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ABSTRACT

In a correlated random walk (CRW) the probabilities of movement to the
positivg and negative direction are given by the transition probabilities
of a Markov chain. The walk can be represented as a Markov chain if we use
a bivariate state space, with the location of the particle and the
direction of movement as the two variables. 1In this paper we derive
explicit results for the following characteristics of the walk directly
from its transition probability matrix: (i) n-step transition
probabilities for the unrestricted CRW, (ii) equilibrium distribution and
first passage probabilities for the CRW restricted on one side, and (iii)
equilibrium distribution and first passage characteristics for the CRW

restricted on both sides (i.e., with finite state space).

Key Words: Correlated random walk, Markov chain, equilibrium solution,

first passage problem.



1. Introduction

Consider a particle moving a unit distance along a straight line in a
unit interval of time. 1In the classical random walk problem, the
probabilities of moving to the right and to the left from any position are
independent of the previous move. In a correlated random walk (CRW), we
assume that the probabilities of movement to the positive and negative
direction are given by the following transition probability matrix of a

Markov chain:

-1 +1
-1 l-a a |
(1.1)
+1 b 1-b
0 sa,bsl

Starting with Gillis (1955) and Mohan (1955) several authors have
investigated problems related to this CRW, and its special cases such as
the symmetric CRW with b=a in (1), using primarily the classical approach
of difference equations and generating functions. See, Gupta (1958), Seth
(1963), Jain (1971, 1973), Darroch and Whitford (1972), Proudfoot and
Lampard (1972), Nain and Sen (1979a, b, 1980), Renshaw and Henderson
(1981), Henderson et al. (1983, 1984), Bender and Richmond (1984) and
Roerdink (1985). 1In most of these investigations first passage problems
are of primary interest. Other significant problems discussed include, the
characteristic function and the exact expression for the dispersion matrix
of the n-step transition probabilities by Henderson et al. (1984), the

generating function of higher order transition probabilities as a discrete



domain Green's function by Proudfoot and Lampard (1972); the exact
expression for the n-step transition probability obtained through
combinatorial arguments in a symmetric CRW by Renshaw and Henderson <1981)
and the characterization of the transition probability matrix for CRW by
Nain and Sen (1980). Significant omissions are explicit expressions for
the n-step transition probabilities in the unrestricted CRW and the
equilibrium distribution of the state of the process in the restricted CRW.
These are the focus of the present investigation.

The general characterization of the state space used in this study is
similar to that employed by Nain and Sen (1980). The state is represented
by a bivariate process {(W,, Up,) n = 0,1,2,...} where W, is the location of
the particle after n steps and U, is the natufe of that step. Thus in the
unrestricted CRW the state space is the product space with factors:

Ww=( ..., =2, -1, 0, +1, +2, ...)

U

(-1, +1)
The two-state Markov chain {Un} with transition probability matrix

(1.1) has an equilibrium distribution (when | l-a-b | < 1),

b a |
s e (-2)

If we assume that the distribution of the initial state Uy is given by

(1.2), for the process {U,} we have

a-
+

o

4ab

, n=1,2,...
(a+b)2

E[u] =22, var[u] =

]
o

If pj is the serial correlation (with lag j) for the process {U,}, we get



pj = (l-a-b)J , j=1,2,3,...

Define the transition probability

Pij,kt = P(Wny1 = k, Upyp = 2| Wy = 4, Uy = §)
i,k = ... -2, -1, 0, +1, +2,
g0 = -1, 41
Using the transition probabilities for the {U,} process given by (1.1), we

get

=1l-a, p, _, . = a
. 1, 1: 1+1’ +1 ’ (1.3)

1-b

Pj,-1,i-1,-1
P

=b, P

i,+l,i-1,-1 i, +1, i+1, +1

Exhibiting these probabilities in matrix form, for the transition

probability matrix, we have



) . (_1)+1)("1)_1) (0)+1)(09_1) (1)+1) 1)_1)
’_
. . 0 0
(—1)+1) O O l—b 0
. 0
(-1,-1) 0 0 a 0
P =
(0,+1) 0 b 0 0 1-b 0
0
(0,-1) 0 l-a 0 0 a 0
(1,+1) 0 b 0 0
0 0
(1,—1) 0 l—a 4] 0
(2,+1) 0 b
0 0 0
(2)—1) O l_a
0 0 0 0
Writing
0 b v 1-b
X = and Y =
0 1-a

we may display P as

(1.4)

(1.5)



0O Yy 0 0 O .
X 0 Y 0 O .
P = . . . 0 X 0 Y O . . . (1.6

We shall exploit the structure of the submatrices X and Y and the
transition probability matrix P to obtain explicit expressions for the
distribution characteristics of the CRW.

