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Abstract

Let p be a function defined on an interval [a,b] of finite length. Suppose
further that y,,...,y, are uncorrelated observations satisfying E(yj) = p(tj) and
var(yj) = 0%, j=1,...,n, where the t;’'s are fixed design points. Asymptotic (as
n - o) approximations of the integrated mean squared error and the partial
integrated mean squared error of trigonometric series'type estimators of pu are
obtained. Our integrated squared bias approximations closely parallel those of
Hall (1981, 1983) in the setting of density estimation. Estimators that utilize
only cosines are shown to be competitive with the so-called cut-and-normalized
kernel estimators.

Our results for the cosine series estimator are applied to the problem of
estimating the linear part of a partially linear model. An efficient estimator
of the regression coefficient in this model is derived without undersmoothing the

estimate of the nonparametric component. This differs from the result of Rice

(1986) whose nonparametric estimator was a partial spline.
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1. 1Introduction

There are currently a number of nonparametric regression estimators that
have been studied extensively in the 1literature. Many of these, such as
smoothing splines and kernel estimators, are closely related to trigonometric
series estimators. It is thus surprising that asymptotic theory for the latter
estimators is not as well developed as it is for other regression estimators.
Apparently, the only published work on trigonometric series regression estimators
is that of Rutkowski (1982), Greblicki and Pawlak (1985) and Rafajlowicz (1987).
In contrast, series estimators have played a prominent role in the estimation of
probability densities. (See, e.g., Kronmal and Tarter 1986 and Hall 1981, 1983.)
In this paper we fill in one of the gaps in knowledge about the large sample
behavior of trigonometric series regression estimators by giving
characterizations of their asymptotic integrated mean squared error. We then
apply these results to the problem of estimating the linear part of a partially
linear model.

Assume that observations y,,...,y, are obtained following the nonparametric

regression model

y; = up(t;) + €, i=1,...,n, (1.1

where the ¢; are zero mean uncorrelated errors with common variance 0%, p is an
unknown regression function and the t; are design points satisfying a<t;<...<t; <b
for finite constants a and b. The objective is to estimate g assuming only that

it satisfies certain smoothness conditions.



In many cases it is possible to represent g in (1.1) as a Fourier series
involving sine and/or cosine functions {¢;);2Z;. More precisely, it is often
possible to write u = ijlﬂjwj for Fourier coefficients B;. Thus, if estimators
Bj can be derived for the B;, the first X terms in the series can be estimated to
produce an estimator u, = Zjilﬁjwj for p. We will refer to estimators of this

type as trigonometric series (TS) estimators. The large sample properties of TS

estimators are of interest for a number of reasons apart from the previously
noted connection between TS and other nonparametric estimators. For example, TS
estimators are often used in practice by linear regression analysts when the true
mean value function is unknown. Thus, it is important to obtain analytic results
that allow us to see what is lost (or gained) by this practice over the use of
other nonparametric estimators. It 1is also noteworthy that the smoothing
parameter, A, for TS estimators is integer valued. This is in contrast to kernel
and smoothing spline estimators whose smoothing parameters take on a continuum of
values. Since the level of smoothing must be chosen by the user through
(possibly automated) examination of a number of wvalues for the smoothing
parameter, there are some definite computational advantages associated with the
use of series type estimators. Asymptotic performance comparisons will therefore
be useful in determining whether these computational savings can be realized
without significant losses in estimation efficiency.

To assess the performance of an estimator pu, for u, we use the integrated

mean squared error (IMSE)

b
R(py) = J E(u(t)-py(t))2de. (1.2)

a
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In the next section we study the asymptotic behavior of R(u,) for TS estimators
constructed from both sine and cosine functions or either sine or cosine
functions alone. It 1is seen that, unless pu satisfies certain boundary
conditions, neither the sine nor sine and cosine estimators perform up to the
level of their competition. However, the estimator based on cosines alone is
competitive with kernel estimators that have been cut and renormalized at the
boundaries of [a,b].

The boundary behavior of TS estimators is a dominant factor in determining
the large sample properties of R(u,). Thus, the asymptotic behavior of the IMSE
over [a,b] will generally not give an accurate picture of the estimator'’'s
performance in the interior of the interval. For this reason, we follow Hall

(1983) and also analyze the partial integrated mean squared error (PIMSE)

b-e
R = [ Ew(t)-p(r))?de, (1.3)
ate
where ¢ is a positive constant satisfying ¢ < {£;8). VWhen viewed through this

performance window, TS estimators fare somewhat better than before in terms of
asymptotic convergence rates. However, estimatoré based on sine or sine and
cosine functions are still found to be deficient relative to kernel or smoothing
spline estimators. In contrast, the TS estimator constructed only from the
cosine functions can attain an n"*/> rate of decay for Re(py ). Thus, it seems to
merit serious consideration as a competitor to second order kernel or cubic

smoothing spline estimators which can also attain this same rate in the interior

of [a,b].
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Also of interest are the Cesaro means of TS estimators. We thus consider in
Section 3 estimators of the form p§ = (A+1)'1j% pj, where p; is one of the TS

=0
estimators based on j terms. When the periodic extension of p is sufficiently
smooth, the Cesaro means are seen to have asymptotically larger IMSE and PIMSE
than do the corresponding TS estimators.

