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ABSTRACT

The nonparametric bootstrap is applied to the problem of prediction in
autoregression. Let {Yt: t=0,+1,+2,...} be a stationary autoregressive
process of known order p. Given a realization of the series up to time t,

(yl,yz,...,yt), a 100(1-o)% prediction interval for Y is desired.

Standard forecasting techniques, which assume that th;+§rror sequence

of the process {Yt} is Gaussian, rely upon the fact that the conditional
distribution of Yt+k given the data is also Gaussian. As a nonparametric
alternative, the bootstrap provides an estimate of the conditional

distribution of Y The method is similar to other applications of the

bootstrap for linégi models due to the residuals being resampled. The
proposed methodology represents a different approach, since an alternative
representation for AR(p) series is used allowing for bootstrap replicates
generated backward in time. It follows that the resulting replicates all
have the same conditionally fixed values at the end of every series.

A simulation which compares the proposed technique with the standard
technique for low-order Gaussian and Non-Gaussian autoregressive models

demonstrates the potential of the bootstrap technique.
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I. INTRODUCTION

An important problem in the statistical analysis of time series is the
following: Given a realization of a series up to time t, what can be said
about the observation at time (t+k)? The methodology presented here i; an
application of the bootstrap to the problem of interval forecasting for
p-th order autoregressive (AR(p)) time series. C(Clearly, this addresses only
one facet of this large problem, but a sufficiently interesting collection
of practical problems are adequately approximated by AR(p).

Initially, the bootstrap technique was used in the\case of independent,
identically distributed (iid) random variables, but recently the scope of
the bootstrap has been extended to include regression and AR(p) models.
Freedman (1981) established the validity of the bootstrap as a technique for
estimating standard errors of parameter estimates in a regression model.
Freedman and Peters (1984a) present empirical evidence that the bootstrap
provides good estimates of standard errors of estimates in a multi-equation
linear dynamic model. Unlike either the iid or regression setting, there is
no well-defined general method for bootstrapping dependent data. Stine
(1982) and Findley (1985) proposed procedures for using the bootstrap to
estimate the mean squared error of forecasts for the AR(p) model. The
methods presented here represent yet a different application of the
bootstrap to prediction in autoregression.

There are several methods available for predicting time series. Pre-
diction intervals, random sets designed to contain the random variable Yt+k’
and an

t+k

estimated variance. Classical prediction intervals for autoregression, (such

can be more informative than a point estimate of the future value Y

as the widely-used Box-Jenkins method,) require specifying the distribution
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of the error sequence associated with the process. The Box-Jenkins pro-
cedure assumes a normal error distribution and can be adversely affected by
departures from normality. Furthermore, these approaches typically do not
attempt to take account of the sampling variability of the estimated
coefficients. This can also lead to lower than nominal coverage of thé
Box-Jenkins prediction intervals.

As a nonparametric alternative, a bootstrap procedure for estimating the
conditional distribution of Yt+k’ given the observations up to time t, is
proposed here. This estimate reflects departures from normality of the
underlying error sequence, and yields a 100(1-o)% prediction interval for
Yt+k' It also captures the additional variability inherent in coefficient
estimation. Such intervals are useful when the series length is short or the
assumption of Gaussian errors may not be justified.

The next section contains a descriptioﬁ of the method for obtaining
bootstrap replicates of the observed series. Section 3 presents an algorithm
for obtaining the bootstrap distribution of Yt+k’ and the bootstrap prediction
interval is defined. Asymptotic justification of the bootstrap method is also
given in Section 3. The last section contains a small sample Monte Carlo
study which compares the relative performances of the bootstrap and Box-
Jenkins prediction intervals for several error distributions. It also reports
a simulation study which provides an empirical illustration of the asymptotic

theory.



II. THE BOOTSTRAP REPLICATE

A discrete time, real valued autoregressive series of known order

p is defined by:

Yt = 8§ + ¢1Yt—1 + ¢2Yt—2 + e + ¢ Y + a

ep + A (2.1)

t =0,21,42,...,

where

(i) {aj} is a sequence of zero mean, uncorrelated random

variables with common distribution function Faand E[a§]=02<w,
and

(ii) 8,¢1,¢2,...,¢p are unknown constants.