In section 2 we derive n-step transition probabilites of the
unrestricted CRW with the transition probability matrix given by (1.6).
section 3 we consider CRW with the restriction on one-side and obtain its
equilibrium distribution and probabilities related to first passage
transitions. Finally in section 4 we consider a CRW with restrictions on
bo;h sides (i.e., CRW with finite state space)rand obtain its equilibrium

distribution and first passage characteristics.

2, Unrestricted CRW

Using matrix algebra on (1.6), for n 2 0 we can show that

)

In



"—_o . - . » . ]
(n) _(n) _(n) _(n) _(n)
PL,0 B0 Py PPy
. . . P(n) P(n) P(n) P(n) P(n) . . .
n -3 -2 -1 0 1
P s ) o) () (n) (-1
-4 -3 -2 -l 0
- .
where Péo) e I, Pgo) =0 i#0
1 1 1 .
Pfl) = X, Pi ) ey , Pi ) 2o [1]> 1

and other elements can be obtained using the recursion

(h) _ p(h-1) (h-1) ‘
P, = Xp 0+ YR T (2.2)

Using (2.2) repeatedly and by induction, we can establish the following

results.
an) = 0 and P(?) =0, i>n
1 -1
P 2o ana UMD 20, gz 0 (2.3)
p¢P) oyt ana e o xE i s o0
1 -1
and
i+k i+k-G, i+k~G k o 1 ke
. itk  i+k-G, i+k-G,__ g. o, i+k-
plit2) _ 7y Ty 1y kel g pdx bkl gk (2.4)
1 =0 g_=0 =0 j=1
g%V &y By



i+k i+k-G, i+k-G

pli*2k) _ s Ty Ly

k-1

-1
g1=0 g2=0 gk=0
Gh = g1 + g2 + ...+ 2h
%% 1 . K
6jk = if i<

=

Fode
i+k-G,

g. 0, v
x 3y Ikl iy k (2.5)

and the matrix product in (2;4) and (2.5) is taken in post order as

subscript j increases.

The results (2.4) and (2.5) are not easy to work with. 1In order to

simplify them we state the following lemma without proof.

Lemma 2.1 For h > 0, we have

[ sk
. 60h ﬂOhb(l~a)
x =
K (1-a)"
—
.| a-»f
Y =
o h-1
_—6Oha(l—b)

h-1

J—

Oh__|

(2.6)

(2.7)



(i+2k)_ N
Pio2 = 80,5ali®) #
E 5 SR AV WIRRS PRUNRS L5 PRI L S5
&) 0sitk+l-j (j—l )(J 2 2

where dgp = 1 if h = 0, and 0 ifh+#0

Jede

6jk =

1 if j <k, and = 0 if j 2z k.

Proof: Let i 2 0. We shall prove (2.10) by induction on k.

When k = 0

(1-p)t / 0

p(i+2(0))_
1

d

Hok i-1
ﬁOia(l—b) 0i

Since (2.10) holds for k=0, we can assume that (2.10) holds for nonnegative
integers less than or equal to some k. To complete the induction proof we

need to show that (2.10) holds for k = k + 1. Consider,

. % itk+l-g i+k+1-G *%
. i+k+l g, & 1 k/k+l g. &, . _
P§1+2(k+1))= 5yt ez s - ( B33,k SinkalGy )
g,=0 g,=0 Biep  \I72

(2.12)

=yt | (2.11)