In Section 4 we give an application of our work to the problem of parameter
estimation in partially linear models. For a simple linear regression model with
a covariate entering the model nonparametrically, we derive an estimator of the
regression coefficient whose variance is of order n™! and whose squared bias is
o(n"1). Thus, using our estimator, inference about the regression coefficient
becomes feasible without the necessity of bias adjustments. This is in contrast
to similar estimators derived from a smoothing spline viewpoint (see, e.g., Rice,

1986). Proofs of all results are provided in Section 5.
2. Trigonometric Series Estimators

Assume that model (1.1) holds with p absolutely continuous on [a,b]. Also,

for notational simplicity, assume that [a,b] = [-n,n] or [a,b] = [0,7n]. Let s, =
a, s; = (t;+ty4,)/2, j=1,...,n-1, s, = b and define (for j=0,1,...)
n Sr
a; =2 y, f cosjt dt
r=1 Spoq
and

Then, if [a,b] = [-n,n] we can estimate p by



Byq () = (2#)'1[ao+2% (ajcosjt + bysinjt)]. (2.2)
i=1

If [a,b] = [0,n], two other possible estimators are

A
By () = (2/13§1bdsinjt (2.3)

and

A
pyg (t) = n~1[a,+25 ajcosjt]. (2.4)
j=1

The estimators u,;, i=1,2,3, are motivated by the fact that the sine and
cosine functions form an orthonormal basis for L,[-=,n], whereas either the sine
or cosine functions provide an orthonormal basis for L,[0,n]. In defining the
estimates of the Fourier coefficients in (2.1), we have used integrals of the
trigonometric functions rather than evaluations at the t;. This is similar to
modifications to kernel estimators proposed by Gasser and Miller (1979) which
improve estimator bias and automatically adjust the estimator to take account of
nonuniform designs. Similar gains are realized here. (See Lemma 2 in Section 5
and comments later in this section.) Estimators of the form (2.2) - (2.4) have
also been studied by Rutkowski (1982), who shows certain pointwise and global
consistency properties of the estimators. Rafajlowicz (1986) and Greblicki and
Pawlak (1985) obtain upper bounds for L, convergence rates for estimators similar
to the ones we are considering in the case of a periodic regression function and
random designs, respectively. A characterization of the asymptotic IMSE of the

estimators (2.2) - (2.4) is provided by the following theorem. In the sequel,
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when h is a function defined only on [a,b], we say that h is continuous on [a,b]

if it is continuous on (a,b), right continuous at a, and left continuous at b.

Theorem 1. Assume that the tj are generated by a positive continuously

differentiable density p on [a,b] through the relation

t .
{7 poydt = (5-1)/n, j=1,...,n. (2.5)

Assume also that u' is continuous on [a,b]. If n,A\ + » in such a way that A?/n =
y

0(1), the following results hold:

R(pyy) = o®2A(@m) 1] [p(£)]171dt + [p(m)-p(-m)]12(xX)" ! + o(A/ntA"1) (2.6)

-n

R(ky,) = 0A(nm) 1f[p(£)] de + 2[p(m)2+p(0)2](x0)"1 + o(A/m+A"1). (2.7)

[o]

If in addition p" is absolutely integrable,

R(py3) = o2A(am) 1 [p(t)]71dt + 2[p’ (m)2+4p’ (0)2](3mA%) L4o(A/n+A"3). (2.8)

o

Under the conditions of Theorem 1, we see that the best rate of convergence
for R(py;), i = 1,2, is n"'/2, This is obtained by taking X = c,n!/2. The
cosine estimator p,; performs considerably better with R(py3) = O(n"3/%) when X =

c;n!/*. Thus, from the standpoint of IMSE, the cosine series estimator is to be



preferred over either pu,;, or pu,,. It is worth mentioning that the best rate of
convergence for the IMSE of a kernel estimator (of order two) which has been
renormalized at the boundary (so that the observation weights sum to one) is also
n 3/%; so, p,; is comparable to a kernel estimator of g in this sense. Of course
it is possible to utilize boundary kernels (see, e.g., Gasser and Muller, 1979)
to obtain the better rate of n */> for the IMSE of a kernel estimator. Similar
modifications are undoubtedly possible for u,,;, although we will not pursue that
topic here.

