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Abstract

A procedure is developed for testing the hypothesis Hg : 6 = 89
against the alternative Hp: 0 # go—for a continuous, univariate
distribution depending on a parameter vector 8. The statistic used for
the test is a sum of squared L-statistics that is asymptotically equivalent
in distribution, under both the null hypothesis and local alternatives, to

the generalized likelihood ratio statistic for testing Hgp.
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1. Introduction. Let Xj,...,X, be independent identically distributed
random variables with common absolutely continuous distribution function
(d.f.) F(x;8), for 6 a pxl vector of parameters. In this peaper a simple
test procedure is developed for testing Hp: 0 = 8g against the composite
alternative Hp: 0 # 0.

One method of testing Hp against Hp, which is appiicable to general
F, is based on the generalized likelihood ratio statistic (G.L.S), A,.

This statisfic is the ratio of the sample likelihood under Hp to the
likelihood function with 6 replaced by its maximum likelihood estimate.
It is well known that, subject to regularity conditions, S, = =2 1ln A,
converges in distribution to a central chi-squared random variable with p
degrees of fréedom when Hg holds.‘ Thﬁs, Sp is frequently used for
testing Hg.

In the present paper a regression framework is utilized to derive an
alternative test statistic, applicable to continuous random variables, that
is aéymptotically equivalent in distribution to S; under both the null
hypothesis and sequences of.local alternatives. The proposed statistic is
a sum of squared L-statistics that; unlike the G.L.S., does not require
parameter estimation. 1It, therefore, has a computational advantage over
the G.L.S. in many cases.

An intuitive development of the test statistic, from the viewpoint of
(continuous time) regression analysis of the quantile process, is presented
in the next section along with our principle asymptotic results. Section 3
contains a discussion of the case when ' = (u,0), a vector of location

and scale parameters.



2. Test Derivation and Main Results. Let f(x;8), for 6 € ©® an open
subset of RP, denote the density function for F(x;68). The quantile
function associated with F is defined by Q(u;8) = inf{x: F(x;8) 2 u},
0 <u <1, and the density-quantile function is £Q(u;8) = £(Q(u;8);8)
(see Parzen 1979a,b for discussions of these function;). When 6 = 89
the notational conventions Qg(u) = Q(u3;8g) and fgQg(u) = £Q(u;8g)
will also be employed.

Let X1, n £ ... £ X 5 denote the sample order statistics and define

the sample quantile function by

’ j=1,...,n. (1)

3 e

Qn(u) = X i-1 <us

j,n’ n
It follows from results in CsSdrgo (1983) that, under appropriate

restrictions,
P
sup | /A £Q(u;0)(Q (w) - Q(u38)) - B(w) | >0, (2)
0<u<l n

where E denotes "converges in probability" and {B(u): 0 £ u £ 1} is a

Brownian bridge process, i.e., a zero mean normal process with covariance

kernel K(s,t) = min(s,t) - st.

Suppose HO: 8 = 30 holds. Then, (2) may be used to justify the
approximate model
/n £,0,(w)Q (u) = VA £5Q(w)Qp(u) + B(w). (3)

The test statistic will be derived, using (3), from a regression analysis

perspective.



To detect departures from H. (i.e., departures from model (3)) we

0

fit, in a figurative sense, the model

p
Jﬁ'foQo(U)(Qn(U) = Qp(w) = ifl 8,£4Q (WD (w) + B(w) , (4)
3Q(u39) th
where D,(u) = —/— and 8, is the i element of
i 8ei i
8=8,
§ = Jn(e - go). This approach closely parallels the goodness-of-fit

method for testing the specificati;n of a nonlinear regression model
pioneered by Hartley (1964) and others (see Gallant 1975).