From (2.4) and (2.10), we can write (2.12) as

. g
Sr20e) | P o / b(l-b)
i = 2 -1
ke g1
g.=0 0 (1-a)d + 9 ab(1l-b)
1 Og Og
] ]
_ X X —

6o,i+1—g1+k (1-a)¥ +

k k
dek 1 —p - Feke {+1- - k 1
t 9 i+k+1l-g -J'(1+k+1 1 1>(k>. L8 i+l-g +1<—J'+1<1+ ol 1>( >(ab)J.
j=0 7’ 1 j i’ | i=1 7 1 j-1 h|
. . i+k+l-g. ~j-1 s i+l-g. +k-j
a(ab)d (1-a)* I (1-p) 1 (1-a)* 3 (1-b) 1
(2.13)
p(1+2(k+1)) ‘ p(1+2(k+ 1)) |
_ i,11 1,12 (2.14)
P(i+2(k+1)) P(i+2(k+l))
i,21 i,22
where
i+k+1 k .
(i+2(k+1)) 1t g ok i+k+1-g. -1\ /k i,y k-]
P -3 b(emtl .5060,i+k+1—g1—j( k3! )(j>a(ab) (1-a)%73,
g1=0 ] ] i+k—g1—j
(1-b)
(2.15)
, i+k+1 g
(i+2(k+1)) _ * (Bl .k
Pi,12 = Yy b(l-b) 6O,i+1-g1+k(1 a) +

8%
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i+k+1 k
g Fok i+k-g k Joq . k-]
5 b1l 2 80 ienekeg _j< . 1><. (ab)(1-a)J . (2.16)
_ j=1 1 j-1/\j s 1o .
g i+l g1+k j
(1-b)
. i+k+1 k i+tk+1-g. -1\ /k . .
(i+2(k+1)) ' _ *%k ( 1 )() 1o k-]
Fi,21 - gz= (1=2)8gg L 80, 14icr1-g,-] j j/2(ab)T(1-a) " =
' i+k-g -
(1-b)
i+k+1 g,-1 k i+k+1l-g. -1\/k X .
% 1 sk 1 j k~-j
Y @ ab(1-b) Yo, . _ _.( . )(.)a(ab) (1-a)~ .
+ g,=0 0,8, jog Ositk+l-g=i% ] j :
: i+k-g1—j—l
(1-b)
(2.17)
. +k+1 g,-1
(i+2(k+1)) _ * ) sk (Bl .k
Pi,22 = ¥y (Q1 a)ﬁOg + ﬁOg ab(1-b) ) 60,i+1—g +k(l a) +
8= 1 1 1
i+k+1 g.-1 k <i+1—g +k-1 <k> j
_ F¥ _ 1 F*¥ 1 > (ab)
+ Z_ ((1 a)ﬁOg + 60g ab(1-b) ).z 60,i+1-g k=41 3-1 ;
8= 1 1 j=1 1
s i+l-g, +k-j
(1-a)* by !
(2.18)

Now, we would like to show that (2.14) (including (2.15)-(2.18)) is the
same as (2.10) when k=k+l1.

Consider

. i+k+1 k i+k-g\ /K ; i i+k-j
plit2(k+el)) _ Ty o ( 1)( )(ab)J"lu—a)“'J(1-b)1”"J

) 0. . . . .
i, 1l g1=0 j=0 0,1+k+1—g1—J j j

11



k i+k+1 " f+k-g .
= 1 . . .
2 < > ﬁo,i+k+1_gl_j< ; ))( >( b)_]+l( _ )k J(l—b)”k'J