If u4 satisfies certain boundary conditions, improved rates of convergence

result for the three TS estimators. For example, if for some r=1 p¢d’(-n) =
ptdd(x), j=0,1,...,r-1, the second term in (2.6) can be replaced by

(=) (n) - p'=) (-m) ]2 [(2r+1)mA25*¥1 )71 (2.9)
and the remainder term becomes o(A/n) + o(A (2T¥*1))  Thus, if the periodic

extension of p is continuous (i.e., p(m). = p(-n)), the IMSE for u,, can be made
to decay at a rate of n"3/* by choosing A = c,n!/%. Similar results hold for p,,
and p,;. Unfortunately, most regression functions will not be smoothly periodic;
so one cannot routinely expect such improved performance in practice.

It may at first seem surprising that the cosine series estimator performs
better than its counterparts u,, and u,,. However, this phenomenon has a simple
explanation. The cosine series expansion of p with support on [0,n] is identical
to the Fourier series (i.e., sine and cosine) expansion of a function u* on [-mx,

>w] obtained by reflecting p about zero. Thus z*(-7) = p*(n) and we can use (2.6)

along with (2.9) and r=1 to obtain (2.8).
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While u,; appears to be the preferred estimator for general pu, there are

cases where the use of u,, is advisable. To see when this occurs, observe that
the sine series 2%';§1ﬁjsinjt of the function u (defined on [0,7n]) is the

Fourier series of the odd function
Bo (t) = sgn(t)p(|t]), -r st =<nx

(where sgn(0) = 1). Now, suppose that u'(0+) and p'(n-) exist and that u(0) =
pu(n) = 0. Then u, is differentiable at 0 and satisfies y,(-n) = p,(x) and p/!(-
m+) = pl(x-). Generally speaking, then, pu,, is preferable to p,; and (the
appropriate version of) u,,; when u(0) = pu(n) = 0 and p’'(0+) » p’'(w-). Under
these conditions, the integrated squared bias for u,; and u,; is no smaller than
cA™®, whereas for u,, it can be as small as O(A™5) (see Hall, 1981). Hence, if
one knows that p vanishes at 0 and zn but has no other information about the

function, then p,, appears to be the right choice among the pu,; .

The slow rates of convergence noted -for the R(u,;), i=1,2,3, are primarily

due to the boundary behavior of the estimators. To see this, we observe, for
example, that if u’ is absolutely integrable, then for any fixed t e (-m,w) the
bias of p,,(t) is 0(A"!) and its variance is 0()A/n) (see Hall, 1981 and Lemmas 2
and 3 of Section 5). Thus, by taking XA = c;n'/?®, E(p(t) - p,;(t))? can be made
to decay at a rate of n 2/ rather than the n !/? obtained from Theorem 1. The
conclusion to be drawn from this is that IMSE does not give an accurate picture
of how TS estimators perform over the majority of .[a,b]. A more appropriate

measure for this purpose is the PIMSE defined in -(1.3). ' The next .theorem..

provides a summary of the asymptotic PIMSE behavior of TS estimators.
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Theorem 2. Assume that the ty are as defined in Theorem 1 and that n, A =+ « in

such a way that A2/n = 0(1). If u' is continuous on [a,b], then for any

0<e<n

R (#y1) = o2x(om) 1 [p(t)]"tdt + [p(n)-p(-n)]12[2(x0)2]" [ (1-cost) ldt

-nte €

+ o(A/ntr"2), (2.10)

while for any 0 < € < n/2

=€ =€

R, (Byp) = o2x(nm) [ [p(t)] tdt + [p(n)2+p(0)2])(xx)"2[ (l-cost) ldt

+ o(A/n+r"2). (2.11)

If, in addition, u" is of bounded variation

n- - €

R, (py5) = aZA(nﬁ)’lf [p(t)] tdt + [p'(ﬂ)2+p'(0)2]ﬂ'zk'4f (1-cost) " 1dt

€ €

+ o(A/ntx™4). (2.12)

By choosing A = ¢,n'/® we see that PIMSE of both p,, and p,, can be made to
decay at a rate of n"2/3, If we take X = csn'/3 then R, (p,;) = O(n"*/3). This
is the same type of behavior one would -expect from a kernel estimator (of .order .
two) or a cubic smoothing spline. .Thus, the cosine series estimator compares
favorably to other popular nonparametric  estimators..in the  interior of. the .
interval of estimation.

The estimators given in (2.2) -"(2.4) -are derived from a particularly simple

method of estimating the Fourier coefficients for u. However, these estimators



11
are mnot the standard choice. The wusual approach to estimating Fourier
coefficients is through least squares. Thus, to conclude this section we point
out some implications of our results for Fourier series estimation by least
squares.

