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1. Introduction. The development of diagnostic methods to accompany
statistical estimation techniques represents an important area of statistical
research. A focal point for the study of such techniques is least-squares
estimators for linear regression models for which a plethora of diagnostic
measures are now available. The objective of this note is to show that there
are parallels of the diagnostic indicators currently used for linear regression
models which are applicable to a more general class of estimators that includes
ordinary leaét-squareé estimators, ridge regression estimators, and several
variants of smoothing splines.

The estimators to be considered can be described as follows. Let

(Ei,yl), cees (E;,yﬁ) represent n observations on a response variable y and

a g-vector of independent variables u'= (u cees uq). The Yy and u, are

1’
related by

1i=1, ..., n, (1)

y =u(gi) + €

i i’

where p 1s an unknown regression function and the ei are zero mean, uncorrelated,
2

random errors having common variance ¢ . The objective is to estimate n. To

do so we suppose that associated with each githere is a known p-vector, Ei’

and coefficients, E, - (31,...,Bp), such that iig either eqﬁals or represents

an approximation to p(gi). Penalized least-squares estimators are then

obtained by minimizing the criterion

-1 ® 2
n I (y, - x'8)" + AB'GB, A 20, (2)
i=1 1 T o

for some specified positive semi-definite matrix G. If X' = [51, ey En]

has full row rank the unique solution is

B(A) = c(l)y (3)



(o]

with

c(A) = (X'X + mag) " ix

and y' = (yl, e yn).

The estimation framework from which (2) and (3) derive 1s sufficiently
general to encompass many estimators used in practice. Tor example, if

p(gi)A= giﬁ and x, = L (3) is a generalized ridge estimator. Thus, the

i
estimators under consideration also include ordinary least-squares
estimators for linear models. Oth;r examples are provided by several
variants of smoothing splines. The latter case is somewhat complicated
and, therefore, the details are relegated to Section 5. The reader
wishing more motivation may wish to glénce ahead to that section.

To develop diagnostics appropriate for use with E(X) we propose a
Bayesian approach which begins by recognizing that the estimator is a
Bayes estimator (see, e.g., Lindley and Smith 1982 and Leamer 1973) when,
conditional on g, y ~ Nn(Xg, 621), and the log of the prior density
for B is, apart from an additive constant, - nlﬁ'Gﬁ/Zaz. (Note that G may

be singular in which case the prior is partially improper.) Thus E(X) is

the posterior mean of B for this model and

V(gly) = E[(B - B ~ B '1y] = o?(x'x + mo) L. (4)
Identity (4) represents an extension of the usual form (A = 0) for variances
and covariances for least-squares estimators. It plays an important role in
the developﬁent of influence measures in Section 4.

To study residuals we use the predictive or unconditional distribution of
y (see Box 1980 and references therein). Using this approach it is found

that the vector of residuals,

o) = (e, (), «vvy e ) =y - XED,



has variance~covariance matrix

V(e(D)) = (I - H(L)), (5)
where

"H(L) = X(X'X + nxc)"IX' (6)

is the hat matrix for estimator (3). When A = 0 identity (5) reduces to the
usual form for variances and covariances of residuals for least-squares
estimators for linear regression models.

6ur treatment of E(l) as a Bay;s estimator raises questions about the
interpretation of (4) and (5) when B cannot be assumed stochastic. First
we should note that there are cases, such as the émoothing spline setting,
where the Bayesian formulation can be regarded as an approximation to the
truth even when u is not random (see Blight and Ott 1975, Wahba 1978,
Wecker and Ansley 1983, Steinberg 1983 and Eubank 1984a). Draper and Van
Nostrand (1979) conclude that ridge regression should only be used if the
Bayesian model is appropriate or it is known that B'GB < c2 for some known
constant c. The latter case can be well approximated by the Bayesian model

with X chosen appropriately. Another interpretation can be obtained

through consideration of the risk, R(A) = n-IE:.IE(u(gi) - Ei E(l))z-

*
For smoothing splines Wahba (1983) argues that when A is the minimizer of

* . *
R(A) we should have R(A ) = uztzﬂlhii(l )/n, where hii(l) is the ith

diagonal element of (6). A heuristic argument leading to a similar con-
clusion can also.be advanced for ridge estimators. This suggests that when
the Bayes assumptions are not valid and A is selected in an optimal fashion
(i.e., to minimize the risk) the use of (4) or (5) is in the spirit of

using mean squared error rather than variance to assess the accuracy of a



biased estimator. It should be emphasized that the arguments for this view-
point are heuristic andvmore research is required before theoretically exact
statements can be made. At present we merely view this as an indication
that when using our methods where the Bayesian assumptions are not tenable
one should choose A in an optimal fashion.