J=0 g1=0
~ ; i+§+l 6** i+k'gl . .
j=l g1=0 0,i+k+2—g1—j< j_l )<j_}ab).-](l_a)k+l"_'](l—b)1+1+k_j
kgl 6** , <i+k+1 ( k ) )
) k+1-j ; s
j=1 0,i+k+2-j j ) j-1 (ab)J(l—a) +1 J(l—b)1+l+k j
(2.19)
1 12 = _— (1-a)%b(1-b
g,=0 0,i+l-g +k (1-b)
i+k+1 k )
e i+k- k . » ) .
+ z z 60 . k .< . gl>< )b(ab)J(l—a)k J(l_b)1+k+1__]
gl= j=l ,1+ +2_g1_J J-l J
**
0 k+1 (1-a) b(l b)1+k+1 .
k /i+k+l ]
Yok it+k= Kk . . ) .
2 2 60 i ' .( ] g% ( >b(ab)J(1_a)k J(l_b)1+k+1_J
j=1 gl=o ,1+k+2—gl_J J_l j
**
0 k+l(l -a) b(l b)1+k+l .
3 6 <i+k+l><k>b( p)d (1-a)k73 i+k+1-j
a - _ -
Jé 0,i+k+2-j\ j-1 . a (1-b) (2.20)
Py MZM IZ( 5y, O (i+k-g1
j k+1-]  lem o
1 21 1=o j=0 Og 0 i+k+1- gl_j j )(j)a(ab)J(l_a) +1 J(l—b)1+k j-gy
+ 1+§+1 ; 5 ** (i+k_gl> Kk 51 # .
gl=0 j=0 Ogl 0 1+k+l—gl—J j <j)a(ab) (1-a) J(l—b)1+k—J_l
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K gu i+k><k> : . bl
Joq_ k=3 g i+k-]
jéoﬁo,i+k+1-j< 5 /\3 a(ab)-(1-a) (1-b)

Kk AYKHL e s i+k-g \\/K . . en o1
+ 3 Y b, 99 i . ( . i)(. a(ab)J+1(1—a)k 3(1-pyitkd
0g, 0,i+k+1-3-g 3 k|

g=0 ! 1

k - i+k>(k> . . \ .
_ ol _ PR LSl I i+k-]
= ,Zoﬁo,i+k+l—j<'j i a(ab)”(1-a) (1-b)

J:

3 V), oy’ e
o [TS RN S PR & S
i j§060,1+k-j(j+1> j a(ab)?T (1-a)" “(1-b)

i+k\/k .
+ x ( >< >a(ab)0(1—a)k+l—0(l—b)1+k-0

80, 1+k+1 \ 0 /N0

sk i+k> (k <‘k ) j K1 i+k-j
60,i+k+1'—j< 3 <J> +\s-1 a(ab) (1-a) (1-b)

k K+l 0 i-1

( >a(ab) (l-a) (1-b)

% (i+k)
* 0 1 \k+1/\k

k+1 i+k> k+1 X . X X
_ ol Joq_yk+l=3 i+k-j 2.2
= jéoﬁo,i+k+l—j< 3 ( 3 >a(ab) (1-a) (1-b) (2.21)

+
[
neMs
—

{+k+1 1o+l -
(1+2(k+1)) ’ k+1 H¥k K i
P, = Y 8, 95 i41- (1-a) '+ 8 b . _a-aka-w)
i,22 g,= Ogl 0,i+l g1+k g1=0 Og1 0,i+k+l g,
ikl Kk ‘ i+k-g\ [k . . . o s
+ z z 60 63*i+k+2_ —.( .—1 1><.>(ab)J(l—a)k+l J(l_b)1+k+1 gl J
g1=0 j=1 g > g AN j

j+k+l kK p xw i+k—g1 K . . . X

j+1 k-j i+k—]

+ Y b, 8 3 _ _.( . )(. (ab)3"H(1-a)" “(1-b)
g,=0 i=1 Og, 0,i+k+2-g)=JJ 1 /7]
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*
,i+k+1

N kel % kL itk
= 60,i+k+1(1—a) + 60 (l-a) ab(l-b)

i+ky\ sk . . . .
3 )<,>(ab)3(1-a)k+1‘3(1-b>1+k*1'3

O,i+k+2—j<j—1 j

+
nes~=

j=1

.3 1+§+15** R <k)(ab)j+l(l—a)k—j(l—b)i+k_j
< 0,i+k+2—g1—j j=-1 i

j=1 \ &,=0

(1-a)Xab(1-b) T ke ™™ k(ab)(1-a)K(1-b)1*kK

k+1
=8 (1-a) 0,i+k+1

%%
0,i+k+1 00, 14kl

St i+k>(k> . Keloi , .
Jeoqo +1-3 . (i+k+1-j
6i+k+2—j<j-l 3 (ab)“(1-a) (1-b)