For simplicity, let us restrict attention to an estimator of u based on both
sines and cosines. A common approach in this case is to estimate u by m, = ;o +
A » . a PR " > . s s e e
Zj2;[ajcosjt + Bysinjt], where the a; and B; are obtained by minimizing

n A
Z (yr - @ - Z [a;cosjt + B;sinjt])?
r=1 j=1

with respect to the a; and f;. ..Note that the construction of such estimators
will generally require matrix inversion, thereby indicating that u,; 1is more
computationally expedient.
Define an alternative norm for the set of all square integrable functions on
[a,b] by
b

2
€], = J £(£)?p(t)de,

a

where f ¢ L,[a,b] and p is our design density. The estimator m, provides an

estimate of the projection P,y of u onto the linear span of the functions 1,

sinjt, cosjt, ..., sinit, cosAt under |]'||p. We can use this fact to obtain

rates of convergence for m,, modulo quadrature error. - ot
Let (P,p) denote the L,[0,1] projection of u onto the sine and cosine

functions of period at most . Since p is -positive--and bounded there are

positive constants B and C such that . o S

b b T b
Bf (u(t) - (Byp)(£))2dt =< [ (u(t) - (Byp)(£))2p(t)dt = Cf (u(t)-(Byp) (t))2dt.

a
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It follows from results in Section 5 that the integrated squared bias for u,, is

b
well approximated by f (pu(t) - (Pkp)(t))zdt. Thus, if we can assume that

a

b b
J (u(e) - Em(£))2p(t)dt ~ [ (u(t) - (Pyp)(t))2p(t)dt

then, as a result of Theorem 1,

b b
JE(®) - my(£))2p(e)dt ~ [ (u(t)-(Pyp)(t))2p(t)dt + o?(22+1)/n

a a

=0(A"1) + 0(A/n).

Consequently, one would anticipate the same type of convergence rate for m, and
for p,,. Similar inferences can be made concerning rates of convergence for the

least squares parallels of u,, and u,5.
3. Cesaro Means of TS Estimators

We now consider the Cesaro means of the estimators p,,; and pu,;. (For the
sake of simplicity we do not examine pu,,; as indicated before this estimator is .
to be preferred only under a special set of conditions.) One reason for being
interested in Cesaro means estimators is the well-known result that continuous
periodic functions p may be uniformly arbitrarily well approximated by the Cesaro
means of Fourier series. In contrast, the Fourier series of a continuous

function may diverge (see, e.g., Butzer and Nessel 1971). Furthermore,
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A
“;i = (A+1)-12 #Air i=1)3v
j=0

will be positive whenever the data y,,...,y, are positive. This, of course, is a
desirable property if p is known to be positive. It will be seen, though, that
if p 1is sufficiently smooth, then the IMSE and PIMSE for the Cesaro means pu);
converge at a slower rate than they do for u,;. This must be balanced against
any qualitative improvements obtained with puj, .

To establish the following IMSE and PIMSE results it is sufficient to use
Lemmas 2 and 3 of Section 5 and the bias expansions of Hall (1981, 1983). Hence,

the proofs of Theorems 3 and 4 will merely be outlined in Section 5.
Theorem 3. Let the design points t; satisfy the conditions of Theorem 1 and

suppose that n,A + » in such a way that A%/n = 0(1). We can then establish the

following results. If p' is continuous on [-wn,n], then

R(u5,y) = 02A(3m) [ [p(£)]71dt + 2[p(n)-p(-m)]2(Am) 1 + o(A/n+a"1).  (3.1)

-n

If pu(x) = p(-n), and if p' satisfies a uniform Lipschitz condition on [-w,n] of

order a« > 1/2, then

R(py,) = 0223an) 1  [p(t)]1"1dt + 2 2f |u'(t)]2dt + o(A/n+r"2). (3.2)

-n -n

If p' is continuous on [0,n] and p" is absolutely integrable on (0,w), then
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n n
R(pys) = 02A3an) [ [p(t)] rdt + A2 |p'(£)|%dt + o(A/n+r"2). (3.3)

o o
We see that the optimal value of R(u,) converges at the same rate, n 1/2,
as does that of R(p,,) when pu(m) = u(-x). However, when u(x) = up(-7), the
integrated squared bias of p),; converges more slowly than does that of p,,.
Similarly, the integrated squared bias of p}, is larger than that of p,;. The
problem with the Cesaro means estimators is that, like kernel estimators, their

bias does not continue to decrease as the smoothness of p increases. Whenever

s |a;|?2 + |B;|?=0(x"2) (where the A;'s and B,'s are the Fourier coefficients of

i=x+1

u4), the integrated squared bias of p;i is dominated by

A
cA"2z j2[|A; % + |By|2).
i=1

@
Hence, unlike p,,, p}; cannot take advantage of the fact that = (A}+B}) may be
J=A+1
small.

In the next theorem we give PIMSE results for py, and py,. The quantity p

appearing below is the Hilbert transform of u, i.e.,

B(t) = 2r) Y[ [p(t-v)-p(t+v)]cot(v/2)dv,

o]

where p is extended from (-m,n] to (-=,o) by periodicity. (If p is defined on

[0,n], it is first extended to (-w,n] by u(-t) = pu(t), 0 < t < x.)