Model (4) can be viewed as a continuous time regréssion model in the
stochasfic process Y(u) = yn foQo(u)(Qn(u) - Qo(u)) with regression

functions

g, (w) = £,0,(wD (v) , i=1,...,p, (5)

regression coefficients 61, ceey Gp and error process B(u). Our objective

is to test Ho: 61 =0, i=1,...,p.

Parzen (1961, Section 8) addresses the problem of hypothesis testing
in continuous time linear models and derives a test statistic which can be
used for this purpose. Since (4) is only an approximate model his results
are not directly applicable. Nonetheless, we use them to suggest the form
of our test statistic and then give a rigorous justification (c.f. Theorem 1
below) for its use.

By application of results in the proof of Theorem 8A of Parzen (1961)
to the case of a Brownian bridge error process a discretized version of

Parzen's test statistic for model (4) is found to be



S
T =2'I°z, (6)

where Z has typical element

I S A i 3 i
Zg=m "L ogg ( e ‘) 0% ( vy ) R ( n+1 ) "% ( vy ) ’
N

j=1

i=1, ..., p,
and I is the Fisher information matrix, i.e.,

1, .
I = { IO gi(u)gj(u)du}l;’j“1 ..

Ho is to be rejected at significance level o if Tn exceeds its>upper o
level critical value.

Initial inspection may leave the impression that the computation of T,
may be somewhat involved. For most cases of practical interest this is
typically not true, however. It is easy to see that I is the usual Fisher
information matrix evaluated at 8 = 835. Consequently, the elements
of I can be found in the literature for many important problems. Closed
form expressions for the quantile aﬁd density-quantile functions required"
for computation of Z can be found in Parzen (1979a, 1982) for a variety
of standard distribution types. 1In cases where Qp; does not have a closed
form the necessary values can be obtained using, e.g., IMSL subroutine MDFI.

The statistic T, has a representation as a sum of squared L-statistics.
To see this, let 1} denote the symmetric square root of I (assumed positive
definite) and define v(t)' = (g7(t)foQp(t), cees gp(t)foQp(t)) .

By considering the vector of weight functions w(t) = I'%X(t), it is

readily verified that

2
T = ¥ Li s (8)



where

L -/—n-%

in

. ; 1)L 3
L Vi ( n+l ) Qn( n+1) - QO ( n+l ) : (9

j=1

Equations (8)-(9) make it possible to recognize that T, is closely

related to the sums of squared L-statistics studied in a paper by LaRiccia

and Mason (1985)
were derived for
families. While

between the form

which we hereafter refer to as LM. In LM such statistics
the purpose of goodness-of-fit tests for location/scale
our objectives are somewhat different, the similarity

of T, and the statistics used in LM has the consequence

that many of their results carry over to the present setting. We will

therefore rely heavily on their work and refer the reader to LM for a

detailed exposition of results and conditions not specifically described

here.

The asymptotic distribution theory for T, will be derived under Hgp

as well as a sequence of local alternatives. In this regard we make the

following definition.

Definition. Let

B be a fixed, but arbitrary, element of RP - {0}

which satisfies 8 + gp'% € 8 for all n 2 1. Then, any sequence

(n),n
Xy Ha

variables with common distribution function F(-} 20 + Bn

, N 2 1, where the Xin), i=1, ..., n, are independent random

...é.)

, 1s termed

a sequence of local alternatives.

Our principal asymptotic results for T, are summarized in Theorem 1.

For Theorem 1 to

hold two sets of technical restrictions are required. The

first set consists of Conditions B-H of IM which include smoothness and



boundary restrictions for the gj. The second set of restrictions is

provided by conditions (IV) « (V) of LM which assures the correct limiting

behavior for Z. The reader is referred to LM for a detailed development.

Theorem 1. Under Conditions B-H and (IV) - (V) of LM, and the assumption
d

that Z 2 N (0,I) under H_,
£ p = 0

d ,
>
Tn xp(O), under HO ,
mnan 2
where N denotes "converges in distribution" and xp(A) indicates the

noncentral chi-squared distribution with noncentrality parameter A. For
any sequence of local alternatives

d ,
T S x(B'IB) .

