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Abstract

The smoothing parameter or window width for a kernel estimator of
a probability density function at a point has been previously specified
to minimize either asymptotic mean square error or asymptotic mean
absolute error. In this note the ratio of these two widths is shown to
be a constant for all kernels and density functions that satisfy the
usual smoothness conditions. The fact that this ratio equals .985
supports recent comment that in this context these two error criteria do
not yield large—-sample results that differ by any meaningful amount.
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1. Introduction

In a recent note Hall and Wand (1988) compare two asymptotically
optimal window widths for kernel estimation of a probability density
function, f, at a point. The two norms under investigétion are mean
square error (MSE) and mean absolute error (MAE). Their significant
findings are that in most cases the two results differ by only a few
percent. To illustrate the excellent agreement between the L, and L,

coefficients of n—l/5

they display graphs for four specific densities.
In each case there are apparent singularities in the coefficients as a
function of x, the point at which the value of the density is to be
estimated. These occur at inflection points of f due to the fact that
the formal expression for the bias vanishes. This is solely an artifact

of the asymptotics and not a phenomenon that is manifest for finite

samples.

In this note an alternative expression for the large sample MSE is
examined briefly. The introduction of the next term of consequence in
the bias expansion complicates the solution for the optimal h. A simple
numerical solution permits comparisons with the closed form solution
that has been utilized for large sample investigations since its
introduction by Parzen (1962). The anomalous behaviour at inflection
points 1is not present with the refined approximations. However,
spurious spikes arise in other places. Rather than pursue higher-order
approximations for bias and variance, a new comparison of the window
widths is obtained. Their ratio is constant within the framework of
exact values for asymptotic bias and variance. It follows that the

relative size of these asymptotically optimal widths is the same for



every density and kernel. This result permits a succint summary of all

of the numerical results in Hall and Wand (1988).

2. Asymptotic Mean Square Error

Consider a random sample of n univariate random variables, Xl' X2,
. Xn' from an absolutely continuous distribution with density
functidn, f. The kernel estimator of f(x) for a single fixed x is

n
%E’ s k&%),
i=1 h

?(X;h) =

where K is a kernel, usually assumed to satisfy mild regularity
conditions such as boundedness, [ K(z) dz = 1 and [ |zp K(z)| dz < » for

some integer p such that

j _ 0, j =1, ..., p-l
[ 2z¢ K(z) dz = { kp 40, j =p .

The most widely used kernels in practice are themselves bounded,
symmetric, finite-variance density functions for which p = 2 [see
Silverman (1986)]. Assume that f(4) exists and is continuous at x and
further that f(x) > 0. The familiar expression for the asymptotic MSE
of g(x;h) is

Var [£(x:h)] + Bias® [£(x:h)] = 2= Q £(x) + [B*F"(x) k2] . (2.1)
where Q = [ K?(z) dz.

Minimization of (2.1) with respect to h, assuming for the moment
that f"(x) # O, yields

ha = ax(K) B2(£)n 7", (2.2)

where ag(K) = Q/kg and Bg(f) f(x)/{f"(x)}?. Clearly, when x = x_ is

[+

an inflection point, f"(x,) = O and the formal expression (2.2) is
infinite. When such is the case the expression for asymptotic bias in
(2.1) no longer holds. Minimization of an appropriate expression for



MSE yields a different expression for the asymptotically optimal value
of the smoothing parameter, h. When f"(x) vanishes
Bias [F(x:h)] = B (P )k 741 + o).

Minimizing the corresponding MSE yields

% -1/9 |
h4 = 4(K) 64(f)n , (2.3)

where ai(K) = 72Q/ki and Bi(f) = f(x)/{f(4)(x)}2. These solutions for
3 3%
h2 and h4

as n = ©, h - 0 and nh - ®. When one considers the behaviour of the

in (2.2) and (2.3) derive from the limiting conditions that

optimal window, h, as a function of x for large finite n, intuition
suggests that as x - x_, the transition from h; to h: is smooth rather
than the abrupt change in order suggested by (2.2) and (2.3).