Theorem 4. Let the design points t; satisfy the conditions of Theorem -1, and
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suppose that u' 1s continuous on [a,b]. If n,A + « and A2/n = 0(l), the

following results hold.

i) Suppose that g and (g)' exist and are bounded on [-m+e,m-€e] for each ¢ > 0.

If

sup [ vIZ[p(tHv)-p(t-v)-2v(B) ' (£)]dv < =

|t|5ﬂ-c

for each € > 0, then, for 0 < ¢ < m,

R, (By1) = e22Bnm) [ [p(t)]7%dt + A"2f | (@)'(t)]|%dt + o(A/n+r"2), (3.4)

-nte -nte
provided the second of the two integrals does not vanish.

ii) Suppose that |p"| is integrable on (0,x) and that (g)' is continuous and of -
bounded variation on each interval [e,n-¢], 0 < ¢ < . Then, for 0 < € < m,
- - €

R, (u33) = o2AGBnr) 1  [p(t)]7%dt + A2 (@)’ (t)|?dt + o(A/ntr"2). (3.5)

€ €

As with IMSE, we see that PIMSE of Cesaro mean estimators will be
asymptotically larger than that for the TS estimators when p or its periodic
extension are sufficiently smooth. To summarize the PIMSE results”of Sections 2:.
and 3, we note that pu,; is the only estimator considered whose-PIMSE can attain
the convergence rate n “/3 without imposing boundary conditions on u. Other

Fourier series estimates one could consider are the singular integral estimates
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of Hall (1983). He shows that, in density estimation, the PIMSE of these

estimators can be of order n"%/° with no boundary conditions on p.

4. An Application to Partially Linear Models

There has been much interest recently in semi-parametric statistical models.
One variety of semi-parametric model is the partly linear model which contains
both a linear parametric term and an additive nonparametric term involving one or
more covariates. The interest is usually in obtaining efficient estimates of the
linear parameters in the model. 1In this section we presént an application of our
work in Section 2 to the problem of estimating the regression coefficient in a
simple partially linear model.

For simplicity, we confine attention to the case of only one 1linear

predictor and one covariate. It will be assumed that

y; = Bx; + £(t;) + ¢, i=1,...,n, (4.1a)

where the ¢, are independent, zero mean random variables with common variance o?

f is some unknown function of the covariate t, and 8 is an unknown regression
coefficient. The t, satisfy 0 < t, < ... < t, < xn and, following Rice (1986) -and -

Speckman (1986), the x; are -assumed to admit a -regression model in t.

Specifically, we assume the x; follow the model

x;, = g(ty) +ny, - : (4.1b)
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where g is an unknown function, the 9, are independent, zero mean, random
variables with some common variance #2, and the €, 's and n,'s are independent of
each other.

For any set of numbers z,,...,z, define

n

z,;, = a,(z)/x + (2/w)% a;(z)cosjt, , (4.2)
i=1

n Sr
with a;(z) = EIer cosjtdt. Then our proposed estimator of 8 is -
r=

Sr-1

R NI ARY. CRENSLS 4.3)

The motivation for this estimator stems from analysis of covariance. In that
setting both y and x are adjusted for the covariate t and then residuals are
regressed on residuals to estimate fB. .The definition of ﬁ in (4.3) is a similar
type of adjustment.

Concerning 3 we are able to establish the following result.

Theorem 5. Let X = (%X;,...,%,) and assume that f and g both have continuous

derivatives and second derivatives of bounded variation on [0,r]. Let
e()) = A/n + 2(372%) tmax{g’' (x)2+g’' (0)2, £'(x)2+£'(0)2) + o(1), (4.4)

where o(l) = o(A3/n?) + o(X/n) + o(A"%), and assume that t; = (j-1)n/n,

j=1,...,n. Then, if A,n - « in such a way that \?/n = 0(1),
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B - E[Bx] = 0,(e(N)). (4.5)
If A2/n -+ 0 and A%/n -+ «,

Var(élg) = 0’n" 1672 + oy(nt). (4.6)
In addition, if E|%, |?2*® is uniformly bounded for some §>0, |n (B-ﬂ) converges in
distribution to a N(0,0%26°2) random variable.

If A2/n » 0 and A%/n » «, then, as a result of (2.8), |n e(A)=0(1l). Thus,
for n sufficiently large, the bias of é is negligible relative to its standard
deviation. This has the consequence that inference for B can be conducted using
B without the necessity of adjusting for the bias from the nonparametric part of
the model. This is quite different from what transpires in the smoothing spline
setting where the squared bias may dominate the mean squared error of the
analogous estimator of B (see Rice, 1986). The fact that 3 is asymptotically
normal with mean B has the implication that confidence intervals and tests for f
can be conducted using standard parametric methods.