In what follows we assume that A in (2) has been specified a priori.
Thus, our objective is detection of difficulties in the fit for a given
value of A. From the Bayesian viewpoint selection of A is tantamount to
selection of a prior. Thus it is necessary to have a specified value for X
before diagnostic (or inferential) analysis can be conducted. In practice,
A may require estimation from the data which can be viewed as an empirical
Bayes approach. Various methods for selecting an optimal value of A are
discussed in Golub, Heath and Wahba (1979) and the references they cite.

Two further points should be made before proceeding. The first is that
we are concerned with the detection of influential data rather than how to
rectify any problems that might be discovered. Possible solutions to fit
difficulties include M-estimation techniques which parallel those in
Anderssen, Bloomfield and McNeil (1974), Huber (1979), Utreras (1981) and
Cox (1983). The other point is that the diagnostics derived from our
Bayesian approach are certainly not the only possibilities. For example,
Wendelberger (1982) has found normal probability plots of residuals to be

useful with smoothing splines,

2. Residual Diagnostics. In view of (5) a natural scaling of ei(k)

is provided by

£, (0,0) = e, ()/o {1 - b (W},



where hii(k) is the ith diagonal element of II(A) in (6). In practice ¢ will
usually be unknown and require estimation from the data. Two possible estimators

are discussed below.

An estimator of 62 which is unbiased under the Bayesian model i1s provided by
2 n 2 A
s“(A) = I7_je, (V) /ex(1 - HOV)) (7)

where tr denotes the matrix trace. This estimater generalizes the usual
estimator of 62 for least-squares estimation from linear models with tr(I - H(}))
now assuming the role of degrees of freedom. It has been used by Wahba (1983)
with good results in the context of spline smoothing.

In scaling residuals it is often advisable to remove the influence of the

residual under study from the estimator of 02. An estimator which accomplishes

this is
2 2
(@ = L (e + (e Ak () - 1 = exll(y WD, ()
where
A\ 2
tr{H(i)(x)].s jii[hjj(k) + hij(k) /(1 - h ;ON].

It follows from the Deletion Theorem in Section 4 that a?i)(k) is the estimator

uz(k) computed from the data when the observation (gi,yi) has been deleted.
Using estimators (7) and (8) one obtains studentized residuals and

studentized deleted residuals ti(k,u(k)) and ti(l,u(i)(k)). By analogy with

ordinary linear regression the ti(k,u(k)) and ti(k,u(i)(k)) might be compared
to critical values from Student's t distributions to detect points where the
fit is inadequate. Approximate degrees of freedom for these statistics are

provided by tr(I - H(1)) and n - 1 - tr{H(i)(k)], respectively.



3. Leverage. The diagonal elements of the hat matrix (leverage values)
provide important information about the presence of extreme observations for
the independent variables when least-squares estimators are used. This is
due, in part, to the fact that leverage values provide measures of distance
between the rows of the design matrix and the center of the data (assuming a
constant term is included in the model). In this section we show that the

elements of H(L) = {hij(k)} possess similar properties as their

i,j=1,n
linear regression counterparts and, hence, provide useful diagnostic
information.

If1=(1, ..., 1)' is an eigenvector of H(L), i.e., H(A)1l = §1, then

hii(k) has a distance interpretation since

hy () = (x; = D'X'X + nA&) Tz, - B + 60, (9)

ii i

where g = n-lx'l. Thus, in this case, hii(k) represents an assessment of
the departure of .9 from the centroid (g) of the data. Although X, is

a function of u;, a large hii(k) may or may not correspond to an extreme u,.

This presents no conceptual difficulties because p(gi) is being approximated
by §£§ and, hence, it is extreme values of the X rather than the u;s
which will cause estimation difficulties.