First we discuss some general issues that are relevant to bootstrapping

in this context. Assume that the (potentially infinite) sequence of n
observations (yt—n+1""’yt) are available from an AR(p) process. (Due

to our emphasis on conditionally fixing Vi and other previous values, the
device of indexing backward to produce n data values will be used through-
out.) There is no obvious conventional procedure for obtaining a bootstrap
replicate (yi~n+1,...,yt). The various procedures recently proposed in

the literature share the characteristic of resampling the residuals.

Define the i™™ residual by

a; =y - 8 - ¢1yi_1 - e - ¢pyi—p’ (2.2)
i=t,t-1,...t-n+p+1,
where (6,¢1,...,¢p) are the least squares estimates of the parameters.

Since the ay replace the true errors ay of (2.1) in the genferation

of bootstrap replicates, it is important that they provide a good
estimate of Fa. If another estimation criterion other than least
squares is used, then the resulting residuals may not be centered. 1In

this case, centering of the residuals by,



_ t-n+p+1 .

a = z a./(n-p)
. i
1=t

is recommended. Exact results concerning the variance of the a; are
difficult to obtain, but empirical evidence indicates that the
residuals have been deflated due to fittiﬁg (Freedman and Peters,
1984b). Their studies suggest that bootstrap techniques will give
better results if the residuals are rescaled by the factor ETﬁirlﬁ
Let %a denote the empirical cumulative distribution function (cdf) of
the centered, rescaled residuals.

Due to the recursive nature of (2.1), p starting values are needed
in order to generate a bootstrap replicate. Proposals include using
the first p values of the series (Efron and Tibshirani, 1986) or
randomly selecting a block of p adjacent values from the observed
series (Stine). Given the p starting values, the remainder of the
bootstrap replicate would be generated by the fecursive equation

defining the AR(p) process:

* - ~ % Sk ~%
yj = & + ¢1yj_1 F oeee + ¢pyj—p + aj, (2.3)
j=t—n+p+1, . o,t"l’t’
~x . . - -
wvhere aj is a random drav from Faand (8,¢1,...,¢p) are the parameter

estimates in (2.2).
*
As it is usually employed, B bootstrap replicates Yp =

* * 1
(y ye++3¥,.), are needed to apply the bootstrap technique. The

t-n+1 t’b -
method given above has been shown to work well when the problem is
estimation of the standard error of the estimates ¢i’ i=l,...,p.
However, when the bootstrap is used to estimate the actual conditional
distribution of Yt+k’ the above procedure is not applicable. It is

well known that for AR(p) models, the distribution of Yt+k conditional



on all past observations is the same as the conditional distribution of
Yt+k given the last p values. Ideally, for the bootstrap to
effectively simulate the conditional distribution of Yt+k’ the method

of generating bootstrap replicates should:

. * % * R
(i) produce bootstrap realizations Yq0¥pre-es¥p that mimic the
correlation structure of the series being predicted, and
(ii) conditionally fix the last p values; that is, for every

. * * *
replicate, Ve = Ve Yel1 = Vg Yeop+1l = Ye—psl’

There is an alternative representation for stationary AR(p)
series, called the "backward representation,”" in which the process is
generated by a forward difference operator (Box aﬁd Jenkins, pp. 197-
200.) 1In this representation, the random variable Yt is expressed as a

linear combination of future values plus an error term,

Yt =& + ¢1Yt+1 + ¢2Yt+2 +oee. + ¢th+p + e (2.4)

An important result is that the correlation structures of the process
generated by the forward representation (2.1) and the backward repre-
sentation (2.4) are identical. 1In the bootstrap setting, this
"time-reversible" property of stationary AR(p) processes is useful.
Since (2.4) requires the variables y; to be generated backward in
time, a natural choice for the starting values of the bootstrap
replicate are the last p values of the observed series. This provides
a method of generating conditional bootstrép replicates that have the
same last p values of the series and also the same correlation

" structure as the series being predicted.

