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ABSTRACT

New unbiased estimators are presented for the dominant and lower-order
terms of the variance expansion for U-statistics. 1In small samples these
provide important corrections to the usual estimate of asymptotic standard
error which is based on the leading term in the expansion. The new
estimators for the first term cannot be recommended. The ordinary
jéckknife estimator is found to be more effective than the direct estimates

of the separate terms.
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1. Introduction

Useful expansions for the variance of a U-statistic appear in the
seminal paper by Hoeffding (1948). These are pre;ented and illustrated in
current texts, such as Randles and Wolfe (1979), Chapter 3 and Serfling
(1980), Chapter 4. Under certain regularity conditions the large sample
normality of this class of unbiased estimators makes these statistics
obvious candidates for approximate tests and confidence intervals. A
simple expression for the dominant term of the variance expansion and a
related consistent estimator of the asymptotic variance given by Sen (1960)
has been used in particular applications to produce studentized quantities.
In large samples these have worked well. For U-statistics of degree two
Callaert and Veraverbeke (1981) and more recently Helmers (1985) give
conditions under which the studentized statistic has the same rate of
convergence to normality as the exactly standardized quantity. These
authors studentize with the jackknife estimator of the asymptotic variance.
In the context of asymptotics certain other consistent estimators of the
variance will yield the same desirable results. Obviously, however, in
small samples one or the other of these may be preferred on the basis of
its bias, mean square error or some other property related to the expected
performance of some function of the estimator.

Consider the special case of a U-statistic of hegree two. This choice
is simply for definiteness and to ease the notationél burden. The issues
and approaches developed extend to U-statistics of degree greater than two.

Let X, X2,+..,X, be iid random variables (n 2 2) with common distribution



function F. Also let h(x,y) be a real-valued function, symmetric in its
arguments with Egp[h(X;, X3)] = Y. The function h is usually called the

kernel and the corresponding U-statistic of degree 2 is
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1f we assume in addition that E[h2(X},X3)] < = and hj(X;) = E[h(X],X5) | X1]
has a positive variance, () > 0, then it is known that the distribution of
(U - Y)/[Var(Un)]l/2 converges to the standard normal as n - =. The

general expression for the variance reduces to

uﬁ = Var [Un] = gﬁilgl Cl + —i— CZ , (1.1)
(2) (2)

where ¢ = Cov[h(Xy, X7), h(Xj, X3)] and Gy = Var[h(Xl, Xz)].

Clearly nonz - 4C) = 4 Var[hj;(X)] and Sen (1960) established the
consistency of an estimator based on sample-based components that parallel

the conditional expectations, h)(Xj). His estimator employs statistics

n
A 1 .
hl(xi) = — 3 h(Xi,Xj) , i=1, ..., n

n-1 j=1
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and then the sample variance of these to estimate ;. The consistent

estimator of the asymptotic variance due to Sen (1960) is

W, = 43 2
G =— % [h&x)-ul®. (1.2)
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A relationship between this estimator of (), generalized to
U-statistics of degree m, and the jackknife estimator of Var[Un] in that
setting appears in Sen (1977). In that article the sample variance of the

pseudo-values, S%, is related to ei by
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With m = 2 this is the estimator used by Callaert and Veraverbeke (1981).
They comment on the desirable feature that this expression reduces to the
usual s2 when the U-statistic degenerates to degree one. In the same
discussion they mention that while S% is biased, it is nonnegative and that
all alternatives that they found having less bias could be negative with
positive probability.

The issues of bias and the choice between 83 and 4&1 are of no
practical importance in large samples. However when/n=10, there is a
substantial difference and furthermore in such small samples one would rely
on estimates of the asymptotic variance with some hesitation. Still, there
are situations in which the Var[Un] is desired even though the sample size
is too small for one to invoke large-sample normality comfortably. - For
example, there may be numerous replications of the small experiment and it
may be reasonable to aver;ge the U-statistics and pool the separate
variances. It is just suéh an application ;hat motivates the present

investigation of estimators of (3.