Even when (9) is not satisfied the leverage values hii(k), i=1, ..., n,
still provide diagnostic information as a consequence of the following theorem
whose proof follows by use of the singular~value decomposition for X and the

Cauchy-Schwarz inequality.



Theorem 1. Let Ll denote the smallest eigenvalue of (X'X)-IG and let

hii(o) = lim hii(l). Then

Ao
-1 3
By (01 € (1 + oAb [hy (0)h,,(0)] (10)
and
hii(m) < hii(l) £ hii(o) . (11)

Also, h. (X) = 1 if and only if xiB(A) = y,.

Theorem 1 has the implication that the elements of H(A) satisfy
-1 »S hij(k) €1 and O £ hii(l) €1, just as with least-squares estimators.
Since the extreme case hii(l) = 1 corresponds to estimation of p(gi) by i
we may infer that large leverage values are indicative of sensitive points in
the design where an observation will fend to dominate its own fit. The bound
(11) provides a useful benchmark for the determination of large leverage

values for penalized least-squares estimators.

4. Influence measures. One approach to the assessment of influence involves
the use of various summary statistics computed from an estimator's sample
influence curve (SIC) (e.g., Cook and Weisberg 1980). The SIC for E(X) is

defined by

where E(i)(l) is the estimator of 8 computed from the data set with

(ui,yi) deleted. A closed form expression for (12) is provided by the

following theorem.



Theorem 2 (Deletion Theorem). For fixed A and z let §(\,z) denote the

minimizer of n_l{ - Ejﬁ)z + (z - Eiﬁ)z} + AB'GB. Then,

Ej#i(yj
and

Eiﬁ(iSX) =y, - e,(M)/(1 - hii(k)) . (14)

The procf of the Deletion Theorem parallels that of Lemma 3.1 in Craven
and Wahba (1979). One conseqguence of the theorem is that the estimator
E(i)(k) can be obtained by applying C(X) to the original response vector

y with yi‘replaced by (14). Thus,
§l§i = (n - 1) gi(l)ei(l)/(l-- hii(l)) ’

where gi(k) is the ith column of C()\).

To develop a general framework for asséssing influence we now proceed as in
Cook and Weisberg (1980, 1982) and consider the subset of ¥F defined, for a

given positive definite matrix M and comstant m > 0, by
. p o1 2 .-1
LM,m) = {2 ¢ RP: A'M I < [(a-1)%m] 7'},

To each 3 ¢ L(M,m) there corresponds a linear functional A'B(A). The
maximum impact of the ith observation on the functionals in L(M,m) is then

measured by

o, (A, M,m) sup {L'glgilz
' LeL(M,m)
2 02 '
ti(x,c) = Pi(X,M) s (15)



.where.Pi(k,M) is the potential defined by
o 5! ' -1 ' =1 -
Pi(l,M) Ei (X'X + nAG) "M(X'X + nlG) Ei/(l hii(k)) .

By choosing M and m appropriately in (15) a variety of useful diagnostics

can be obtained. In view of (4) one obvious choice for M is M = (X'X + nAG).

02
(1)

m= ofi)(k) one obtains penalized least sguares versions of influence measures

By then taking m = uz(k) tr{H(V)], m = ) te{HOAW) Y/ exlI - H(A)) or
diséussed by Cook (1977), Atkinson (1981) and Belsley, Kuh and Welsch (1980).
Alternative choices for M and m can be proposed through similar arguments to
those in Cook and Weisberg (1982) (see, e.g., their Table 3.5.4). Still other
choices may be suggested by the specific estimator under study and the type of
diagnostic information that is desired.

We note in passing that the close connection between the SIC and jackknife
standard error estimates (see Efron 1982) has the implication that measures of
accuracy associated with E(k) can be developed using results in this section.

This point will not be pursued further here.