This section concludes with a description of the new proposal for

obtaining bootstrap replicates. Using the same notation as in (2.2),



the errors ej of the backward representation (2.4) are estimated by

~ -

’.= .-a—“. - .
es=7Y; ¢1yJ+1 ¢py3+p,

j=t-p,t-p-1,...,t-n+1.

~

- Let Fe denote the cdf of the centered, rescaled "backward residuals."

To obtain a bootstrap replicate, set’

*

Yo =,

* 2.5
Year = Ve (2.5)

*
Yips1™ Ye-p+1?

*
and generate the remainder of y by the recursive equations

* % % % ~ %
yj = + ¢1yj+1 + eee + ¢y

oY 54p + ej ) (2.6)

j= t-py..., t-n+p,

* .
where ej are iid from Fe' Hence, a typical bootstrap replicate is

* ¥ * It can be shovn that
(yt—n+1’yt—n+2’""yt—p’yt—p+1""’yt)' can be shown tha
the true error distributions Fa and Fe of the forward and backward
models are the same when they are normal. For non-Gaussian time
series, it is important to make a distinction between Fa and Fe'

An important feature of the forecasting problem has been retained
in the proposed resampling method. Since the last p values of the
replicates are fixed, all bootstrap inference is with respect to the
conditional distribution of Yt+k’ which is the relevent distribution in
the forecast problem. This feature is illustrated in Figure 1, which
shows several bootstrap replicates from a realization of a second

order AR process.



Figure 1:

Six Bootstrap Replicates from an AR(2) process
(8=0, ¢1= 1.75, ¢, = ~.76) -of length n=50,
conditional upon Having the same last p=2
values, Y49 and Y50



IIT. ALGORITHM FOR FORECAST INTERVAL AND ASYMPTOTIC RESULTS

Suppose that observations (yt—n+1’yt—n+2""’yt) are avallable from
* *
an AR(p) process and let (yt—n+1’""yt—p’yt—p+1""’yt) denote a

»

typical bootstrap replicate. A 100(1l-o)% prediction interval for Yt+k

is desired. The proposed procedure begins by calculating a "bootstrap
*

future value" Yt+k for each of the B replicates. For a single

, *
replicate, Y

ok 1S obtained from

* ~% "k % "k ~ % :
Yt+k = & + ¢1yt+k—1+ oo + ¢pyt+k—p+ IR (3.1)

“k Kk
where (8, ¢ ) are the least squares estimates based on the bootstrap

*
data and a is a random draw from F .
t+k a

*
Depending on the lag k, the values Yiikei? i=1,...p, in (3.1) will
be (i) one of the last p values of the bootstrap replicate, or (ii) a
*
bootstrap future value Yt+k' In case (i), due to the conditional

*
nature of the bootstrap data, Yiikei will be the same for each future

*
value that is calculated. Hence Ytikei does not contribute to the
*
variability of the YtEk (b=1,...,B) values. As an illustration,

consider the second order model with k=1. In this case,

* “ % % * % * %
Vo= 8+ Yy + by, g +apq - (3.2)

*
t+1

“k "k "%
determined by the (8 ,¢ ) and a values, which vary with each bootstrap

* * oo . L
Since y, .=y and y, = y., variability in the Y values is

t-1 t-1 t t
replicate. This is consistent with the result that a point predictor
of Yt+k (with estimated parameters) has prediction error variance that
can be decomposed into two parts: (i) variability due to the residual

term and (ii) variability due to parameter estimation.
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* .
For leads greater than one, Yt+k must be calculated in a recursive

manner. In the AR(2) example, for k=2,

* - %

Y ‘8* *Y* %
b= & Yt Syt A,

*
where Yt+1 must first be calculated by (3.2). In this situation, since

N .
Yt+1 is a future value, it will vary with each bootstrap replicate,

*
t+2°

expects the precision of any estimate of Yt+k’ (based on data available

thus increasing the variance of Y This is reasonable, since one

only up to time t) to decrease as the lag k increases.

