
(1,+41) | a4 0 ag a3 0 a; 0 0 0
(1,+0) b, 0 by by 0 b, 0 0 0
(1,-0) cy 0 ¢y c3 0 ¢y 0 0 0
(2,+41) | 0 0 0 0 ay 0 a, ag 0
(2,+0) 0 0 0 0 b, 0 b, bg 0
(2,'0) 0 0 0 0 C4 0 C2 C3 ’ 0
(2,-1) 0 0 0 0 dy 0 dy dg 0
A B 0 0 0
C Z Y 0 0

= o X 2z Y 0 . : : (2.4)

where the submatrices A, B, C, X, Y and Z have the corresponding definitions.
The transition probability matrix (2.4) is similar to the transition probability matrix of the CRW

with stay (i.e., when the walk is allowed to stay in the same location in consecutive transitions)



considered by Lal and Bhat (1988b), but with major differences in the structure of submatrices.
Previous other work on CRW with stay is by Nain and Sen (1979) who consider an unrestricted CRW
and study various first passage related characteristics using probability generating functions. For
previous work on CRW without stay references are provided in Lal and Bhat (1988b). The common
approach taken by all previous researchers is the use of difference equations and generating functions to
obtain primarily first passage characteristics of the CRW. In this paper we extend the direct method
used in Lal and Bhat (1988b) and obtain explicit solutions which are convenient for numerical
computations, for equilibrium and busy period results for the process {Qp}. The method exploits the
structure of the submatrices A through Z and the transition probability matrix P.
3. The Queue with Unlimited Waiting Space

The CRW model for this queue is a Markov chain with the transition probability matrix given by
(2.3). First we shall consider its equilibrium behavior. The condition for the existence of the
equilibrium solution is given by the following theorem.
Theorem u

The necessary and sufficient condition for the queue with unlimited waiting space to have an

equilibrium solution is given by

(1‘d1)fl - b183 - C184

3.1)

where 7 = (1-by) (1-cg)-bgey
g1 = agcy + ag (1 - cg)
89 = agbg + a3 (1 - by) (3.2)
g3 = codg + (1-cg) dy



Proof:  Following Neuts (1981, p. 32), the necessary and sufficient condition for the existence of the
equilibrium solution may be stated as:

ayYe=myXe (3:3)
where_ Iy = (m +10 T40r 70 7r_1) is the limiting distribution of the Markov chain {Up}, whose
transition probability matrix is given by (2.2), and ¢ is a unit column vector. From the first and the

last equations of EUPU = ;yy, We find

zyYe = Tl (3.9)
IyXe=1
Thus condition (3.3) reduces to
(3.5)

T +1 < L
Eliminating = +0 and T from first equation of _z_r_UPU = Iy with the help of the second and third

equations, we get

d,n+ bigs +c
Ty = 117’ 1bg3 184 T (3.6)
(1-ay)n - byg; - c189
The theorem now follows from (3.5) after re-arranging terms in the inequality. g
Let
X= (x(]a X]_s ¥2’ e ') (37)
where
*0 = 0,1

5= 41 X400 %00 X1
i=1,2,...

be the limiting distribution of the Markov chain {Qp, Up}. It is determined by solving the system of

equations
xOA + ch = X (3.8)
_)_:_i_lY + x_iZ + %+1X = X i>2 (3.10)



00
x0+.z:1 gigizl
1=

In (3.11) we use the unit vectors g; with appropriate dimensions.
From Neuts (1981, p. 25) we also have
X = glRi'l i=1,2,..

where R is the rate matrix of the Markov chain P. It is obtained in the following lemma.

Lemma 3.1
[~ T
ay ajo a8 ap
R = by ba b8 byp
¢ ¢ a 8 ¢y
and
R =R i=1,2,83,... .
where

o= ci(agdg-agds) + c(ajdg+ag(l-dg)) + (1-cg)(aidgtag (1-dy))
"~ (1-d)[(1-by)(1-c3) - bgey - dg(c bg+by(1-cg)) - dg(byeg+cy(1-by))]

P b;(agdg-agdy) + bg(a;dgtas(l-dy)) + (1-by)(aqdg+ag(l-d;))
(1-d1)[(1-bg)(1-cg) - bgcg - dy(cibg+by(1-c3)) - dg(bycotcy(1-by))]

and p is given by (3.1)

Proof: The rate matrix R satisfies the matrix equation
R =Y +RZ + R%X

which can be written as
R=Y(1-2zy! + R2X (1- 2)!