+
(SN
ke Koy

2

. i+k><k> i+l ke i1 s
b - Jeqonyitk-]
60,i+k+l—j<j i (ab) (1-a) (1-b)

+
I~ =

j=1

. k+1
* ,
(l_a)k+1+6* < i+k

K
0,i+k+1\ 1 )(l"a) ab(1-b)

6O,i+k+1
"k i+k (k) < kJ . Kt 1-i , s
AP +1-3 0 (i+k+1-j

260,i+k+2—j<j—1> o)+ (i) @I - )

sese i+k)<k) K+l 0 i
+ 60,i+1< < M@ a-a) a-b)

+
R Ko

J

= 80, i+k+1 (1)Kt +

k+1 i+k) k+1 . . . .
"o _ _
gy k+1=3,,  (ivk+1-]
j§160,1+k+2_j(j_1 ( j )(ab) (1-a) (1-b) (2.22)

From (2.19)-(2.22), we see that (2.10) holds for k=k+l. This completes the

proof of the theorem. ' a

14



We state without proof, which is quite similar to the proof of Theorem

2.1, the following theorem for p(i+2k)
Theorem 2.2 o 0 i x 2 0, p£i+2k) of (2.5) can be simplified to give
p(i+2k) ‘ (1+2k)
£;+2k) -i,11 -i,12 .29
p(i+2i) | (i42Kk)
-i,21 -i,22
where
(1+2k) _ k
—i,ll = 60,i+k(1 b)" +
k i+k- l)(k)
K%k L+
) 60,1+k+1 -j < i (ab)J (1 a) (1- b)
J=l
k- l k
o G ¢ P
—1 12 z ﬁ0 i+k-j b(ab)’ (1 (1-b)

p(i+2k) k=1
_1 21 = (1 a) a(l b)
k~1 ok (i+k)<k—l> . . . .
Je1o i+k-j _ k-1-j
j§160’i+k+l_j j j a(ab) (1 a) (1 b)
k i+ky\ k-1
(i+2k) _ *k ( )( > $o0vivkei, . k-]
P-i,22 B Z 6O,i+k+1_j j j"l (ab) (]. a) (1 b)

j=min(1l,k)

3. CRW Restricted on One Side.

We shall restrict the state space of the CRW to nonnegative integers.

Consequently the transition probability matrix takes the form

15



C 0 Y 0 0
0 X 0 Y 0 e
P = (3.1)
0 0 X 0 Y
0 0 0 X 0

R

where X and Y are given by (1.5) and

B =1[1, 0] and C (3.2)

The condition for the existence of an equilibrium solution is given by

the following theorem.
Theorem 3.1
The necessary and sufficient condition forAthe Markov chain with

transition probability matrix (3.1) to have an equilibrium distribution is

given by b > a.

Proof: Following Neuts (1981, p. 32), the necessary and sufficient

condition for the existence of an equilibrium solution may be stated as

nXe > mYe (3.3)

16



where m is the limiting distribution (my,mp) of the Markov chain with

transition probability matrix X+Y, and e is the unit vector. Solving

1
['ﬂl, 112][X+Y] = " y My W, =1
we get
a b
[“1’ 112] =| 2+ ' 34D (3.4)

The stated condition now follows from (3.3) by direct substitution and

simplification. o

Let x = (xg,X],X2,.+-+ ), Where X3 is a scalar and Ei’ (i=1,2,... ) are
two element row vectors, be the limiting distribution of the Markov chain.
Following Neuts (1981, p. 25), we have

x; = xj Ri-! iz21 : (3.5)

where R is the rate matrix of the Markov chain P. Also, xg and xj can be

obtained from

x0B + XX = X)
xlC = X0
(3.6)
Xt I oxe; =1
i=1

17



The rate matrix R is found iteratively in the following lemma.