Theorem 5 can be easily extended to include estimation of more than one
regression coefficient and nonuniform designs in t. Apparently results of this
nature do not extend to estimators based on the sine or sine and cosine series

without undersmoothing to ensure that R(#Aj) - o(l/JH), j=1,2.
5. Proofs of Theorems

To prove the results in Sections 2 and 3 we require three lemmas. The

proofs of Lemmas 1 and 2 are elementary and therefore omitted.
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Lemma 1. Assume that the t; are generated by a positive, continuous density on
[a,b] through relation (2.5). If s =a, sj=(td+tj+1)/2, j=1,...,n-1, and s =b,

-1
then m?xlsj-sj_1|=0(n ).

Lemma 2. Assume that g has a continuous derivative on [a,b]. Let

b
Ay = f p(t)cosjtdt, j=0,1,2,...,

a

and

b
B; = [ u(t)sinjtdt, j=1,2,...

a

Then A;-E(a;) and B;-E(b;) are O(n" ') uniformly in j.
Lemma 3. Consider a quantity of the form

C, (t) = s J jK,\(t-s)ds]z,
i=1
Sj'l

where the s; are defined as in-Lemma 1 with p continuously differentiable, and

where K, is a continuously differentiable function. Then,

b b b
Cy(t) = n"1f [KE(t-s)/p(s)]ds + O(n 2){f |K; (t-s)K,(t-s)|ds + [ KZ(t-s)ds).
a a = a :
Proof. Using the mean value theorem for integrals and the uniform

differentiability of p, we have, for points &., §, withs,._;, < ¢., 6. < s,

I I

I 7K, (t-s)ds = (s,-5,.,)K, (t-0,) = K, (t-0,)/(np(£,))

Sr-1

= [K, (t-6,)/(np(8,))]1(1+0(n" 1)),
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where the O(n"!) term does not depend on r. Let P(s) be the cdf on [a,b] with
density p(s), and define P (s) = r/n, f, < s < f.,;, for 1 <r <n, P ,(s) = 0 for
s < #,, and P (s) = 1 for s = 4,. Using the previous equation we can then

express C, as
b
Cy(t) =71 f [K,(t-s)/p(s)]? dB,(s)(1+0(n"1)).
a
It is easy to show that ,3YB,|P.(s)-P(s)|<2/n. Use integration by parts (cf.

Billingsley (1986), Theorem 18.4) to obtain

b b
|n 1 (R, (t-s)/p(s))2dP,(s) - n 'f (K, (t-s)/p(s))?dP(s)|

b
n [ |P,(s)-P(s)| [32(K,(t-s)/p(s))?]|ds

a

IA

b
o %) [ | (R{(t-s)p(s)+K, (t-s)p’ (s))K, (t-s)/p(s)?|ds,

a

and the lemma follows.

Proof of Theorems 1 and 2. We indicate only how to prove (2.6) and (2.10) as the

proof of the other results follows a similar pattern. To obtain (2.6) we begin

by noting that

E(#(t)'l‘,\l(t))z = Var I‘)‘l(t) +_(P(t)‘EFA1(t))Z-

s .
i}
Now observe that u,,; can be written as.Zjﬁlyjf K,(t-s)ds with K, the Dirichlet

: $i-1
kernel, i.e., K, (u) = (2w)‘12|jlsAe13“; Thus, an application of Lemma 3 gives

var p o (£) = n"1f [KE(t-s)/p(s)]ds + O(A-Lgsd) 4 0(A/n?) (5.1)

-n
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uniformly in t. In applying the lemma we have used the facts that _, 22X |K, (s)]|

“ME<E<N

= 0(a%),

”
J K3 (s)ds = 22+1

-n
and

J I¥, (s)|ds = 0(log X).

-n

The last bound is the Lebesgue constant (cf. Butzer and- Nessel (1971), Prop.

1.2.3).

To finish the proof of (2.6) it remains to deal with the squared bias term

”
B2 = [ (p(t)-Ep,, (t))2dt.
-n
An application of Parseval's relation along with Lemma 2 and arguments similar to

those in Hall (1981) reveals that
BZ = [p(m)-p(-7)]12(xx)"t + o(A"1) + O({X/n) + O((r/n)?). ' (5.2)

Equation (2.6) follows immediately from (5.1) and (5.2). - " - -- A
The proof of (2.10) is similar to that of (2.6) but relies on work in Hall
(1983) rather than Hall (1981). One uses Lemma 3 to provide an expression for

the estimator’s variance and then applies results in Hall (1983) to ‘characterize

n-€ ” .
the asymptotic behavior of [ ~f {K2(t-s)/p(s)]ds.  The squared bias is
-nte -n

handled using Lemma 2 which allows -us - to separate the bias into a sum involving

the unestimated Fourier coefficients of u and a sum depending on the estimation
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biases for the 2)+1 estimated Fourier coefficients. The properties of the first

sum follow from results in Hall (1983), while, using Lemma 2,

A, -Ea,|/(2n) + (1/x) | > [(A;-Eaj)cosjt+(B,-Eb;)sinjt]| = 0(A/n),
j=1

uniformly in t. Upon combining all these results one obtains (2.10).