*1 *B
t+k? " ’Yt+k) ! ,

the prediction limits are defined as quantiles of (the Monte Carlo

Having obtained the set of B bootstrap future values, (Y

*
estimate of) the bootstrap cumulative distribution function of Yt+k'

More specifically, define the bootstrap cdf of Y:+k by
* *
G (h) = Pr {Yt+k < h}
and its Monte Carlo estimate by
Gi(h) = #{Y'2 < h)/B
B( ) = # t+k = }/B.

For a given «, a 100(1-e)% prediction interval for Yt+k is given by

[ G |- [ §).6(1-5) ]

* *_1
where OB = GB .
The following algorithm summarizes the necessary steps for

obtaining the bootstrap prediction interval.

~

Step 1 Compute forward residuals aj and backward residuals ej.
Let Fa (Fe) be the empirical cdf of the centered and

rescaled forward (backward) residuals.
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Step 2 Generate a bootstrap replicate using (2.5) and (2.6)

from the backward representation.

"k Tk "%
Step 3 Compute estimates (& ,¢1,...,¢p) from the bootstrap
replicate. Compute a "bootstrap future value", ,
7 4 % k% s
pek = OB BVt By

j=1 7

*
with yt+k—j computed from this relation as

~

* .
necessary and a a random draw from F_.
t+k a

Step 4 If B bootstrap replicates (and future values) have been

obtained, go to Step 5. Otherwise, repeat Steps 2-3.

*
t+k’

' *
the prediction interval are given by quantiles of GB'

Step 5 Let Gz(-) be the bootstrap CDF of Y The endpoints of

We now present some results about the limiting behavior of the
bootstrap distribution G*(-) that establish the large sample validity
of the proposed prediction intervals. Recall that the bootstrap
procedure contributes in two ways to the pfoblem of estimating the

’ "k Nk
conditional distribution GY ‘Xﬁ-). First, the estimates (& ,¢ )

provide information about tg;kdistribution of (%,é). The resampling of
of %a contributes a second source of variability in the future values
Yt+k' One would hope that as the past becomes infinite (n — ) the
estimates (%*,éf) converge appropriately tp the true parameters ($,¢)

and that Fa converges to Fa' This result is stated formally in

the following theorem.

Theorem 3.1 Let {Yj} be a stationary autotegressive process with

E{a}=0 and E{laa|] < « for some a > 2. Let (yt—n+1""’yt)
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denote a realization from {Yj}. Then, along almost all

sample sequences, as n — «,

i [ 3] [ 5 |

¢1 _ d>1 , in conditional probability,

and
(ii) Y

Proof:
(i) This result follows from Freedman (1985).

(ii) This is a proof by induction. We begin by showing the theorem is

true for k=1. In this case

-

* % % “ %
Yo =8 + iy + .o s ¢pyt+1_p tagq - (3.3)

*

The first term, & , converges in conditional probability to & by part (i).
Consider the next p terms of (3.3). The values (yt"°"yt—p+1) are fixed
and can be regarded as constants. Applying part (i) to these product terms

. ﬁ* * . .
gives ¢jyt+1—jgﬁ ¢jyt+1—j' Thus Yt+1 is a sum whose first (p+l) terms

. *
converge in probability to the constant 6+Z¢jyt+l_j. The last term, a ,

has distribution function Fa’ and Freedman (1985) proved IFa - Fal Q% 0,

or a* d, a. It follows from Slutsky’s Theorem that Yt+1 d, Y

~

41" For k=2,

Y* ‘é* "*Y* “ % "% % 3.4
o2 = O 0T r Bt e H BV o ot By (3-4)

~k_k
Applying Slutsky’s Theorem and the result for k=1 to the term ¢1Yt+1 gives

oiy* 4y 4y By th b v 4y
$1%¢ .1 $,Y,,1- By the same argument as above, Y, , 42"



The induction argument completes the proof. Suppose that the theorem

holds true for leads up to an arbitrary integer, say m-l. Then

Y* %* “*Y* “*Y* ~ %k
t+m * ¢1 tem-1" 00 7 ¢p t+m-p a8
. : “k_* d 4
14

and by assumption (and Slutsky’s Theorem) wg have ¢th+m—j - éth+m—j
for j=1,...,p. Applying Slutsky’s Theorem to each term gives the desired
* y
result, namely Y _Q% Y in conditional distribution. b
t+m t+m 5

