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SUMMARY

Diagnostic measures appropriate for use with smoothing
splines are derived and their properties are investigated.
The proposed measures focus on detection of observations
which substantially influence the fit and provide additiomal
information over that obtained from examination of residuals

alone. A numerical example illustrates the technique.
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1. INTRODUCTION

Consider the situation where responses Yqseee»y, are observed

corresponding to values tl""’tn of an independent variable which,

for convenience, are assumed to satisfy

The Y and tj are related by the model

yj = n(tj) + Ej , i=1l,0e.,n , (1.1)

where n is some unknown response function and the Ej are zero mean,
uncorrelated random variables. In this paper we consider the problem
of nonparametric estimation of the regression function n. Diagnostic
methods, similar to those used in ordinary regression analysis, are
proposed and their properties investigated for a particular nonpara-
metric estimator known as the cross-validated smoothing spline.

It will be assumed throughout that n is smooth in the sense

that, for some positive integer m, n belongs to the function class

W?[O,l] = {f:f(j) absolutely continuous, j = 0,...,m~1,

1
i ™ )% < w0} .
0

Under this restriction a natural estimator is the function minimizing

n 1
2l oy (yj—f(tj))z +af ™y, 1o, 1.2)
j 0

j=1
over all f ¢ W?[O,l]. If n > m there is a unique solution to this

problem which we denote by n, . The estimator nk is a polynomial

spline of order 2m with knots at the tj that is’ usually refered to



as a smoothing spline (see, e.g., Schoenberg 1964 or Reinsch 1967).

The parameter A in (1.2) governs the balance between fidelity to
the data (as measured by n—lz?=l(yj—f(tj))2) and smoothness (as
gauged by flf(m)(t)zdt). The extreme cases, A = 0 and «®, corre~
sponded toointerpolation of the data and regression on polynomials
or order m, respectively. The latter instance illustrates one of
the many connections between smoothing splines and polynomial
regression. Expository discussions of the statistical properties
of smoothing splines are provided in Wegman and Wright (1983) and
Eubank (1984a).

Several procedures are available for estimation of the
smoothing parameter, A, from data. The most popular of these
seems to be the method of generalized cross—validation (GCV)
developed by Craven and Wahba (1979). GCV has been shown to have
various efficiency and consistency properties (Craven and Wahba
1979, Speckman 1982 and Li 1983) and, perhaps more importantly,
tends to work well in practice, Other methods include maximum
likelihood type procedures such as that of Wecker and Ansley (1983).
However, results in Wahba (1983b) suggest that :GCV -should, on the
average, work as well (or better) than maximum likelihood methods.

A

Consequently, attention will be restricted to the estimator ny with
A estimated by GCV, This estimator is termed the cross-validated
smoothing spline,

Regression analysts have long recognized that estimators

obtained through minimization of a squared error criterion can be



adversely effected by influential data points. This fact has lead
to the development of an extensive literature on types and uses of
diagnostic measures for regression modeling. Just as in the
regression setting, the presence of the squared error term in (1.2)
has the consequence that influential observations can (locally)
dominate a smoothing spline fit., A dramatic illustration of this
fact is provided by data for the logarithm of the money supply
versus the logarithm of the premium, or discount, on a forward
contract for foreign exchange during the German hyperinflation
(see Frenkel 1977). This data is plotted along with a cross-
validated cubic (m=2) smoothing spline fit in Figure 1 and a
listing of the data is provided in the Appendix. Also plotted

is a smoothing spline fit where the response for August 1922 has
been deleted. The new fit clearly reveals the influence the
deleted response had on the original spline estimate.

The adverse influence that outliers can have on smoothing
spline estimates has been recognized by Anderssen, Bloomfield and
McNeil (1974), Huber (1979) and Cox (1983). Their solution to
such difficulties is the use of robust smoothing splines. In
contrast, the objective of this paper is the development of
techniques for detection of influential data, observations which
significantly impact upon the fit. As noted by Beckman and
Cook (1983) an outlier need not be influential. However, as they
point out, influential observations should be regarded as special
types of outliers. Andrews and Pregibon (1978) call these '"'the

outliers that matter" and observe that if an outlier is not influ-
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ential '"there is. little point in agonizing over how deviant it
appears'. Thus, the results in this paper can be regarded as
providing data screening methodology that focuses our attention
on influential data points which merit closer scrutiny. Further
examination may, or may not, lead to remedial action such as the

use of robust smoothing techniques.

In the next section background material on smoothing splines
is developed that will be required for the sequel. Then, in
Section 3, a variety of diagnostic indicators are proposed for
use with smoothing splines. The use of these measures is illus-

trated in Section 4 through a numerical example.