In order to solve this equation iteratively, let R be the nth iterate of R such that

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



Rn=Y (-2 +R2 x(1-2)?

We have

a-zyl=

Substituting this back in (3.17) we get

Substituting iteratively, with R, = 0 and by induction, for n > 1, we get
g 0 ’ = g

|
by
Rn =
“
d
L
0
. 0
+R
-1
" 0
0
L
aq a,(g1+83Kn)/n
by by(g1+83Kn)/n
Rn =
1 c1(g1+83Kn)/n
dq dy(gy+e3Kn)/n

2181/q
bigy/n
€181/q

4181 /p

2483 /7
bsg3/y
483/y

d4g3 /n

4182/4
b18a/n
€182/4

do8s/y

3484/p
bygy/m
484y

dpgy/n

b

a1(gg+84Kn)/n
b;(gg+g4Kn)/n
c;(gote4Kn)/n

dy(gote4Kn)/n

82/n

3/n
(1-by)/n

84/n

.'.-LIKI1
clKI1

d,Kq

(3.17)

(3.18)

(3.19)



where Ky, satisfies the recurrence relation
Kn = [a; + (byg; + ¢189)/n + (d; + (b183 + c184)/n) K| {]
o[l-a - (bygy +c189)/n+ (1-d; - (bgg + c184)/n) K 4] (3:20)
K;=0.
Asn — o R™ — R; hence K; — K. Thus K can be determined by solving the quadratic equation
in K
(d) + (bygg + c184)/) (1- d; - (bygg + ¢;8,)/m) K
+ [(ay + (bygy + <189)/n) (1 - dy - (bygg + c184)/n) (3.21)
+ (1-ay-(byg) + c189)/n) (d; + (bygg + c;84)/n) - 1] K
+ (ag + (bygy + ¢189)/n) (1-a; - (byg; +¢189)/n) =0
After simplification, the discriminant of this equation is obtained as
[a) + (byg; + ¢189)/n + dy + (b18g + c184)/7 - 1]2 (3.22)

The two possible roots of the equation are

_ay+(bygy +cqge)/n . 1-ap-(bg; +ci89)/n 3.93
“1-d,-(b ' &+ (b (3.23)
1- (bi83 +¢184)/n 1 1 (b18g + c184)/n

From (3.12) note that Rj — 0 asj — oo. However, the second root in (3.23) results in Rj = R for
J > 1; therefore it is inadmissible. The lemma now follows using the first solution for K in (3.19) and
simplifying. In deriving (3.14) we use the identity
ajtbjatcB+dip=p (3.24)
o

in simplifications.

Note that the left hand side of the identity (3.24) is the sum of the diagonal elements of R.
Another identity related to the elements of R, which will be used later is given as

(1'31-32‘33) +(1-bl'bz'b3)a+(1‘cl'02'03)ﬂ +(1'd1-d2-d3)p= 1. (3-25)



The limiting distributions of the CRW and the correlated queue are given in the following
theorem.
Theorem 3.2

(a)  When the equilibrium.condition (3.1) holds the limiting distribution of the CRW is

given by

Xp = Xp,-1

1-p
= 3.2
1-p+ (1+a+B+p)b . (3.26)

X = (5,41 5,40 X0 %,-1)

j-1
___ b(-p)d
I-p + (1+a+p+p)

g oo Bpl, i21 (3.27)

(b) Letx= (7r0, LETI.O YR ) be the limiting distribution of the number of customers in the
queueing system. When the equilibrium condition (3.1) holds, the limiting distribution is given

by

Ty = 1-p
07 1-p+ (Q+a+B+p) b

-1
__ b (+a+p8+p) (I-p) s
J7 1-p+ (1+a+p+p)b ’

j>1. (3.28)