2. An Unbiased Estimator of the Variance of the Kernel

In employing a U-statistic of degree three to test for symmetry in
small samples of size n=20 and 30, Randles et al (1980) found that the
approximately distribution-free studentized quantity did not yield the
desired levels unless all 3 terms of Var[U,] were included. A similar
finding about the nonneglible contribution from (3 to the variance of
Kendall's T has been reported by Samara and Randles (1988). In this
specific case they make use of the fact that Gy =1 - 12 and substitute the

underlying statistic to produce an estimator of (3.

In a recent dissertation in the Department of Religion at Duke
University, Vinson (1984) reported the results of an experiment in which a
random sample of individuals (n = 10) participated in a physical simulation
constructed to shed some light on the controversy over whether the gospels
written by Matthew and Luke were written independently but used Mark as
their common source document. A basic measurement used by some biblical
scholars is the proportion of the words in a passage that are different
from the source document yet coincide in two later writers' versions of
that passage. Consequently, using the 10 subjects who each independently
edit a common source paragraph, the statistic that summarizes their
pairwise rate of these so-called "minor agreements" is a U-statistic of
‘degree 2. Even though the definition of the kernel suggests the possible

|
use of some%classical parametric models for counting wvariables, the natural

tendency to handle text in phrases (clusters of random length) renders

these inadequate. The thrust of this lack of a tractable distribution for



h(X;, Xj) is that a nonparametric approach is needed if one wishes to

estimate Cp = Var[h(Xj, X3)] = E[h2(X;, Xp)] - v2.

For the remaining sections assume that n 2 4. Using a straightforward

U-statistic approach to this problem, define

Py *

c, = L s hz(xi,x.) -L srrzen (X, X, X, 0X,), (2.1)
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where h: is a symmetrized unbiased kernel for Y2 based on cross

products, namely

%* 1
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where h.g is abbreviated notation for h(X,;,Xg). It is easy to see that

Ez is unbiased for (j.

Rewriting (2.1) in standard form for a U~-statistic of degree four

yields

I

G =
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n Zrzt [h (xi,xj,xk’xl) - hc(xi’xj’xk’xl)] ’

i<j<k<2

where h: is a symmetric kernel for the expected square,

¥ 1 2 2 2 2 2 2
hs(xi’xj’xk’xl) . [hij + hik + hil + hjk + hjl + hkll .



It follows easily by rearranging the terms of h: and h: that

- 1 *
,=—=*ZcZZk(X,,X,,X,X,), (2.2)
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It is obvious from this represention that Ez 2 0 with probability 1. 1In
this form it is also apparent that this is a natural extension of the
familiar kernel of degree two for S2. 1In other words, in place of
%(Xi-Xj)z the essential ingredient of k¥* is &[h(xi,xj)-h(xk,xz)]z.

For the "minor-agreements" application there were 10 independent
replications of the experimental editing of a common source paragraph by
the iO subjects. Using (2.2) the estimated magnitudes of the second terms
in (1.1) were on the order of 20% to 40% of the first term. The 10
estimates of Var[U,] are to be pooled to estimate the within-paragraph
contribution to the variance of the average rate. The ultimate goal being
to produce a reliable estimate of standard error to studentize the
difference between this rate and rates obtained from other experimental
settings. Even though n=10 may be somewhat small for the normal
approximation to be adequate for any single paragraph, the averaging of 10
such U-statistics should produce adequatgly near-normal behavior. Hence

!
there is a need to include the asymptotically negligible term in (1.1) at

the same time that the asymptotic distribution theory is to be used.

Consequently, in the interest of the conservatism of any subsequent test of



the null hypothesis of no difference in rates, the proposed estimate of

Var[U,] is

vy = 2(n=2) El . L 62 . (2.3)
n n
() ()

It seems clear that VU should be superior to the usual consistent estimator

of the asymptotic variance, which will be denoted by VA = 4(;/n.

From (1.2) and (1.3) it can be seen that the jackknife variance
estimator, VJ = S?/n, is larger than the first term in (2.3)
by a factor of (n-1)3/(n-2)3. At n=10 this is (9/8)3 = 1.424. This 42%
inflation is not unreasonable in that VJ does represent an estimate of
Var[Un]. Consequently, in this small sample setting VJ may well be

competitive with VU.

Since VU does represent a greater computational burden, a simulation
was performed to examine the issue of which is to be preferred. The
U-statistic of degree two that is the subject of the Monte Carlo

experimentation is

st_}__
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The design and various analyses of the simulation are reported in the next

section.