2. NOTATION AND PRELIMINARIES

Smoothing splines are linear estimators. Thus, there is
an nxXn matrix H()) = {hij(k)} which transforms the vector of
responses, y = (yl,...,yn)', to the vector of fitted values,

A ~

ﬂ)\ = (nx(tl)""’nk(tn))'s i'e"

~

n, = H(M)y .

H()) is known as the hat matrix (Eubank 1984b) and its typical
element, hij(A), determines how much influence yj has on the fit

to vie By analogy with the linear regression setting (Hoaglin and
Welsch 1978) the diagonal elements of H(A) are termed leverage
values. The properties of H()) have been studied by Eubank (1984b)

where it is shown, for example, that O j_hii(A)_i 1.



A specific form for H(A) can be derived from the work of

Wahba (1978). Let T denote the nxm matrix with ijth element

ti-l, i=l,...,0, j=l,...,m, let Ir denote the rxr identity

matrix and define the covariance kernel

m-1 m-1
K(s,t) = fs(t_u) (s—;)
0 (m-1)"!

du, s < t. (2.1)
Then, it is shown in Wahba (1978) that

I -H(\) = mUU'K U + ' o, (2.2)

where U is any nx(n-m) matrix of rank n-m such that U'T = ¢, a null
matrix, and Kn is the nxn matrix with ijth entry K(ti,t.). Since
U'KnU and U'U are positive definite there is a nonsingular matrix

Tr171? Y ] _ oA
B such that B'[U'K U + nAU'U]B = A+nAl _ where A=diag(S;,...,8 )
and the 6j are the eigenvalues, arranged in ascending order, of

1 -1 ' . = . ' =
(') (@ KnU). Set X2 UB and netice that XZXZ In—m and
XéT = ¢. If we now define X = [XlEXZ] as an appropriately

augmented unitary matrix, H()\) is seen to admit the represen-—

tation

H(A) = XD(V)X' , (2.3)

where D(}) = diag(dl(A),...,dn(A)) for dj(k) =1, j =

= 1,e00,m,
dj(A)= 6j—m/(aj—m + n}), {fm+l,...,n.

A representation for ny also follows from (2.3). Let x.

1
denote the unique function in w%[O,l] which minimizes f x(m)(t)zdt

0
over all functions satisfying x(ti) = %y the ijth element of X.

Functions XyseeesX are necessarily polynomials of order m which



span the set of mth order polynomials. The remaining functions are
splines of order 2m with knots at the ti' It can then be shown that

ny(6) = £1_18. (D (0) (2.4)

where

~

B, = (B,(0)5eues8 (D) = DOVX'y (2.5)

(see also Demmler and Reinsch 1975 for discussion of this repre-
sentation)., The elements of Eﬁx) are smoothing spline counterparts
of the coefficient estimates in ordinary regression analysis.
Smoothing splines can be derived and motivated from other
perspectives than minimization of criterion (1.2). For example,
suppose that instead of following model (1.l) the observations are

obtained at "time points" t.,...,t from the stochastic process
1 n
m-1 .
y() = I at] +02(t) +e(e), tel0,1], 0, >0,  (2.6)
j=0
where Z(+) is a zero mean process with covariance kernel (2.1) that
is uncorrelated with the white noise process {e(t); O <t <1}, It
then follows from Kimeldorf and Wahba (1970) that nx(t) with A=02/n0§
is the best linear unbiased predictor of y(t) based on YyseeesY o
A closely related Bayesian model assumes that n has the same
prior distribution as the process
m-1 .
E(t) = % o,t3 + 0 2(t), te[0,1] , (2.7)
. J S
j=0
where the Z process is now assumed to be normal with the same mean
and covariance kernel as before. The vector of polynomial coeffi-

cients, o = (uo,...,am_l)', is assumed to be independent of the Z

process and have an m-variate normal distribution with mean zero



and variance-covariance matrix YIm. In the case of a partially
improper prior, y»w, it is shown in Wahba (1978) that ;A(t)’
A=02/n0§, is the best linear unbiased predictor of n(t).

Models (2.6)-(2.7) do not coincide with the deterministic
response function model (1.1) (see Wahba 1983a for discussion of
this point). They can, nonetheless, be regarded as approximations
to the truth in the sense that the response function is approxi-
mated as far as possible by a polynomial with a stochastic approxi-
mation used for the remainder. This is essentially the philosophy
discussed in Blight and Ott (1975), Wahba (1978) and Steinberg (1983)
and again illustrates the close connection between smoothing splines
and polynomial regression.