The proofs for (2.7) - (2.8) and (2.11) - (2.12) can be obtained by
analogous arguments to those required for (2.6) and (2.10). The only new
difficulty that arises is in obtaining an approximation to the variances of pu,,
and p,5;. Using an extension of Lemma 3 one can show that the integrated
variance of p,;, i=2,3, is well approximated by n‘l{fﬁ[Kf(t-s)/p(s)]ds+2(-1)i+l
jﬁ jr[Kx(t-s)KA(t+s)/p(s)]ds dt). One now uses the %;ct that K, (-t) = K, (t) and

o] o] n
that f IKA(t)|dt = 0(log A) to justify the approximation that was employed.

-n

Proofs of Theorems 3 and 4. The bias of, e.g., py; is

E[pyz ()] - p(E) = -(2/1)[(A+1)'1% jAjcosjt + ; Ajcosjt] + 0(A/n)
j=1 j=a+1

= b, (£)+0(A/n),

where 0(A/n) holds uniformly in t. This follows from Lemma 2. Now, if (a",b")

is any subinterval of [0,n],

* *

b b
J (Elp}5(t)]-p(E))2dt = [ [b, (t)]2dt+o(A/n),

* *
a a

since the latter integral tends to 0 and A/n -+ 0. The integrated squared bias
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terms in (3.3) and (3.5) follow immediately using the results of Hall (1981,
1983).
To obtain the variance of pxa(t), we first note that
* n Sj
Byg(t) = Z yjf [Fy (t-u)+F, (t+u) ]du,
=175
j-1
where F, is the Fejer Kernel. Using Lemma 3 and a simple modification of it, we
have

var(py, (t)) = o?n [ [F, (t-u)+F, (t+u) ]2 [p(u)] 1du + 0(A%/n?+2*/n®),

<]

where the second term holds uniformly in t. We have

[ var(py; (£))dt = o2n 1 [p(u)]* ([ F?(t)dt

[e] (o] -n
”

+2[ F, (t-u)F, (t+u)dt}du + 0(A%/n? + A\%/n®).

o
Since F, is nonnegative,

[ [P 17 Fy(t-u)F, (t+u)dt du < sup[p(u)] [ [ F, (t-u)F, (t+u)dt du =

(o] (o] -n -n

n by
sup[p(u)] 1 (2n) 1= §1-lj|/<x+1>)2e“5“ du = sup[p(u)]?t.

-n i=-

The integrated variance term in (3.3) now follows from the above argument. The

variance term in (3.5) is derived using the variance approximation above and an
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argument as on pp. 243-244 of Hall (1983). Establishing (3.1), (3.2), and (3.4)
is done in an analogous manner.
To prove Theorem 5 we require two further lemmas. First, however, we
introduce some additional notation.

Let K be the nxn matrix whose (ij)'P element is

A 53
n'l(sj-sj_l) + (2/7) = cos(rt;) [ cos(rs)ds.
r=1 si.q
-
Note that K transforms a vector of constants to the vector of "fitted values"

under the TS cosine estimator. Also define the vectors g = (n,,...,7,)', € =

(€9,...,€¢)", £ = (£(ty),...,£(t)))’" and g = (g(ty),...,g(ty))" and, for any

vector z = (zy,...,2,)", let 2z = (I-K)z and ||z]]|? = 22, z?.

Lemma 4. Let f" and g" be of bounded variation on [O,n], t; = =(i-1)/n,

i=1,...,n and assume that n,A » « in such a way that A/n » 0. Then n!||£||? and

n"!||g||? are both 0(e())), where e()) is defined in (4.4).

Lemma 5. Under model (4.1)
D ||al]? =0,
ii) trK'K = 0())
iii) ||Re||2 = 0,(1) = ||K'n||?
and

't = o, (|[E]]).

The proof of Lemma 4 rests on the following result. If, for example, z; =
f(t;) + o; with the o; =zero mean uncorrelated variables with some common
variance, and f,; is the TS cosine series estimator of f computed under this

model, then n ||E|]?2 = [T (£(t)-Ef,;(t))2dt + O(n"!). This can be established as
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follows. Let P(t) = t/n and let P, be the distribution function that places

1

point mass n"* at each of the points t;,...,t

~ n .
Then, |n 1||£]]2-f (£(t)-Ef,,(t))2dt]
n o

= |J (£(t) - Ef,5(t))% d(P,-P)(t)]| <= O(n 1) |£(t)-Ef,,(t) || £’ (t)-Ef;,(t)]dt,
thrZugh integration by parts. By the Cauch;-Schwarz inequality,
the latter integral is bounded by the product of the Ly(0,1) norms of f-Ef,; and
£ ‘(Efxs)'- Now use Theorem 1 and an extension of Theorem 1 to see that this
product is 0()‘3). The proof of Lemma 5 is elementary and therefore omitted.