A proof of Theorem 1 can be obtained by modifying the proof of Lemma 1}

in LM to make it applicable to the Lj, defined in (9). The key difference

is that, in our case, the Lj, depend on Qn ( ;%T) - QO (_;%T) rather
th&n Qn alone as in the LM paper. Further details of the proof are left to
the reader.

An important difference between our results and those in LM is that
Theorem 1 is applicable to tests of hypotheses about the values of location
and scale parameters. We illustrate this point in the next section.

Our next result indicates the relationship between T, and the GLS.

Its proof is an immediate consequence of results in Wald (1943) and Theorem 1.

Corollary. Subject to the conditions of Theorem 1 and the regularity
conditions in Wald (1943), T, has the same asymptotic distribution, under

both Hy and any sequence of local alternatives, as S, = - 2 1ln A,.



As a consequence of the Corollary we see that T, has the same
asymptotic power against local alternatives as S;. It should be pointed
out, however, that unlike the GLS T, does not require parameter estimation.
In addition, al;hough it is beyond the scope of this paper, by imposing
fﬁrther restrictions, using (8) and the strong representation for linear
combinations of order statistics given in Govindarajulu and Mason (1983), it
caﬁ be shown that T, is asymptotically equivalent in probability to the

Wald statistic, S,.

3. Application to Location/Scale Models. In this section we briefly
discuss the use of T, under a location and scale parameter model. The
test sgtatistic has a particularly simple'form in this case and provides a

natural complement to the estimators of p and o proposed by Parzen (1979a,b).

Let p = 2 and assume that F(x;6) = F0 (ziﬁ ) with = ® ¢ 4 ¢ ® and

0 > 0. Making a slight change of notation, let fO and QO denote the density
and quantile functions corresponding to Fo. Thus, Q(u;g) =+ GQO(U),
fQ(u30) = o-lfoQo(u) and the required functions are gl(u) - foQo(u)/Oo

and gz(u) = foQo(u)Qo(u)/oo.

L
1]
If we introduce the score function Jo(u) = foQo(u)/foQo(u) = (foQo) (u),

the information matrix, I, is seen to have elements I11 = 051 jé Jo(u)zdu,

I,, = 052 [ (1 + J,(wQy(w)%du, and I, = I, = 05° fp (Jo(w) + I (w Qy(w))du.

Thus, for testing HO: (p,0) = (po,oo) versus HA:(u,o) ¥ (“0?°o) we find that



-2 2 2 2
Tn = % (IppZy = 210,212, + 1,20 /(1) Ty, = I75)
where
S S S i =
Zy = -n 151 T \a:7 ) So% \ net Q| nel ¥ =~ %% | 71
and

e T () o () st (2 )+ 0 () ]
g [Qn(a%f)"‘O"’oQO(n—iT)] } '

1]
n
Let E (El, ey En) and V = {vij}i,j-l denote, respectively, the

vector of expected values and variance-covariance matrix for the order

statistics in a random sample of size n from F The vector

0

1 ]
Q= ( QO ( vy} ), ceey Q0 ( nzl ) ) and matrix I are actually

A -
XV 1X, where X = [l,‘gl for

asymptotic approximations to E and oo

1l a nxl vector of all unit elements. Thus, for smaller samples, it may be

useful to replace Q and I by their finite sample analogs when computing T,

for tests about p and 0. Tables are available in the literature from which
E and V can be obtained for several standard distributions.

Finally, it follows from the discussion in Section 2 that for location and
- -~ -~ '
scale models I 1§ is a discrete approximation to (u =- Hqo o - oo) , where

; and ¢ are the optimal estimators of p and ¢ proposed by Parzen (1979a,b).
Thus, for location/scale models, the results of Section 2 provide a hypothesis

testing procedure that can be used to complement Parzen's estimators.
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