Proof: From (3.9) and (3.12) we get
x, =xgB (I- Z- RX)L (3.29)
and

1ol .
%=xOB(I—Z-RX)1R‘] . j>1

10



= xop-"2 BI-Z-RX)IR, j>1 (3.30)
where x; is obtained form the normalizing condition
x+B(I-Z-RX)La-Ryle]=1 (3.31)

The following results are derived by direct substitution and simplification using the identity

(3.25).
i 0 0 0 aq ]
0 0 0 bl
RX = (3.32)
0 0 0 ¢
0° 0 0 d
1-z-rx)l=
: o B p
0 ((1-cg)(1-dy) - ¢qdg)y  (bydg + bg(1-dy))y (bgeq + by(l-cg))y
0 (cdg + co(1-dy))y ((1-by)(1-d;) - bydg)y (bycy + (1-bg)eq)7y
0 (codg + (1-cg) dg)y (bgdy + (1-by) dg)y ((1-by)(1-cg) - cobg)7
(3.33)
where
y = [(1- dp)((1 - by)(L - €3) - bges) - do(by (1 - €5) + bgeg) - dg (1 - by) ¢ + byeg) L.
Therefore
B(I- Z - RX)™! = (b, ba, bB, bp) . (3.34)

We also get

B(I-z-Rx)l q-Rr)!

11



=B(1-Z-RX)‘1 (I+§ R))
=

=B(I-z-RXyl @+ 1'-R'p ) (3.35)
But using identity (3.24) it can be easily shown that

B(I-Z-RX)!R=,pB(-2-RX)! (3.36)

Then, (3.35) simplifies to

B(I-z-RX)1a-mryl= % (1, a, B, p) | (3.37)
giving
B(1-Z-RX)! (1-R)yle= Emf’f#”) (3.38)

Substituting in (3.31), we get

(1+a+P+p) b -1

which gives (3.26). The result (3.27) follows directly from (3.26), (3.30) and (3.36).
The limiting distribution of the number of customers in the system is obtained by summing over

the elements of% , 1=1,2,3, ... O.
The limiting distribution of the queue length process derived in Theorem 3.2 can be used to

determine the mean busy period E(B) of the system in a simple manner as follows.

Theorem 3.3
E(B) = LHyHOte (3.39)
Proof: Mean busy period E(B) is the expected amount of time the queue length process takes for first

1

passage from state 1 to state 0. In terms of E(B), the mean recurrence time T = can be expressed as

12



”Lo = (1-b) +b [E(B) + 1]

= 1+ bE(B). (3.40)

From (3.28), we then get

1-p+4+ (14+a+8+p)b
1-p

which proves the theorem. 0

1+bE(B) =

Incidentally we may note that the metho& used above in the determination of E(B) works only if
the busy period starts every time with the arrival of a single customer, as in this system. Otherwise a
method of using the fundamental matrix (Kemeny and Snell, 1960) can be employed. By this method,
one can also determine the expected number of visits to any state during a busy period. Consider the

following partition of the transition probability matrix P.

Yo |

o[> [ +]
P= (3.41)
yl Lc* ’ D* J

where y, is state (0, -1) and yp is the set of all remaining states. Let xa and ;’{ be the limiting

probabilities corresponding to the sets ¥g and yj respectively. Using the reduced system arguments

(see Lal and Bhat, 1987, 1988a) we have the relation

x} = x§ B* (1- D)’ (3.42)
From (3.29) and (3.30), noting the correspondence of xa with x, and 3’{ with (X1, X9 , . - - ), We have
£ =x} BI-Z-RX)* (L, R,R%..) (3.43)

Comparing (3.42) and (3.43) we get
B*1-D*y1=B(@-z-RXy! (I, R,R%...) (3.44)
It is well known that in (3.41), the expected number of visits to a state in 1 before first passage to

state y, having initially started from state 1 in Ypr is given by the elements of the first row of