Using the notation introduced above we have

p-xy/||%]|2 -8+ &E+x0)/]|E]]2. (5.3)
Thus to establish (4.5) it suffices to show that, under the conditions of Theorem

5,

n ] |&]]|2 = 62 + o, (1) (5.4)

and

nlx'f = 0, (e(X)). : . (5.5)

We can write n"!||x||2 = n"1|]|g|]? + 2n"1g'g + n" | |2||?. By Lemma 4,

n‘1||§||2=0(e()‘)). Observe that llﬁ”z =n'n - n'Kn - n'K'n + llKn“Z = nf2 +

op(n) + 0,(InX) + 0,(}) by Lemma 5. Thus |n"'g'n| < 0,({e()) = o , (1)

Collecting these estimates proves (5.4).

To verify (5.5), write n"1x'f = n'lé'ﬁ +nlpg’f - nlp'KE. Using Lemma 4,
n'lé'i is found to be 0(e())). Lemmas 4 and 5 then show that n"1p'f and
n 1n'KE are Op(J€?X77H) and OP(JX7E)O(JETXT) = 0,(e())), respectively. Thus,
(5.5) has been shown.

For the proof of (4.6) first observe that
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For the proof of (4.6) first observe that

var (Blx) - o2 |I&|172 = [Z|7* (KR |2 - 21K - B'RUE).
Now ||K'z|| = |IR'n]|| + ||K"|] ll§—K5|| =0, X)) + 0(dN)0,({ne (X)) = O, (ne(A))
and, as a result of (5.4), we know that ||x|| = 0({n). Thus |x'Kx| and |X'K'%]|
are both 0(n®*/%e())). Combining these estimates with (5.4) and the fact that,

under the conditions of the theorem, Jn e(}) = o(1) completes the proof of (4.6).

A
Proof of asymptotic normality for B8

To establish asymptotic normality for B, first write g = ¢!yv,/||%,||?, where
cp = x'(I-K')(I-K). Here we explicitly display the dependence on n, and we will
write ¢! = (Cips---+Cnn)s 8n = (8(t1n),...,8(tyn)), etc. If A%2/n + » and A/n -
o, by (4.5), (4.6) and (5.4) it suffices to prove

n/2cr ¢ = N(0,0%).

This will follow from the Lindeberg condition by showing that

nt/2|c,. | & O. (5.6)
Note that the coefficients c;, are random rather than constant as in the usual
statement of the Lindeberg condition. However, the usual case extends to the

present situation because (5.6) implies that

E[lexp(it(n"*/2¢, 'e ) |x,]1 & exp(t202/2).



27

The proof of (5.6) requires an estimate. Recall that the sup norm of ¢ is

||Qn||m = . 9%%. Icin| and the sup norm of the matrix K=[Kij] is IlKIIw = %55,

n
EIKij| (cf. Stewart (1973)). Hence
j=1

lealle = A+ K" []) 1+ K] |0} | |20 | |-

J
Since K; ;= f %(K, (t; -s) + K, (t;+s))ds, where K,is the Dirichlet kernel, and
sj‘l

2K 5| = (/2) (R, (e -s) |[+#]K, (£ +s) |)ds < [ K, (u) |du = 0(log X)
J

] -n

uniformly in i, we have IIKHco = 0(log)). To estimate ||K'i|w, use the integral

mean value theorem to obtain
S K5 |= 0(nt) = R, (£ -8y) + K, (t;+6;) ]
3 i

for s;_;=<f;<s;. A quadrature argument similar to the one for Lemma 3 then yields

||k ||]@ = 0(logh + A2/n). Thus with the assumption A?/n = 0(l), we obtain

[enlla= 00(og)?) ]2 | |0 = 0C(1og)?) (| |gn|let|[nalle)-

Clearly ||g,||o is uniformly bounded. To estimate ||gm,||~, note that by the

Markov inequality we have for any constant m,

P(12i%a |ﬂin|> m, ) 5_§1P(|nin|amn) = 0(mm ~(2+6)),
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since E|n,,|?*% is assumed bounded. Thus with m =nP for some p satisfying
1/(2+8)<p<l/2, say p = (246)/(4+26), we have

nn o = 0 (0®)

and

02 | g, | o= 0(n72/2(1ogA)2) | |0y | | = o, (0P72/2 (LogA)?).

The last term is o (1) by the conditions on A, and the proof of the theorem is

complete.
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