Lemma 3.1

2
R = 1-b (1-b)"/(1-a) ) (3.7)
a a(l-b)/(1-a)
: .\ §-1
R = <%:g> R izl (3.8)

Proof: The rate matrix R satisfies the matrix equation (Neuts, 1981, p.19)
R = Y + R2X (3.9)

Let R, be the nth jterate and set Rgp = 0. Using (3.9) iteratively, we get

R =Y +R” .X (3.10)

Using induction, for n 2 1 we can show that

2
Rn - 1-b b(1-b) B (3.11)
a ab(l—b)gn
where
gn = (1 + abgp_1)(1 + (1-a)(1-b)gp-1)
with g1 = 0.

18



Since R, - R as n »+ =, g, + g as well. Thus g can be obtained by
solving

g = (1 + abg)(1l + (l-a)(l-b)g) (3.12)

This quadratic equation has two solutions

1 1
b(l-a) * a(l-b) (3.13)

From (3.5) we may note that R} » 0 as j » =. Using this condition we can
easily show that the second solution is inadmissible. The lemma now
follows by simple substitution of the value of g = [b(l-a)]~1 in (3.11). =

We may also note that the condition b > a is necessary for R -+ 0 as

Using R, the limiting distribution x is obtained in the following

theorem.

Theorem 3.2

When b > a, the limiting distribution of CRW is given by
x = (%0, X1, X35 ++- )

where

(b'—a) (3.14)

371 g
x, = [(i—_%) , G—_E) ‘, X, j=1,2,... (3.15)

19



Clearly, the fact that the probability that the process eventually
returns to state (0,-1) is 1, results from the positive recurrence of the

Markov chain. Also, the mean recurrence time for this state is

xal = 35%{31 (3.20)

Both these results can also be established by relating the rate matrix to
the reduced system defined by Lal and Bhat (1987, 1988), which is a
convenient technique in deriving first passage characteristics.

Consider two complementary sets of states

S; = {(0,-1), (1,+1), (1,-1),....(i,+1),(i,-1)}
s§ = {i+1,+1), (i+l,-1),.... }

Let ;Pj; be the first return probability to set S; (i.e., the first passage
probability of the process to states in the set §;, after visiting states

in SE, while avoiding states S;, having left set Sj initially). We have

21



Theorem 3.3

0 1 2 i
o [ o 0 0 0 |
[iP34] = 1 0 0 0 .. 0 (3.21)
i-1 0 0 0 .. 0
i . . RX
where
0 1-b |
RX =
0 a

Proof: When a transition probability matrix P is partitioned as

Y1 y2

it is well known that the‘elements of the matrix B(I—D)“lc give the first

return probability (in the sense described above) into states y;. Relating
the reduced system method of determining the equilibrium solution outlined
in Lal and Bhat (1987, 1988) to the rate matrix method used earlier, we can

show that

22



To 0 ]
B(I1-D)-1 = 0 0
R R2

Noting that the corresponding C matrix is

we get (3.21) as B(I-D)"lc.

It may be noted that 1-b is the probability of the first passage from
(i,+1) to (i,~1) and a is the probability of first passage from (i,-1) to
(i,-1), through higher states. The elements of X, viz. b and l-a, provide
first passage probabilities through lower states, so that the recurrence
probability for each state is 1.

4. CRW Restricted on Both Sides

Let the state space of the W, process (location of the particle after
n steps) be restricted to {0, 1, 2, ..., N}. Now the transition

probability matrix takes the form

23



(0,-1)(1,+1)(1,-1) (2,+1)(2,-1)
—

(N-1,+1)(N-1,-1) (N,+1)

(0,-1) 0 0 0
(1,+1) b 1-b 0 0 0
(1,-1) 1-a a 0 0 0
P =
(N—1’+1) l-b
0 0 0
(N~1,~-1) a
(N,+1) 0 0 0 1 0
0 N-1 N
0 0 0 0
1 c 0 0
=2 |0 0 0 (4.1)
N-1 0 0 F
N 0 E 0
L |
where B and C are as defined in (3.2) and
1-b |
E = [0, 1] and F = (4.2)
a
Limiting probabilites x (xg, X1,..+,XN) can be determined using a

backward recursion (see, Lal and Bhat, 1987, 1988) as in the following

theorem.