Theorem 3.1 can be stated in different terms. It says that the
bootstrap cdf of Yt+k (denoted by G* and obtained by conditionally
fixing the last p values of each replicate) converges weakly to the
true conditional distribution. It follows that Q*(u) — Q(u),
(pointwise for 0<u<l) where 0*= G’k_1 is the theoretical bootstrap
quantile function. 1In practice the endpoints of the interval are
estimates of Q*(oo and Q*(l— %5 since a finite value of B is used.
Convergence in probability of Qz(u) to Q*(u) as B—» follows from the
Glivenko-Cantelli Theorem. Together these results establish large
sample validity of the bootstrap interval. Namely, that the
100(1-o)% prediction limits obtained from the proposed bootstrap
procedure are asymptotically correct, that is,

* *
lim[lim Pr { Li(y) <Y 5U(p}]=1-a
nowo L B B t+k B

The small sample coverage of these intervals may be improved by the
accelerated, bias-corrected intervals proposed by Efron (1987) but this

will not be examined here.
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IV. SIMULATION RESULTS

In this section the results of a simﬁlation study of the bootstrap
prediction intervals are presented. Although asymptotically valid, th
true content of the intervals for finite §émp1es is affected by parameter
estimation, the nature of the error distribution and the form of the model.
Estimates of the coverage and length of the bootstrap interval (BOOT) and
standard Box-Jenkins (ST) are compared. Some additional simulations for
bootstrap intervals with increasing sample size provide an illustration of

the theoretical results of Section 3.

Our attention here will be limited to the following models:

MODEL I: Y = .95¥, , + a,
MODEL II: Y = 1.75Y, , -.76Y, , + a,
MODEL III: Y = -.80Y, ; + a,

MODEL IV: Yt

-'75Yt—1 -.50Y, o +ay

The three error distributions Fa considered are the Normal, exponential and
Laplace, each centered and scaled to have zero mean and unit variance.
These distributions represent the ideal, skewed and heavy-tailed symmetric
alternatives, respectively. VWe consider sample sizes n = 50 and 100 and
leads k = 1,2 and 3.

For each combination of model, sample siée, error distribution and lead
time, sets of M=100 realizations of an observed series are generated and
summary measures of performance are calculated. To estimate the
probability content and average length of the interval (and standard
deviations of these estimates) we

(i) simulate a series of a specified structure, length and error
distribution, and also generate R=100 true future values Yt+k from that

series, using Fa and the true parameter values,
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(ii) use the bootstrap procedure to obtain a 100(l-o«)% prediction
* %
interval to be denoted by (L ,U ) (based on B=1000) and also obtain the
standard symmetric Box-Jenkins interval (LST’UST) with the same nominal

l1-a content (Box and Jenkins, pp. 126-129).

(iii) Based on the simulated sample Xi,»estimate the coverage for
each of the two methods by

“ % * r *
By =H#L <Y ., SUR,
and
° r
B; = #llgp S Yi,p S Ugpd/R,
where Y§+k’ r=1,...,R, are the true future values generated in (i),

and calculate the length of the intervals,

"% * *
L, =U -1,
i

and

Lj = Ugp - Lgp
(iv) Repeat steps (i)-(iii) M=100 times to get a collection of summary
N

measures (Bi,Li,ﬁi,Li) i=1l,...,M, and obtain
% %
6'—‘ ZB'/My

1

SE(B") =([5(8; - BOY/a-n1mt/?

~

—k *
Len = I Li / M,

SE(Len’) =([X(L;- Ten"?/ -1t/ ?