13



{a- D*)-l. Since B* = (b, 0,0, ...), B* (I - D"‘)'1 gives the elements of the first row multiplied by
b. From the right hand side of (3.44), we have
B(I-2-RXyI R = b (1, o, 8, p)
i=1,23,... (3.45)
Consequently, expected number of visits to state j is given by pj_1 1, a, B, p).
4. The Queue with Limited Waiting Space
Consider the queue discribed earlier, but now with a limited waiting space for only N customers

in the system. The corresponding CRW has the transition probability matrix

0 1 2 3 N-1 N
0 A B 0 0 0 0
1 C Z Y 0 0 0
2 0 X Z Y 0 0
3 0 0 X Z 0 0
N-1 0 0 0 0 Z F
N 0 0 0 0 E D

where 0=(0,-1)
i= {(ls +1)s (1, +0)a (ls 'O)s (1’ '1)} i=12...,N1
N= ‘{(Ns +1)s (Ns +0)s (Ns '0)}

and

A=1-b, B=][b,0,0,0]

14



_ - - _
l-al—a2-a3 ap aq ag
C= l-bl-b2-b3 D= bl b2 b3
l-cl-c2-c3 < <9 3
1- dl - d2 - d3
0 0 0 1‘31'&2'33 al 0 . 0
0 0 0 1-c1-c2-c3 | ¢ 0 0
_dl 0 0_
- -
0 0 0 l-al-a2-a3
0 0 0 1-b1-b2—b3
X =
0 0 0 1-c1-c2-c3
0 0 0 1-d_1-d2-d3
| .
i 7 i T
aq 0 0 0 0 a aq 0
bl 0 0 0 0 bl b2 0
Y = Z =
¢ 0 0 0 0 ¢ <y 0
L dl 0 0 0 L 0 d1 d2 0
(4.2)
The limiting distributions x = (xO, X, X9y - v v s gN) of the CRW and 7 = (7r0, LOTIE.C VI

my) of the queueing system can be determined using the backward recursion (see, Lal and Bhat, 1987,

1988a) as in the following theorem. Note that

15



X0 = *p,-1

5= (41 X400 %00 Xi-1)
i=1,2...,N1

XN = (N ,410 *N,+0° *N-0)

Theorem 4.1
(® N1 T
118118 N-1 1p
Xg 1= | 14b + (1+a+p+p) £ 4.3
0,1 [((1‘31)"“’181"5182) P ( B+p) 5 (4.3)
| D
X 41=b P Xg
_ .
X, =ba p! x
+0 0,-1
b \ i=1,2...,N1 (4.4)

— i-1
X 0= bg p X0-1

i
X 1=br X

P

. _ by N _
N’+1 (l'al) 77 - blgl - C1g2 O’-l

X = bgl pN-l X
N’+0 (l—a,l) n- blgl - C1g2 0"1

(4.5)

bey o1

= X
N,-0 (1-ay) 7 - bygy - ¢189 0,-1

X

where p, 7, g, 89, @ and J are defined as (3.1), (3.2), and (3.15).

(b) 9
N-1
_ nte te N-1 l-p
Ty = I: 1+b [((1—a1) 7 brey - °182) P+ (I+atBp) 15

m = b (I+a+B+p) pi'1 Lo i=12...N-1

16



b (n+g; +89) pN1

Ty = T . 4.6
N7(-a)n-bg -cgy 0 (*6)
Proof: consider
xP=x 4.7
xe=1 (4.8)
To use the backward recursion, we start with the last 4 equations in (4.7).
XN,-0 = ©3XN -0 * P3XN +0 T 33XN +1 (4.9)
XN, 40 = S9XN,-0 T PoXN 40 + 29XN 41 (4.10)
XN,+1 = €1XN,-0 + PiXN 40 + 21XN 41 T d1XNa1 -1 SN0+ PiXNo1 40
21XN-1,+1 (4.11)
xN-1,1 = (eg-egreg) xy g + (1-by-by-bg) xy g + (1-ag-29-a3) xy 4 (4.12)
From (4.9),
bs ag
N0 = Teg *Ny+0 + Teg *N,+1
From (4.10)
< _32(1-C3)+a302x —g_l_x
N,+0 (1-b2) (1-c3) - bacy N,+1~— 7 “N,+1
aq (1-by) + agh
3 (1-by) +aghs 89
= =22 4.1
*N;-0 = {1-by) (Tcg) - bycg Nkl = 7 XN+l (4.13)