Before we examine the Monte Carlo results, a fourth alternative
approach should be considered. Following an approach similar to that for
the construction of EZ’ one could define an unbiased estimator

of C1=E[hjohj3] - Y2. Consider

-~ 1 * 1 * :
G, =— I ZIZZZh(X,,X,,X)=-—ZICILILCZIh (X, X, X)),
L nliqek © 11Tk n, i<j<k<L i,%3, %%, "
() ¢)
3 4
where h: is the symmetric kernel for terms with one overlapping

argument,

y =L [n h ]

130k T PiiPae * BikPik

and h: is as in (2.1). This is the natural U-statistic for
mentioned by Callaert and Veraverbeke (198l). It is reasonably easy to
construct examples for which El < 0. It is even more disturbing that the
same such example can produce a negative estimate for Unz when 61 and
EZ are substituted in (l.1). 1In 10,000 simulations with U, = s2, n=10 and
standard normal data these outcomes occurred several times. For this
reason (coupled with the fact that this unbiased estimator of onz also had
a larger MSE than VU) the estimator El cannot be recommended and is not
included in the comparisons in Section 3.

Finally, one might consider applying the bootstrap to this variance

estimation problem. This setting provides an illustration of problems For
!

which the resampling approach is unnecessary. In other words, one can :

evaluate directly the functionals u(F) = Y and dz(F) at the empirical



distribution function, F,. However, note that the bootstrap estimate of Y

is not identical to U,, but simply

Y = Ifh(x,y)dF (x) dF (y) = + £ £ h(X., X.)
n n 21 j i’ 7j
n

This is what Serfling (1980) calls a V-statistic and demonstrates its
asymptotic equivalence to U,. Some care should be taken with evaluation of
the kernel whenever i = j. Technically this is not permissible. However,
one might simply define h(x,x) = 0. This occurs automatically for s2 but
not for other U-statistics such as the Wilcoxon Signed-rank, where hij =
I(X; + Xj >0) =1 1if X; + Xj is positive and zero otherwise. Even if such
technicalities are handled, it does not appear that anything fundamentally
new results from the consideration of the bootstrap estimator, oz(Fn).
This leaves open the possibility however, that more sophisticated
bootstrapping (or iterated bootstrapping) involving percentiles of
studentized U-statistics may yield competitive approximate confidence
intervals.

Before examining the results of some small sample experiments it
should be noted that the techniques of this section can produce
straightforward extensions for U-statistics of degree greater than 2. For
example for m = 3 the unbiased estimator ﬁ3 would be similar to
(2.2). The major alteration being that k* would be of degree 6. The more
importantfcorrection term would involve (Cg. However, it is! not clear that

|
the additional computational effort will produce better intLrvals and
tests, even though there may be an improvement in the traditional

performance criteria for the point estimators of Var(Up).



3. Small Sample Efficiency and Validity

The numerical results in this section were produced by a Fortran
program using IMSL routines on an IBM 3081-D at Southern Methodist
University. The primary experiment involves sampies of size n=10 from a
standard normal for which there were 10,000 Monte Carlo repetitions. The
U-statistic of interest is the sample variance (2.4). For this specific
case the desired quantity is og = Var(S2) = 2/9. The three estimators
examined are: VA, Sen's asymptotic variance estimator; VU a new estimator
(2.3) having a direct unbiased estimate of the second order term; and VJ,

the jackknife.

Each of the 3 estimators were evaluated for each of the 10,000
replications. By taking this natural blocking of the experiment into
account the sensitivities of the various comparisons among the competing
estimators is better than the usual summary tables of means and standard
errors would suggest. To capitalize on this matching condition it is
necessary to accumulate magnitudes and directions of the errors in each
estimator as well as pairwise differences in their squares. These and
other performance criteria from 1000 subsets of 10 pooled samples were also
analyzed for other sample sizes and distributions, but only the n=10,

normal case is reported in detail.

The usual simple comparison of the variance estimators indicates that

1) the bias in VA is in the anticipated undesirable direction and 2) there

10



may be some advantage to VU, since its expectation is closer to the true

value without a substantial penalty in mean square error (MSE).

