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Abstract. It is shown that, under certain restrictions on the
regression function, there always exists a smoothing spline which has
smaller risk than the corresponding polynomial regression estimate or
natural spline of interpolation. The method of proof is seen to imply
a similar result for ridge regression, regarding estimation of the
regression function, which parallels a property of the ridge

regression coefficient estimates established by Hoerl and Kennard

(1970).
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1. Introduction and Summary

Suppose that n observations (tl,yl),...,(tn,yn) are taken on a
response variable y and independent variable t. The observations are

assumed to follow the model
vy = p(ti) + €y » i=1,....,n, (1)

where p is an unknown regression function, the €, are zero mean

uncorrelated errors and the tj satisfy aStl(tz(...<tnSb for finite
constants a and b. In this paper we establish an optimality property
of smoothing splines as estimators of p.

When the true regression function is unknown in (1) a popular
approach among statisticians has been to fit the data with a polynomial
to provide an estimate of . Let m be fixed and define T as the nxm
matrix with ijth entry ti, i=l,...,n, 3=0,..., m~1. Then,the mth

order polynomial regression estimator of u is
m-1 vy =Ly
uw(t) = (1, t,...,t )(T'T) T'y , (2)

where y = (yl,...,yn)' (the meaning of the ® subscript will become
clear momentarily). These estimators have received considerable
attention in the literature and techniques for fitting polynomials to
data are standard fare in first year graduate methods texts (see,
e.g., Ostle and Mensing 1975). The usual motivation for their use is
obtained by first assuming that p admits m derivatives, then using

Taylor's formula to write p as a polynomial plus remainder, and



finally lumping the remainders in with the random errors. However,if p
can be assumed to have m derivatives, another natural estimator of p

can be obtained by minimizing

n 2 b (m), .2
T (y~E(e, )7 + xIa(f (£))%dt, A >0, (3)
jal

over all functions, f, having m-1 absolutely continuous derivatives
and a square integrable m~th derivative. Provided ansm, (3) has a
unique minimizer, By that is known to be a polynomial spline of order
2m with knots at tl,...,tn. It is, in fact, a generalization of
polynomial regression since limkmpx = u, is the polynomial regression
estimate in (2). General discussions of smoothing splines and their
properties can be found in Wegman and Wright (1983) and Eubank (1984).
Another special case of smoothing splines is widely used in the
mathematics community. This is the function which minimizes fgf(m)(t)zdt
subject to f(ti) = yi, i=l,...,n. The solution is the unique natural
spline that interpolates the data and coincides with Boe This
particular function is typically used when the p(ti) are observed with
little or no error since it tends to be quite wiggly with noisy data.
The objective of this note is to show that, under model (1),
there exists values in (0,®) for which 1Y is superior to either the
polynomial regression estimate or the interpolating spline. Define

the estimation risk by

1 2
R(A) =n ~ ¥ E(p(ti) - “x(ti))
i=]1



and note that R(®) = lim R(A) and R(0) are the risk from polynomial
A
regression and spline interpolation, respectively. In the next

section we establish the following.

Theorem 1. Assume that p satisfies condition (5) below. Then there

is a value A ¢ (0,®) such that R(A) < R(w) for all A > A .In additionm,
there exists XO e (0,»), with R(A) < R(0) for all A < XO.
Theorem 1 has the consequence that there are always smoothing
splines which improve upon polynomial regression or spline inter-
polation. Unfortunately, it does not indicate how these estimators
can be found. Note, however, that as a result of the theorem any
value, X, which minimizes R(A) will satisfy both R(X) ¢ R(®) and
R(X) < R(0) and will therefore provide a single estimator with
smaller risk than either Wy OF Kye Thus, in practice, A should be
selected to minimize an estimate of the risk to obtain a good value
for X. One procedure for accomplishing this is provided by gene-
ralized cross validation (GCV). Optimality properties of GCV and the
relationship between GCV and estimation of the risk are discussed,
for example, in Craven and Wahba (1979), Speckman (1984), Cox (1984),

and Li (1983).

2. Proof of Theorem.
The proof of Theorem 1 is elementary but requires the intro-

duction of a specific form for B = (pl(tl)""’pl(tn))" Smoothing



splines are linear estimators and hence there is an nxn matrix H(L)

such that B H(A)y. It follows from Demmler and Reinsch (1975) that
H(}) has the form

H(A) = VD(M)V', (4)
where

V= lgl,...,gnj
is a nxn unitary matrix and D(A) is a diagonal matrix with diagonal

1

entries (1+kdj)_ s 3=1,...,n, for constants dl""’dn satisfying

O=d.=...=d <d_ .<£...8d . The first m columns of V provide a basis for
1 m m+l n

the column space of T.

Using (4), R()A) is seen to have the explicit form

ROD = 0 (peBp)  (uB) + 0 lo Ry, By ) (ny ~By)

n

n
=nly c§(1 f1md)"2 ¢ 0 le? 3 (1na,) "2,
jem+l 4 j=1 .
where ¢ = (cl,...,cn)‘ = V'u. The first statement of the

theorem will be established if R(A) can be shown to be increasing for
A sufficiently large. Since R(A) is continuously differentiable it

therefore suffices to show that there exists Xm e(0,®) with dR(A)/dX

> 0 for all A .
®

Differentiation of R(}X) gives

-1. 2
ROV /AL = n A Y

n
d§(1+Xd y3 - nle? 3
j=m+l

2 -3
(1+)d.) .
j i jomp1 3

Assuming that



cj-XSE#O, j=m+l,...,n , (5)

the first term in this expression is always positive whereas the
second is always negative on (0,®). Thus the choice km =
azlmin (cgd.) will suffice. Condition (5) is unlikely to be
m+l<j<n
violated by most functions of interest. It does exclude regression
functions which are polynomials of order m. This however is not
surprising since, in this case, ¥y, is the minimum variance unbiased
estimator of p and, hence, A = ® minimizes R(A).
The remainder of the theorem follows in a similar fashion. R())

is found to be decreasing for all A <« dzlm%i (c?dj). Notice

1€j%n
that a restriction such as (5) is not necessary in this case.

Observe that the bias squared component of R(}X),
n'IE'(I~H(X))2E, is an increasing function of A, vanishing
when A=0, whereas the variance term decreases to cszn at A = o,
Thus the interpolating spline and polynomial regression estimator
minimize bias and variance, respectively. Theorem 1 can be

paraphrased as stating that it is best to balance these two components

rather than trying to minimize either separately.

3. Application to ridge regression.

Suppose now that p admits the parametric form p = XB for
some known nxm matrix X of rank m$n and unknown parameter vector, B.
The least-squares estimators of B and p are

P -1
= L] ¥
go (X'X) X'y

and



fig = XB,- :
An alternative to least-squares estimators of B and u is
provided by the ridge regression estimates
B, = x'xaD X'y, a0,

and

By = XB-

These estimators were introduced by Hoerl and Kennard (1970) as a cure
for multicollinearity 11ls of least-squares estimators. Hoerl and
Kennard showed that there exist ridge estimators of B with smaller
risk than EO' By following the proof of Theorem 1 and using the
singular value decomposition of X it is easy to establish an analog of
their result applicable to the estimation of p.

Theorem 2. There is a value i, ¢ (0,o) such that if A<X, then

0

E(EX'E) ( EA—E) < E( }10-11) ( }10-15) .

For references on the selection of A to minimize risk in ridge

regression see Golub, Heath and Wahba (1979).
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