From (4.12) and (4.13), we get after simplification

17




N1 T . XN-1,-1
v+ (1-aq) n - bygy - 189 -1y

AN, 40 = L XN-1,-1
y (l-al) 17 - blgl - C1g2 [

*N,-0 = + *N-1,-1
"~ (l-al) - b].gl - C1g2 =4y

From (4.11) and (4.14) we get
2 by ©1
*N-1,1 = Id] *N-1,41 + 1-d; *N-1,40 + I-d; *N-1,0
Now, 4 equations next to the least 4 are
XN.1,-0 = 93 XN-1,-1 + €3¥N-1,-0 T P3 *N-1,40 T 23 XN1,+1
XN.1,40 = 92 XN.1,.1  9¥N.1,.0 t P2 XN, 40 Tt 22 XN.1,41
XN-1,+1 = 91 XN 1+ CXNag 0 Py XNcg 1o 21 N2, 41
XN.g.1 = (1-dy-dy-dgyxy g g+ (1-cp-cp-cg)xn g
+(1-by-by-bg)xn g g+ (1-27-a9-ag) x5 g
From (4.15) and (4.16), after simplifications we get
XN-1,40 = @ *N-1,+1
XN-1,-0 = A XN.1,41

XN-1,-1 = P XN-1,41

From the last equation of (4.16), (4.17) and identity (3.25) we get

XN-2,-1 = *N-1,41
This leads to the set of relations

= 827 <
N’-O (l'al) - blgl - C1g2 N'2,-1

X

18

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)



x = £17 x
N1+0 (l‘al) T] - blgl - Clg2 N-2’_1

np
b = b 4.19
N’+1 (1'31) T] - blgl - C1g2 N-21-1 ( )

*N-1,-1 = P XN-2,-1
XN-1,-0 = B XN
AN-1,40 = * *N-2,-1
On repeatedly using the above recursive procedure and noting that X417 b X(.1» We get

b g1

X = X
N’_O (l'al) n- blgl - Clg2 0’—1

b gL

x = x
N,+0 (1-a;) n-big; - ¢189 0,-1

x = by ot X
N,+1 (1-a1) n - bigq - ¢189 0,-1

(4.20)

x;.1=b o' xg

X0 = bA o Xg,-1

X 40 = be o X0,-1

% v1=b P xg g

i=1,2...,N1.

Part (a) of the theorem now follows when we use the normalizing condition. Part (b) is obtained by
noting that =y = X010 " = X 41+ X0 T X0 T X1 (i=1,2...,N1l)and my =xy 49 +
XN,+0 T XN,-0 - a
The mean busy period E(B) of the queueing system can be obtained directly from the mean

recurrence time wbl, as in the case of the unlimited waiting space system. We have

19



Theorem 4.2

N-1

ntg te N-1 l-p ‘
E(B) = + (14+a+B+p) — . 4.21
(B) (l’al)ﬂ‘blgl'clggp ( B+p) Ip (4.21)
Proof: Arguing as in Theorem 3.3, we get
”Lo =1+b E(B).
The theorem follows, if we substitute the value of T from Theorem 4.1. O

To determine the mean and variance of first passage times in Markov chains (busy period is one
such characteristic) fundamental matrix (Kemeny and Snell, 1960) is a convenient tool. For instance,
in. the system discussed in this section, suppose, we wish to obtain the first passage cha.racteristics of
the queue length process from (to) the set of states Sy = (r+1, r+2, . . ., N) to (from) the set of states
St = (0,1,2,...,r). Mean and variance of such first passage can be obtained in terms of elements of

the fundamental matrix (I - H2)-1 [(T - Hl)'l] where H; and H, are defined in the partitioned matrix