5. Examples. In this final section we apply the results of Sections 2-4
to several classes of penalized least-squares estimators. The first example
represents an extension of work by Eubank (1984b, 1985) and gives a partial
answer to a question posed by Wahba (19843) regarding the applicability of

regression type diagnostics to partial splines.
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i 9 Vo= =
5.1. Partial splines. Suppose ui (Bil’ cees Bygs Zyqs e zik’)

f' = (f(ﬁl), vens f(gn)) for some unknown function f, 2' = [El’ .eos En}

and ¢' = (cl, cevs cn). If £ is sufficiently smooth an estimator of u(u)

can be obtained by minimization with respect to f and ¥y of

-1
n

Nt

(yi - f(gi) -z 1)2 + AJ(f,£), (16)
i=1 :

where
m
' 3 £(s)
m! =
J(f,g) = I —— e - — ds .
L. ! 1 d
1 d asl ees asd

When formulated in the appropriate function space and under certain restrictions

on S;, -.us En and Z there is a unique solution to this problem which

provides an estimator of p that is known as a partial spline. Details ean be
found in Wahba (1984a,b, 1985) (see also Shiller 1984). GSpecial cases of
these estimators include univariate smoothing splines (d = 1, k = 0) and
multivariate thin plate smoothing splines (d > 1, k = 0).

It follows from results in Wahba {1984b) that there are functions Bl(g),
cees Bn(g) such that the minimizer of (16) has the form nk(g) =

n

zj=leij(§> + z'y. General expressions for the Bj can be deduced from

Wahba (1984b). We merely note that the linear span of the Bj includes
polynomials of arder m in s. Substituting the form for Hy into (16) and

minimizing with respect to 8' = (8', 7') reveals that the minimizer

coincides with (3) when X = {B,2], for B = {Bj(gi)}i , and

»j=1,n



11

where @ has typical element J(Bi’ Bj).

From a Bayeslan perspective the form of G has the implication that a non-
informative prior is being used for the coefficient vector y. In addition,

d+m-1

Q has rank n - ( d

) » which can be shown to mean that a diffuse prior has

been placed on the "polynomial porfion" of p.
Since the estimator of p derived from (16) fits into the framework of
Section 1 this suggests that the residual and influence diagnostics discussed

in Sections 2 and 4 are appropriate for use with partial splines. With regard

to leverage values, since B(B'D + nXQ)-IB'l = 1 one can show that H(A)1 = 1.

Hence the hii(k) have a distance interpretation and, of course, Theorem 1

holds. Leverage values should therefore provide useful design diagnostics
for partial spline estimators.

Examples of the use of the diagnostics in Sections 2-4 to detect difficul-
ties in multivariate thin plate smoothing spline and univariate smoothing
spline fits to data can be found in Carmody (1985) and Eubank (1985). TFor

other examples invelving some closely related measures see Silverman (1985).

5.2 Ridge regressiem. A generalized ridge regression estimator of p results

from setting x,, = 1 and letting x (j > 1) be standardized predictor variable

11 13
2

values (L x,, = 0, L xij = 1). Ridge regression is usually used to estimate
i i
the standardized regression coefficients for the (p-~1) nonconstant predictor

variables but minimization of (2) does not require that the constant term

be estimated separately from the other regression coefficients.
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The generalized ridge estimators are

P = o Iy - ' -1,
B; =¥ B,y(k) = (X3X, + kG,) "X) ¥ ,

where ' = (8,, B;), X = [1, X, ], ¢ = diag(0,G,) with G, (p~1) x (p-1)
nonnegative definite, and k = n\. Ordinary ridge estimators are obtained by

setting G2 = I:

w™e
(]
<t

Yy = ' -1,
B,(k) = (X3X, + KI) X, ¥ -

Leverage values for both the generalized and the ordinary ridge estimators have
a distance interpretation as in (2).

It is beyond the scope of this paper to discuss selection of the ridge
parameter k. We note in passing the controversy over automated and stochastic
selection of k, the role of standardization, and assumptions underlying
theoretical properties of the ridge estimator (e.g., Draper and Van Nostrand
1979; Smith and Campbell 1980, with discussion). Our interest here is on
ridge diagnostics and their interpretation for a fixed value, k, of the ridge
parameter regardless of how it is chosen.