It is possible to utilize models (2.6) - (2.7) to obtain certain
identities which indicate some of the formal similarities between
smoothing splines and.ordinary regression analysis. Let

ro= (2 0),eensr D) = [I-HO) 1y
denote the vector of residuals and define
0= (e)seeesn(e )’
Then, under model (2.6), y has variance-covariance matrix
V(y) = GiKn + OZIn. Using (2.2) and recalling that n) = 02/02,

we find that

V(z,) = o’ (1 - HO). (2.8)

This parallels the form for variances and covariances of residuals
from linear regression.
Another identity of interest stems from the Bayesian model

(2.7). It was shown by Wahba (1983a) that



Vo, ly) = L, (o, -n) ' |y] = o HOD . (2.9)

More conventional notation would use V(gjz) rather than V(ﬁﬁlz) in
(2.9). However, we prefer to follow the lead of Wahba (1983a) and
think of UZH(A) as the "variance-covariance" matrix for the vector

of fitted values. From this same perspective we define

V@, |y = oD (2.10)

by using the fact that éﬁ = X‘ﬁﬁ.

To conclude this séction we point out certain formulae for
deleting observations from smoothing spline fits that will be
needed in the next section. Let a&j] denote the smoothing spline
fit, for fixed A, when the observation (tj,yj) has been excluded
from the data. Using Lemmas 3.1 and 3.2 of Craven and Wahba (1979)

it is seen that

n1eey = 3 3B lox, (o) (2.11)
A R 3 i ’ )

where
1110, . 811 00y sD 00 Ty=(r. () /(oh. . ()))e. 1, (2.12)
= 1 seeea P Y i i &5 s (<.

with Ej denoting the jth column of In'

3. DIAGNOSTIC MEASURES FOR SMOOTHING SPLINES

At present diagnostic analysis of smoothing spline fits
consists primarily of examination of plots or normal plots
(Wendelberger 1981) involving the residuals. These forms of

analysis are important and should be included in any diagnostic

package. However, such methods, by themselves, are inadequate as



10

can be seen from the example in the introduction (see also the
analysis in Section 4). The residual corresponding to the 19th
observation is obviously quite small in the original fit and,
hence, its impact on the fit, as indicated by the refitted curve
with this case deleted, would have been missed in plots or exami-
nations of raw (or even scaled) residuals alone., In this section
we derive diagnostic tools designed to highlight such influential
data points. Our philosophy is to justify the form of a diagnostic
by using a convenient model, such as one of those in Section 2, and then
see how it works for a model of interest,such as (1.1). The close
connection between smoothing splines and polynomial regression makes
us believe the '"right choices" for diagnostics should be similar to
those commonly used for linear regression modeling. This wviewpoint
guides the search for appropriate measures and is reflected in much
of the notation and terminology which follows. For discussions of
diagnostic techniques used in linear regression which impact on the
present study the reader is refered to Gunst and Mason (1980, Chap. 7),
Belsley, Kuh and Welsch (1980, Chap. 2), Cook and Weisberg (1982,
Chap. 3), Hoaglin and Welsch (1978) and Velleman and Welsch (1981).
Throughout this section, unless stated otherwise, the value
used for A is taken as K the GCV estimate. The concepts we develop
(although not our simulations) will, of course, apply to other

methods of selecting A. For notational convenience we adopt the

~ ~ A "~

conventions n. = n, B. =8, r. = r, H(A) = H, D(X) =D with

A A A
analogous notation used for the elements of these vectors and

matrices.



Assuming for the moment that o is known, identity (2.8)

suggests using the standardized residuals
T, () = rj/O(l—hjj)l/Z, J=1,eee,m, (3.1)

for detection of responses which do not conform to the fit. The
measures which stem from the Tj(o),when 0 is unknown, will be seen
to occupy a central role in subsequent development of diagnostic
indicators.

When ¢ is unknown it must be estimated in (3.1). A natural
estimator, proposed by Wahba (1983a) is

2 n 2
s = Zj=lrj/tr(1n—H) . (3.2)

with tr denoting the matrix trace. This estimator can be motivated
from the viewpoint of ordinary least squares regression in which
case tr(Ih—H) corresponds to degrees of freedom. For smoothing
splines In—H is not idempotent and, hence, tr(In—H) will not
usually be integral in value. However, as in Wahba (1983a), we
regard tr(In-H) as the equivalent degrees of freedom (EDF) for
smoothing splines.

An indication of the properties of 52 as an estimator of 02
is provided through study of estimators of the form

n

s2(A) = zj=lrj(x)2/tr(1n-n(x)).