An approach that permits an examination of this issue is simply to
use both of the terms in the bias expansion that will come into play.
Letting bj = kj f(j)(x)/j! for j = 2,4, the bias may be expressed as

Bias [(x:h)] = h2(b, + b®b,) + O(h).
Substituting this in the expression for MSE changes the optimization

problem to

Min {An? + BR® + cn® + mn7ly, (2.4)

h

where A = ba = ko {£"(x))%/4,
. 4
B = 2bb, = kyk, £"(x) £ () (x) /24,
c=b2 =k, £ (x)/24) and D = Qf ().

Differentiating the objective with respect to h and equating to zero
yields
5 2 4
M(h) = h"(4A + 6Bh™ + S8Ch~) - D = O. (2.5)
Since A and C are both non-negative, when B>O there is clearly only one
real root of (2.5) and it corresponds to the desired minimum. There are

regions in which B<O resulting in 3 real roots. Extraneous positive

roots corresponding to relative maxima can be identified by the sign of



M'(h). In practice the solution, h', is found by Newton’'s method.
Select the initial value h1 = min{h*, h:} and iterate the relation
hiy1 =By ~ Mh)/M'(hy). 1 =1, 2,

until a specified tolerance is acheived. The sequence is well behaved
and with this starting value convergence to 4 significant digits was
generally realized within 3-6 iterations for all of the cases considered
here. There are some numerical instabilities for some combinations of n
and x; but this routine is not being proposed for any practical
implementation rather only to illustrate the smoothness of h'(x) in
contrast to that of h;. Some of the difficulties posed by multiple

roots may be avoided by computing for a sequence of neighboring x values

and succesively initializing with hl(xj+1) = h'(xj).

3. Numerical Results for Minimum MSE

One table of values is sufficient to illustrate the smoothness of

h' as a function of both n and x. Take K to be the Gaussian kernel for

which Q = 1/V4rm, k2 = 1 and k4 = 3. This choice permits comparisons
with c;(x). as displayed in Hall and Wand (1988), where h; = c;(x)n_l/s.
For the standard normal density f(x) = ¢(x) the derivatives that are
required for the coefficients in (2.5) are f"(x) = (x2 -~ 1)¢p(x) and
f(4)(x) = (x4 - 6x2 + 3)¢(x). Table 1 contains values of c¢', an
equivalent multiplier of n—l/s. In other words, after finding h', the
root of (2.5), numerically, the equivalent coefficient c' = h'nl/5 is

calculated for comparison with c; obtained from (2.2).



Table 1

Asymptotically minimum-MSE window widths. Values in the table

are c¢', the equivalent coefficient of n_1/5. The entries for
n = ® are c;. Normal kernel and density.
X .75 .80 .85 .90 .95 1.00
n
50 1.363 1.400 1.437 1.475 1.515 1.556
100 1.366 1.419 1.475 1.533 1.593 1.654
500 1.370 1.452 1.548 1.657 1.778 1.909
1,000 1.371 1.462 1.573 1.705 1.858 2.030
10,000 1.373 1.482 1.628 1.829 2.109 2.491
100, 000 1.373 1.491 1.655 1.902 2.315 3.057
© 1.374 1.497 1.675 1.966 2.591 ©
Clearly, the singularity that occurs in c;(x) at x = 1 1is not

present in the more refined approximation for any sample size of
practical interest. There are values of x for which the global minimum
of (2.4) differs markedly from (2.2). The higher-order approximation
has its own regions of peculiar behavior. They are simply relocated
away from the inflection points. For this specific example it is
possible to observe the overall smoothness in the true solution using
exact expressions for bias and variance (see Fryer (1976)). Indeed,
Table 1 and the exact results confirm that a good approximation to the
optimal h is cn_ll5 even for those values of x where the effective

coefficient of h2 in the bias wvanishes.