Efficient computation of the ridge estimates and residuals when observations
are deleted (e.g., equations (13) and (14)) is possible only if the reduced
X2 matrix is not restandardized when the ith row is deleted. S8ince the major
benefits of centering and standardization cited by M&rquérdt (1980) are
essentially retained when one of the rows of the standardized Xz-matrix is

deleted, only the original matrix of predictor variables is standardized in

the following example.
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Cunst and Mason (1980, Appendix A) contains a data set on the gross
national produce (GNP) of 49 countries of the world along with the six additional
socioeconomic indices: an infant death rate (INFD), a physician/population
ratio (PHYS), population density (DEN3), population density measured in terms
of agricultural land area (AGDS), a literacy ﬁeasure (LIT), and an index of
higher education (KIED). Tablé 1 displays regression diagnostics for the fit of
An(GNP) by the six socioeconomic indices. We now present an analysis of this
data using the diagnostics discussed in Sections 2 - 4.

The ridge parameter was estimated as (p—l)GZ/E'(O)E(O) = .08 as suggested
by llcerl, Kennard and Baldwin (1976). This value of k also corresponds to a
relatively stable portion of the ridge trace. Table 1 provides a summary of the
diagnostics which result for the least-squares and ridge regression estimators
for this data. Tor detection of influence we use the measure DFITSi which is
(%) the square root of pi(l, X'X + kI, G?i)(l)) (see Belsley, Kuh and Welsch

.1980).

TABLE 1. Regression Diagnostics for GNP Data, Selected Observations

Least Squares Ridge (k = .08)
Obsn. hii‘ t:i Dl"'ITSi hii ti Dl"'ITSi
BARBADOS .238 -2.026  -1.131 137 -1.929 =769
CANADA .042 2.011 419 .039 2.111 .423
HONG KONG .511 - .107 -.109 471 - .138 -.130
INDIA .558 1.377 1.502 .507 .903 917
JAPAN 049 -2.799 -.633 .046 -2.743 -.602
LUXEMBOURG .084 2.356 .713 .077 2.391 . 690
MALTA 688 1.506 2.236 .262 426 .254
SINGAPORE 632 .562 .736 .516 .632 .653
TAIWAN .178 -2.401  -1.119 .129 -2.475 -.953

v.S. . 490 .804 . 787 447 .951 .855
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With the exception of Malta, least-squares leverage values which exceed
2(p+l)/n = .286 are also large with the ridge estimator using the analogous
bound 2(tr[H(A)]+1)/n = 0.271. Although the ridge DFITS values appear to be
slightly more uniform than those of least squares (e.g., none of the former
are greater than 1.0 in magnitude), four of the five observations which exceed
the bound suggested by Belsley, Kuh and Welsch (1980) 2{(p+1)/n}% = 0.756 for
least squares also exceed the parallel bound 2{(tr{H(l)]+1)/n}% = (0.736 for
ridge regression~-Malta is again the exception—--and a similar comment can be
made about the tj.

Malta is obviously affecting the two estimation procedures differently.

It has high leverage and is influential on the least-squares fit but has

neither high leverage nor an influential impact on the ridge regression fit.

A scatterplot of DENS and AGD3 reveals that Malta lies well off the concentrated
linear scatter (r = 0.97) between these two variates. Thus by lessening the
effect of the strong pairwise correlation between DENS and AGDS on the esti-
mation of the regression coefficients, the ridge estimator i1s also lessening

the influence of Malta on the fit. ALthough the other least-squares and ridge
diagnostics identify equally important characteristics of this data set, com-—
parison of the two sets of diagnostics has provided important insight about
Malta which might have gone unappreciated had 6n1y the least-squares diagnostics
been examined.

Obviously a more complete analysis of this data set is needéd in order to
resolve questions which remain about influential observations. Any thorough
analysis must incorporate prior knowledge about the regression coefficients
and information concerning the intended use of the conclusions which are to
be drawn from the fitted model. These topics are beyond the scope of this
paper; nevertheless, this example illustrates the usefulness of penalized

least-squares diagnostics.
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5.3. Other examples. There appear to be many other estimators to which the
work in Sections 1-4 is applicable. These include various estimators derived
from the context of minimax estimation, discrete smoothness priors and
discretization of smoothing spline estimators. See, for example, Rice (1982),
Shiller (1973, 1984) and Engle et al., (1983). Other illustrations can be found

in work by Allen (1974) and Blight and Ott (1975).
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