Estimator MSE Bias
VA .056 -.026
vu .065 -.004
\A .090 .025

The difference between the MSEs of VU and VJ is statigtically significant.
The average of 10,000 paired differences in squared errors differs from
zero by approximately 17 standard errors. However, for any single random
sample of size 10 the estimated standard deviation of this difference is
approximately .l15. Therefore, as always, one may wish to look beyond the

squared error criterion.

With regard to the familiar notion of Pitman closeness, the advantage
appears to switch from VU to VJ. The estimated P[ | VU - ug | >] vI - ng | ]
= .60. Most of these cases of VJ closer than VU occur when VU < VJ < ng
(about 38 out of 60). The second most frequent occurence is ug < Vu < V3
(about 32%Z). Indeed, VU > VJ only about 6% of the time, which would be

consistent with a more conservative performance of approximate tests based

on VJ.

Perhaps the most relevant criterion for comparison of these variance
estimators is the actual significance level of the associated test that
might typically be employed. A conventional approximate test of

Hg: Y = Yg vs. Hj: Y # Yy is to compare the magnitude of Z = (U, -

11



Yp)/(est. Var)? to 1.96. Let ZA, ZU and ZJ represent such statistics
corresponding to VA, VU and VJ, respectively. As the figures below
demonstrate, it is seldom advisable to rely on large sample normality at
n=10.  The actual significance levels may be in the 16 - 20% range rather
than close to the nominal .05. However, the situation is considerably
better for the application discussed in the previ;us section. When the
U-statistics and their variance estimates were pooled across 10 independent
subgroups each of size n=10 the actual levels are noticeably smaller. 1In
the table below error rates for two independent sets of 10,000 are
summarized for each situation. The maximum standard error for the unpooled
rates is < .004. For the pooled case there are 1000 realizations and at

the nominal .05 rate the standard errors are approximately .007.

Test Unpooled Pooled
zA 189 .192 .076  .088 )
ZU .172 .177 .065 .072
ZJ .163 .166 .056 .051

Combining the 2000 realizations of the pooled test, the level for ZJ is not
significantly great than .05 and the other two are. An exact version of
McNemar's test for correlated proportions [Lehmann (1975), p. 268-9]
confirms the significance of the difference between ZU and ZJ. There were
30 instances in which the two tests produced different conclusions and all
30 were that ZU erroneously rejected and ZJ did not.
|

For the same U—sﬁatistic but an exponential population rather than a

normal the outcomes were similar. Although VU had significantly smaller

MSE than VJ, VJ was Pitman closer about 77% of the time and the levels the

12



test based on pocled samples were significantly different favoring the
jackknife. As one might expect, in the presence of greater skewness the
ultimate error rates were not as close to the nominal as in the normal

case.

For the Wilcoxon signed-rank statistic the fundamental U-statistic
estimates P(Xj + X3 > 0). For distributions that are symmetric about 0,
Y = %, and the same grouping and sample sizes were examined in this setting
with normal data. Here VU had the smallest MSE of the three. 1In contrast
to the previous two examples, VU was Pitman closer than VJ in about 65% of
the samples. Nevertheless, consistent with the earlier cases of ZJ was the
superior approximate test. The observed error rates for the pooled

versions of ZA, ZU and ZJ were. .092, .076 and .054, respectively.

For examination of the bootstrap estimators of Var([U,], the associated
V-statistics and an unbiased modification see Lee (1985). 1In that article
it may be seen that these two estimators and VJ have variances that are
equal up to 0(n~3). However, the three differ with respect to bias. In a
small simulation study reported there, one sees that while VJ may not be
the preferred point estimator of Var{U,], it yields a studentized quantity

with better validity of approximate confidence intervals for Kendall's rt.

For dertain specific U-statistic problems there will undoubtedly be
! v
special approaches that may be better than. the general approach of

|

studentizing U, - Y with vi¥. For example much has been written about
the effectiveness of approximate symmetrizing or variance stabilizing

transformations, such as log(sz). However, in the present study we have

13



elected not to examine such proposals because they are not generally
available. The conclusion from the studies reported here is that the new
unbiased estimator, ﬁz, in (2.2) provides a worthwhile improvement over

VA. At the same time it must be noted that the ordinary jackknife estimate,

VJ, is easier to compute and leads to superior approximate tests.
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