. % % —

The statistics (B, SE(B ), Len, SE(Len )) measure average coverage,
variability of average coverage, average length and variability

of average length for the bootstrap intervals. The measures for the

standard method, (B, SE(B), Len, SE(Len)) are defined similarly.
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Since prediction intervals are random sets designed to contain a random
variable with stated probability, they can:be vieved as tolerance

intervals. The coverage,
*

cw = jU§<a>da - :
L

* *
= Pr [L (X) S Yt+k S U (X)] ]
is a random variable intended to satisfy

E[C(Y)] = B = 1-a

In this case [L*(z),U*(z)] is called a B-expectation tolerance interval.
Note that as a result Pr[C(Y)2B] = v = .50, approximately. In the
simulations reported here, the nominal coverage § = .95 and the

statistic

Y= #( B 2 .95 /M

is computed as a second check on the desired center of the distribution

of the content of the bootstrap intervals. If the true performancé is close

-

*

to the nominal, one would expect y = .50. The sizes M=100 and R=100 for
_ % %
for this experiment were chosen to yield stable estimates B and vy .
“ % * * .

To see this, note that RBi= #{L (y) £ Y§+k €U (y)} is conditionally a

. . . * *
binomial with parameter R and 63, vhere Bi= Pr[L (Xi) < Yt+ks U (xi)]
is the coverage for the ith generated sample. The values of Bi

(i=1,...,M) are conditional upon the sample, Yo and will vary over

the M different realizations. Hence,

M-Var(B)) = Var(g))
E(Var(g; |6,)) + Var(E(§} |8,))
E(8;(1-8;)/R} + Var(g,)

B(1-B)/R + Var(8;), (4.1)

] ]

I
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by Jensen’s inequality. To obtain a reasonable bound on,Var(ﬁi)
consider that ideally the L*(y) and U*(y) are order statistics

of the same distribution. As such, the coverages would follow

a beta distribution with parameters 950 and 51. Of course the ... ... . »
bootstrap future values are not samples of size B from the same
population and thus the variance will exceed that of the beta. -

The actual distribution is unimodal and concentrated between

.75 and .99. Hence, a workable approximate bound on Var(Bi)

is provided by a beta with parameters 90 and 10, which has variance

of approximately .0009. For the nominal B the choice R=100 is large
enough that the second term of (4.1) dominates. The cost of increasing
M greatly exceeds the cost increasing R, and a large value of M is required
to obtain a good estimate ;f The values M=100 and R=100 yielded
anticipated standard errors for B*and ; of .004 and .05, respectively.

The bootstrap interval for a =.05 is

*(25) *(976) ]
[ Yt+k ! Yt+k !
where [Ytii?...,YtEiooo)] are the ordered bootstrap future values.

The 95% normal-theory (ST) prediction interval endpoints (LST’UST)
are given by
"9 k-1 . .1/2

Y (k) £ 1.96 [Ua"zo Y ] ,
j=

where %t(k)=é+2v%j§t(k—j) and the ;3 weights are calculated from the
relation Y(B)=®_1(B) (see Box and Jenkins, pp. 132-138.)

Some results are presented in Table 1 and Figures 2-5 for sample size
n=50. When the error distribution is normal, the nonparametric intervals
compete well with the normal theory interQals. For the Laplace distribution,

" ‘the bootstrap intervals consistently have better estimated coverages
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TABLE 1. Simulation results for MODELS I & II

(Nominal coverage = .95, Sample size = 50)
Coverage Length
Distri-

Model Lead bution 1Interval Avg SE Avg SE Y
Normal BOOT .935 .0036) 3.912 .0461) .46
ST .934 .0037) 3.835 .0419) .42