24



Theorem 4.1

(b—a)(l—a)N_1

X = (4.3)
-1 N
%=1 ra-a)f - a-m)N
i-1
1-b .
xi,+1 = (T:;> xo,_1 i=1,2,..., N (4.4)
i
1-b .
xi,—l = (T:;> xo,_1 i=1,2,..., N. (4.5)
Using W to represent the location of the particle as n » ~, we have
1 2-a-b 2N(1—b)N N
EWl = 5| %= - N N
(1-a) -(1-b)
N N
Var[w] = 1 (2—a-§> <3b—a—2) _ N2 _(1-a) (1-b)
4 b-a b-a N N 2
[(1-a)"-(1-b)"]
Proof
From the last two equations of
xP = x A (4.6)
we have
XN,+1 = (1-b)xN_) 41 + 2 Xn-1,-]
(4.7)

XN-1,-1 = XN,+1
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giving

1-b

N,+1 T FN-1,-1 T (T:E>XN—1,+1

From the next two equations from the last two of (4.6), we have

XN-1,+1 = (1-b)xn-2 +1 + @ XN-2, -]

XN-2,-1 = b xN-1, 41 + (1-a)xn_1 -]

Using (4.8) in (4.9) and (4.10) we get

1-b

*N-1,+1 T *N-2,-1 T <l—q/xN—2,+l

Going back to (4.7), we find

1-b 2

N, +1 = *N-1,-1 " <l-a> *N-2,+1

Extending this backward recursion, we get

i-1
: 1-b . _
i1 " xi—l,—l = (l—a) xl,+l i=2,3,..., N

X0,-1 T X1,+1

The theorem now follows using the normalizing condition x e = 1.

In a CRW restricted on both sides, besides the equilibrium

distribution, there are significant first passage problems for
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consideration. For instance, in the context of a gambler's ruin problem,
it is of interest to determine the probabilities of ruin and win as well as
expected duration of the game. A computational procedure to obtain these
characteristics is to determine what has eome to be known as the
fundamental matrix of the appropriate transition probability matrix. See
Kemeny and Snell (1960) for the definition of the matrix and the
interpretation of results. In the finite state CRW considered in this

section, the basic fundamental matrix is given by

1 2 3 4 N
. !
I -y
-X 1 -y
M = X1 -y (4.15)
'
X I
(I —

where X and Y are submatrices defined in (1.5). Let Mij be the (i,j)th
element of M. We have

Lemma 4.1

min(i-1,j-1) i~1 j-1
i1 = Yy 0 X, R n vy (4.16)
J 1=0 g=1+1 8 h=g+1

where Ry satisfies the relation
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Ry = (I - YRy_1X)"1 , 2=2,3,...,N (4.17)
Ry =1
and
Yy = YRy and Xy = RyX : (4.18)
2 =1,2 ... N.
i-1 j-1
In (4.6) n X is taken in preorder as g increases, while ny
N-g N-h
g=1+1 h=1+1

is taken in postorder as h increases.

Proof: The result follows from the recursive algorithm following Theorem

2.2 of Lal and Bhat (1988). - o

Theorem 4.2

When X and Y submatrices are given as

for the fundamental matrix M of equation (4.15), we have

(11) (12) |
_ ij ij
M (21)  (22) (4.19)
M5 My
where
(1) _ .0 i3 5
ij = Sij + (1 b)sij + aKN—i+lsij
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dede e

s§. = m1n(1i1,3—1) 61Li'1 61’1:1 1—;—2 l-a J—;—Z 1-b
ij S l—aKN—!-l - (1-aKk ) _p (1-aK -3 )

dede
Note that 6jk =1 if j <k, and = 0 if j 2 k. (4.22)

Proof: Starting with equation (4.17) and defining

ri!) r;x)
BTl (4-23)
3 4
we get
(1-1) (-1, 7}
1 ~(1-b) (b r, + (l—a)r2 )
R, = (4.24)
. 0 1-a(b D 4 (1-a)rDy
1 2
Writing
K! =b rix) + (I—a)rgx)
from (4.24) we get
1 (1-b)K,_,
l—aK!_1
R, = (4.25)
L
0 1
L l-aK!_1 N
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