4. Minimizing Absolute Error
With the aforementioned large—-sample approximation in mind,
consider the approximations
Bias [?(x;h)] = bx(h2 + o(h2))
and (4.1)
Var [£(x:h)] = o2(a + O(n 1)),
where bx and Ui are non-vanishing smooth functions of x. Thé usual
argument about balancing variance and bias squared dictates the choice

175 ~4/5 + O(n—l). The

of h = cn ’°, which implies that MSE[?(x;h)] = mn
dominant and second order terms may be comparable in size for very large
n. This is a reminder of the caution that should be exercised in
relying too heavily on the conventional asymptotics for this problem.

Using the notation in (4.1) the standard result for minimum MSE in

(2.2) may be given an alternate expression

-1/5

h2 = cyh , (4.2)
where 02/2 = Ok/sz' For purposes of comparison with the analogous
result for minimum MAE let Vo = 02/2. This implies that for minimum MSE
the coefficient in (4.2) must satisfy

Vob
27x 1
§2 = o =3 (4.3)

The scaled variable, vb/c, can be recognized as the fundamental
quantity in the development of minimum MAE by Hall and Wand (1988). In
their notation, except that bX and ai are to be viewed as more accurate

assessments of bias and variance, the equation that must be solved is

Vlbx Vlbx 1 Vlbx
H=H[a(—) - 3] - o(=) =0, (4.4)
X X X
where, as before, v, = 05/2 and h c n_l/s. In other words, to find

1 1 1%



the window width that minimizes the asymptotic MAE, one must find the
unique root ’g'l = vlbx/ax of
1
1€ [3(E,) - 51 - #(E,) = O. (4.5)

Given the value of §1 the value of c, depends upon K and the unknown

1
f(x) through bx and o.-

The solutions to (4.3) and (4.5) are E, = .500 and E, = .481,
respectively. The ratio cl/c2 does not depend upon bx and o, and

therefore holds for every kernel, density and x. Hence

2/5 4

E .
1 1 .481

indicating that the asymptotically optimal window width for L1 norm is

uniformly smaller than that for the L, norm by 1.5%. This relationship

2
is evident throughout the Table and Figures 3.1 given by Hall and Wand
(1988). Their examples all involve the normal kernel, but clearly,

their very interesting result holds with greater uniformity and more

generally than the examples convey.

Remarks

A. An alternative view of (4.1) that is the basis for (4.4) is the
representation

F(x:h) - £(x) =0 7°(b_ - 0,2) + op(h2),

where Z is asymptotically standard normal. This is perhaps also
more satisfactory as a description of the essential difference
between the current approach and the classical one. A problem with
the conventional approach is that the approximation

2

Bias (h) = k,h™f"(x)/2 is identically zero at points of inflection.

2



This does not occur in reality. Slightly more realistic results
derive from the simple introduction of bx > O for every x.

The comparison of cq and Cy for minimizing the (global) L1 and L2
distances is given in Hall and Wand (1989). These results do not
yvield the constant ratio presented here for optimal estimation at a
single fixed point. Nevertheless, the two coefficients do not
differ by more than a few percent.

The usual regularity conditions that are sufficient to ensure the
validity of these asymptotic comparisons are that one is using a
non-negative second-order kernel, that f(x) > O and that f and f"
are bounded and continuous at x. With less reliance here on the
Taylor series expansion of f to get an expression for the bias, the
constraints on f” are not necessary. However, smoothness of f' is,
and as a practical matter there seem to be very few densities that
possess one level of smoothness and not the other.

If one is truly focussing on f at a inflection point X, and
0 < f(4)(xo) < o, then the optimal smoothing parameter is given in
(2.3) for MSE. Similarly, minimum MAE is also produced by a h of
order n_l/g. The appropriate ratio, §1/§2, is a different constant
deriving from altering the 2 to VB in (4.3) and the 4 to an 8 in

(4.5). The ratio of the associated widths follows as before with

the exponent being 2/9 rather than 2/5.
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