Expon BOOT .938 .0064) 3.793 .0953) .56
ST .931 .0046) 3.764 .0802) .49

Laplace BOOT .932 .0045) 4.313 .0938) .45
ST .924 .0045) 3.861 .0640) .35

Normal  BOOT .900 .0058) 5.860 .0782) .24
ST .903 .0058) 5.990 .0797) .27

Expon BOOT .895 .0086) 5.787 .1344) .34
ST .903 .0072) 5.787 .1260) .32

Laplace BOOT .898 .0067) 5.892 .1021) .23
ST .898 .0067) 5.828 .0979) .24

Normal  BOOT .942 .0036) 4.181 .0551) .43
ST .941 .0036) 4.054 .0484) .42

Expon BOOT .949 .0069) 4.223 .0936) .63
ST .941 .0033) 4.030 .0760) .36

Laplace BOOT .940 .0041) 4.708 .0697) .37
ST .928 .0038) 4.000 .0565) .25

Normal  BOOT .810 .0163) 12.100 .2066) .13
ST .796 .0182) 11.472 .1835) .09

Expon BOOT .864 .0157) 12.556 .3334) .22
ST .837 .0129) 12.033 .2815) .29

Laplace BOOT .829 .0148) 12.100 .2632) .12
ST .817 .0160) 11.107 .2260) .04

ST-Standard Box Jenkins Interval
BOOT-Bootstrap Interval
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with slightly longer lengths than the standard method. Figures 2-5 clearly
illustrate the negative effect of increased lead on coverage for both
methods. Simulations with different sample sizes yielded similar results
concerning the relative performances of the two methods. »

Note that Models I and II (Figures 2 and 3) have parameters close to
the region of stationarity and the parameters of Models III and IV are well
within the region of stationarity. It appears that there is no significant
difference (regarding estimated coverages and lengths) between the two
classes of AR(p) models. Among all simulations, the difference in coverage
and lengths for the two methods is most apparent for the models not near
stationarity (Figures 4 and 5) with exponential error distribution and
n=100.

The simulation study is designed to yield standard errors of the average
coverage (B*) of .004. For the two symmetric error distributions the
standard errors presented in Table 1 for lead-1 intervals are close to .004,
and the standard errors generally increase with lead. The ;* values |
indicate that the Beta approximation for the distribution of the.coverages
is appropriate for the lead-1 intervals with symmetric error distribution.
Note that for the bootstrap lead-1 intervals, ;*>.50 and B*<.95, suggesting
coverage distribution that is skewed.

According to the theoretical results of the previous section, the
sequence Ei , n=24,50,75,100, should tend towards .95, for all error
distributions. This is illustrated in Table 2, which presents coverages and
lengths for the lead-1 bootstrap prediction intervals. As n increases, the
estimated coverage increases (and the standard deviétion decreases.) The

average length of the intervals does not change significantly with sample

size, but variability in the lengths decreases with increased sample size.
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TABLE 2. Coverages and lengths of the Lead-1 BOOTSTRAP Prediction Interval
for increasing sample sizes

Distri- *
Model bution n Avg SE Avg SE - y
I Normal 24 .920 (.0061) 3.933 (.0674) 39
50 .935 (.0036) 3.912 (.0461) 43
75 .936 (.0038)  3.937 (.0440) 49
100 .937 (.0035) 3.905 (.0359) 45
Expon 24 .933 (.0094) 4.321 (.1643) 50
50 .938 (.0064) 3.794 (.0938) 56
75 .960 (.0043) 3.961 (.0856) 73
100 .960 (.0048)  3.922 (.0559) 62
Laplace 24 .916 (.0061) 4.237 (.1143) .34
50 .932 (.0045) 4.313 (.0938) .45
75 .936 (.0037) 4.263 (.0707) .46
100 .940 (.0031) - 4.193 (.0653) .50
II Normal 24 .902 (.0098) 4.047 (.0803) 34
50 .942 (.0036) 4.184 (.0551) 43
75 .946 (.0049) 4.169 (.0423) 52
100 .950 (.0029) 4.083 (.0393) 48
Expon 24 .903 (.0122)  3.980 (.1047) 45
50 .949 (.0069) 4.223 (.0936) 63
75 .965 (.0033) 4.032 (.0775) 72
100 .965 (.0042) 4.219 (.0878) 77
Laplace 24 .914 (.0056) 4.300 (.1110) .24
50 .940 (.0041) 4.708 (.0697) .37
75 .952 (.0029) 4.516 (.0679) .54
100 .953 (.0028) 4.613 (.0803) .50
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The greatest improvement in coverage occurs when n is increased from 24 to
50. The low coverages for n=24 may be due in part to the least squares
estimates, which can exhibit severe bias when the series is short and the
parameters are close to nonstationarity. Simulation results for other, first
and second order AR models were very similar to those presented in Table 2.
The proposed bootstrap methodology provides a useful nonparametric
alternative to the widely used Box-Jenkins procedure. However, low
coverages for some small sample simulations may indicate the need for
refinement of the bootstrap intervals. A modified bootstrap prediction
interval based on Efron’s bias-corrected percentile interval is currently
under study. Preliminary results indicate that correcting the bootstrap
distribution of Yt+k for bias can improve éoverage without increasing
length. Smoothing of the empirical distributions of the residuals before
resampling also has the potential to improve the observed coverage. Ve are

also investigating the performance of the bootstrap interval for ARMA(p,q)

models.