P as follows.
0 1 2 ... r+1 ... N-1 N
—

0 A B 0O ... 0 0 ... 0 0

1 C Z Y 0 0 0 0

2 0 X Z 0 0 0 0

P=1 0 0 0 y/ Y 0 0
r+1 0 0 0 X Z 0 0

N-1 0 0 0 0 0 Z F

N 0 0 0 0 0 E D
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Except for the row and column on outer edges, H; and H, have identical component matrix H given
£ 1 9 4

by
Z Y 0 0 0 0
X Z Y 0 0 0
0 X Z Y ... 0 0
H= (4.23)
0 0 0 0 Z Y
0 0 0 0 X Z

Given below is the outline of the procedure for the determination of (I - H)-1 in explicit terms. For
convenience we use N as the dimension of H.

Lemma 4.1

LetM=(1-Hy!= [Mj] - Then

min(i-1,j-1) / i1 i1
M.. = b)) o X R oIy 4.24
i =0 q=1+1 N-q N-1 s=I+] N-s ( )

where R l satisfies the relation

— -1 —
R, =(I-Z- YR} ;X) 1=2,3,...,N
: (4.25)
R1=(I'Z)- 3 R0=0
and
YI=YRI and XI=RIX, I=1, 2,...,N (4.26)
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j-1
II Y. Is taken in post-order as

i-
In (4.24) _H 1 XN—q is taken in pre-order as q increases, while Tt 1

q=H
s increases.
Proof:  The result follows from the recursive algorithm following Theorem 2.2 of Lal and Bhat

(1988a). O

In what follows, in addition to the notations introduced in (3.2), we shall use the fdllowing

notations.
\

g; = bge; + by (1-c3)
gg = bycy + (1-by) ¢g
g7 = agc) + a;j(l-cg) (4.27)
gg = aghy + a;(1-by) 7
gy = ¢1d3 + (I-c3) 4

810 = b1d2 + (1-b2) dl

¢ = (1-d;K) 7 - doggK; - dggeK;

J\L

¢91 = (1-d1K)) g1 + dygrKy + dg (a1¢y - agey) K,
¢41 = 217K + aggeK; + agggK,

¢ =a1n+agg + aggg

Y = (1'd1)77 - dogg - dagg
where K [ is defined by the recursion
KO =0
(K, -1
K =1+ % (4.29)
1,H1

Theorem 4.3

Let Mij = [Mij,kl] 3 k, I= ]., 2, 3, 4- (4-30)
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We have

0, .6 8
Mj5,11 = Si5 + ¢S + (¥ - 1) K4S

& é .
— g3 6 2,N-
Mjj2 =S+ ¢s + (¥-n) Ky 1+1S i
My 1g = 4+ 458 4 (6 m) Ky, s8] 22N
l.])13 - ij | ij " N'l+1 lJ_ ¢1’N-j
[ - Ky
) 6 8 N-j
Mij,14 = Sij + _¢Sij + (¥ - ) Ky, +lsij_ TN.J
g8
6 S
Mj; 91 = 8555 + (¥ - 1) (6] N5 + 85 (K 571) ey
7
Moo = (leg) Sh-gos2 4 ENT M6 e Ko1)o
ij,22 = 173/ 95 ~ 89955 1N ij,21 T 83 (P N T 85\ BN N
’ ?

7

bune s/
9 3,N'J . 1)

Myj 93 = b3S + (bydg - bydy) % + NG 840yn + 8K - D) N+

3 IN-

5 PKnj s7
M.. = g.S4 — K 1
ij,24 = 85 1_]+ ¢1,N-j +n (¢1NJ +g5( N-i ™ )) lN-_]
o8
_.ab i
Mij 31 = 6% + (V- ) (9,5 + &6 (i D g
7
é g5,
sk dg - codq) Sit + M Ky.-1
M;;,32 = coSjj + (c1dg - cody) S ¢1,N-J .31 (P18 + 86Ky )¢1 por
7
ba N s/
— (1 1 3 3,N-j i
Mig,g3 = (02) S - 108 + P Missr + Cng + 86Ky - 1) g1
7
éKy; - s/
_ 2. N-j ) . ij
M;; 34 = 86555 + PNy M3y + (63 x5+ 8(En; - D) i
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. |al ij
Mj; 40 = 83 | S5 + +