24—

BIBLIOGRAPHY

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting
and Control, San Francisco: Holden-Day.

Efron, B. (1987). "Better Bootstrap Confidence Intervals," to appear in
Journal of the American Statistical Association.

Efron, B. and Tibshirani, R. (1986) "Bootstrap Methods for Standard
Errors, Confidence Intervals, and Other Measures of Statistical
Accuracy," Statistical Science, 1, 54-75.

Findley, D. F. (1984). "On the Use of the Bootstrap to Obtain Estimates
of Mean Square Error for Multi-Step-Ahead Forecasts of Short Time
Series from Autoregressive Processes," Technical Report, U.S. Census
Bureau.

Freedman, D. A. (1981). "Bootstrapping Regression Models," Annals of
Statistics, 9, 1218-1228.

Freedman, D. A. (1985). "On Bootstrapping Two-Stage Least-Squares
Estimates in Stationary Linear Models," Annals of Statistics,
12, 827-842.

Freedman, D. A. and Peters, S. C. (1984a). "Bootstrapping an Econometric
Model: Some Empirical Results," Journal of Business and Economic
Statistics, 2, 150-158.

Freedman, D. A. and Peters, S.C. (1984b). "Bootstrapping a Regression
Equation: Some Empirical Results," Journal of the American Statistical
Association, 79, 97-106.

Stine, R. A. (1982). "Prediction Intervals for Time Series," Ph.D.
Dissertation, Princeton University.






UNCLASSIFIED
SECURITY CLASSIFICATION OF TH1S PAGE (When Data Entered)

READ INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
SMU/DS /TR-201
4. TITLE (and Subtitle) . 5. TYPE OF REPORT & PERIOD COVERED

Bootstrap Prediction Intervals for Autoregression Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

Lori A. Thombs and William R. Schucany NO0O14-85-K-=0340

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ROGRAM ELEMENT, PROJECT, TASK
Southern Methodist University REA & WORK UNIT NUMBERS
Department of Statistics NR 042-479

Dallas, Texas 75275

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research March 1987

Arlington, VA 22217

13. NUMBER OF PAGES
24

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of thia report)

~

15a. DECLASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document has heen approved for public release and sale; its
distribution is unlimited. Reproduction in whole or in part is permitted
for any putpose of The United States Government.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessar: and identify by block number)

Forecasting; Non-Gaussian Time Series; Resampling

20. ABPSTRACT (Continue on reverse side if necessary and identify by block number)

The nonparametric bootstrap is applied to the problem of prediction in auto-
regression, Let {Yt: t=0,+1,+2,...} be a stationary autoregressive process of
known order p. Given a realization of the series up to time t, (yl,yz,...,yt),
a 100(1-a)7% prediction interval for Y., is desired. Standard forecasting
techniques, which assume that the error sequence of the process {Yt} is
Gaussian, rely upon the fact that the conditional distribution of Yi4i given
the data is also Gaussian. As a nonparametric alternative, the bootstrap

DD 13‘25”73 1473 EDITION OF 1 NOV 65 |S OBSOLETE

UNCLASSIFIED
S/N 0102- LF-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)




20,

provides an estimate of the conditional distribution of Y +k+ The method is
similar to other applications of the  bootstrap for linear models due to the

residuals being resampled. The proposed methodology represents a different
approach, since an alternative representation for AR(p) series is used
allowing for bootstrap replicates generated backward in time, It follows
that the resulting replicates all have the same conditionally fixed values at
the end of every series, A simulation which compares the proposed technique
with the standard technique for low-~order Gaussian and Non-Gaussian auto-
regressive models demonstrates the potential of the bootstrap technique,