7
¢S éa N
My 43 = 84 |Sij + +3 +¢3NJM141
Js 1N LN W

M s1 e 57 PRN
.s =7 -+
1,44 iz Nl PN

where

Z 502 8o

1
1
S = 12051 42 5o ¢ N-L1

, o
S = I_ZO Siike 5 lee

3 _ Kk *k
SED DAL 4 )

1J (¢2 N-L

Z v 1o

*k
Z e 6o (

¢1,N-L1

* w? i-£2
Z 61 I+2 (
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1
XJ: Ki-L2
& 11 1 I+2

$1,N-11
1 1 2
8 wx [ 5L %12
SS = 6 e 1 P S 1 (4.31)
ij Ig: 11 Lj- 1|: ¢1,N—I-1
with, IJ = min (i- 1,j - 1), 6** 1 if j<k, and =0 ifj > kand

q=1 \ %1 N-i+q

s=1 \?1 N-j+s

Proof: Let R; = [r(l)], i,j=1,2,3,4. From (4.25) we get after simiplification,

1 -ag -ag a1k
0 1-b -b b,K
2 3 171
R, = (4.32)
0 - 'C2 1'C3 clKI-l
0 -dy -dg 1-d,K;
L -

where we have written

KI=(1-a1-a2-a3)rgll)+(l-bl-b2-b3)rgg+(l-cl-c2-c3)rgg+(l-dl—dz-d3)r32.

Upon inversion from (4.32) we get
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gt |

b

‘1

.11
$1,11

(1-dyKy) (1-c5) - ¢1dgKy4

¢3.11
1,11

(141K} §)bg+bydsK 4

1,11

(1-d, Ky )cp+erdoKy g

1,11

(1-d; Ky ) (I-by) - bydoKyy

1,11 111
_8 _84
1,11 1,11
We also find that K, satisfies the recursion given in (4.29).
Substituting from (4.33), we get
%9 11 ! 4,11
14111 161,11 14111
. $9.L1 . 93,11 !
1., 13 1.,
1,1 1 1,1
%9 11 . $411
146111 14111 14,11
4 $9,L1 4 RS
1%, ,, 1 13,
1,k 1,L1
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1,11

1,11

(4.33)

(4.34)



0 0 0 K,
K, -1
0 0 0 1+ g—*”;‘—l)
1,k
X, = (4.35)
K, -1
0 0 0 1+ 56—;—‘1—)
1,F1
0 0 0 v
1,11
I=12,....
The theorem now follows by substituting from (4.33) - (4.35) in (4.24) and simplifying. o

As discussed earlier, if we are interested in the properties of first passage from the set of states
St = (r+1, r+2, . . ., N) to the set of sets Sf = (0, 1, 2, . . . , 1), we need to determine the elements of

()

the fundamental matrix (I - H2)'1 = M" " where

} oo

Ho = H : (4.36)

If, on the other hand, we are interested in the properties of first passage from the set Sf to the set Sp,

we need to determine the elements of the fundamental matrix (I - Hl)'1 = M(l) where
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(4.37)

=
I
Q

The elements Mi(j2) of M(2) and Mi(jl) of M(l)

Theorem 4.3 using methods of Theorem 2.2 of Lal and Bhat (1988a). We shall not detail them due to

can be expressed in terms of the elements Mij of

their cummbersome nature.

It should be noted that elements Mi(jz) of M(2) give the expected number of visits of the process
to state j before eventually entering a state in S§, having originally started from i € S;. For the
formula for variance of first passage times, see Kemeny and Snell (1960).

5. Remark.
Some of the explicit results given in this paper may look involed and complicated at first glance.

Nevertheless, as anyone well-versed in scientific computations can realize, their explicit nature makes

them convenient for numerical computations.
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