Note that under model (2.6) with X = 02/n0§,

n 2 2 2 2 bt gy 2
E[Zj=lrj(k) ] tr[(cSKn + 0 In)(In H)"] + a'T (In H) “Ta

2
o tr(In—H),

as (In—H)T is a null matrix. Consequently, sz(k) is an unbiased

11



estimator under this model and could be justified from this
perspective. Alternatively, the following proposition states
that, for an appropriately chosen deterministic sequence of A's,

SZ(A) is asymptotically unbiased for 62 when the data derive from

model (1.1).

Proposition. Suppose that m > 2, n ¢ Wm[O 1] and the sequence
of sampling points {tl n,...,tn } satisfies (2j- l)/(Zn)J J’ p(t)dt
3

for some continuous nonvanishing density, p, on [0,1]. Then, if

A~ 0 as n > « in such a way that nAl/zm > o

E[s2(0)] = o2(1 + o(1))

where o0(1) ~ 0 as n > =,

Proof: First observe that, under model (1.1),
2 2 2 N2
B[s°(01 = {o e [(1_-H0)) “T+n' (1_-H(O) “n}/ex(1_-H()).

It follows from Speckman (198l) that, under the assumptions on
n, A and the tj’ nfltr[H(k)z] and n—ltrH(K) are both o(1l) which
implies that tr[(I —H(A))z]/tr(I —H(X)) =1+ o(l). Using Lemma
4. l of Craven and Wahba (1979) we see that n n (I H(A)) 1 <
Afon(n)(t) dt which establishes the proposition.

It is of somewhat more interest to have a result of this type
for 32 = SZ(K) where X is the GCV estimate of A. At present no

such result is available. However, simulations in Wahba (1983a)

indicate satisfactory behaviour for 52 as an estimator of 62.

12



If ¢ is replaced by s in (3.1) the resulting statistics are

Vthe studentized residuals

1/2 .
Ty = r3/s(l-hyy) /2§ =1,...,n. (3.3)

Motivated by practices in ordinary regression analysis, one
might wish to examine an observation for which |le exceeds an
appropriate critical value from a Student's t distribution with
tr(I_-H) EDF.

n

To ascertain how a Student's t bound for the studentized
residuals might work in practice, a small scale simulation was
conducted. Data was generated from model (1.l1) with normal errors,

equally spaced tj and response functions

nl(t) 4,26{exp(-3.25t)-bexp(-6.5t)+3exp(-9.75t)}

and

ny(6) = {Bg ((8) + By (6 + By | ((6)}/3

10,5 5,10

where

-1 -1
B, () = T+’ T (A0 /re)r@, 0<t <1,
, .

and T(+) is the gamma function. The function n is a rescaled

version of a function considered by Wahba and Wold (1975) whereas

n, was utilized in the simulation study in Wahba (1983a). Two

sample size configurations were used: m = 50 replicates of sample

size n = 80 and m = 100 replicates of n

40, Four values were
chosen for ¢, o = .2, .4, .6, and .8. TFor a given function and

sample size configuration the same samples were used for all four

values of o, Different samples were generated for different sample

13



sizes and/or functions.

For each sample the cross—validated

cubic smoothing spline fit was computed and the proportion of

times the lle exceeded the 5% (two-tailed) critical value for

a Student's t distribution with approximate degrees of freedom

tr(In—H) was recorded. The results are summarized in Table 1.

Approximate standard errors can be obtained using the usual

formula for the estimated standard error of a proportion estimate.

Examination of the values in Table 1 suggest that the pro-

posed Student's t bound is satisfactory and, perhaps, somewhat

conservative in small samples.

We have obtained similar results

in simulations using other significance levels and several other

functions.

Table 1., Empirical Significance Levels for Studentized and
Studentized Deleted Residuals

Studentized Residuals

Studentized Deleted Residuals

ny m=100,n=40 m=50,n=80
0=,2 .0433 0473
o=.4 .0390 0460
o=.6 .0398 .0455
0=,8 .0410 .0455
M2

og=,2 .0383 .0458
o=.4 .0408 .0458
0=,6 .0418 .0448
0=,8 .0418 0448

m=100,n=40 m=50,n=80
.0515 .0523
.0493 .0518
L0475 .0505
.0500 .0495
.0495 .0493
.0510 .0488
.0490 .0478

.0495 .0488

14



15

The use of s as an estimator of ¢ in (3.1) has the dis-
advantage that the estimate involves the influence of (tj,yj),
the observation under inspection. It may, therefore, be preferable
to use S(j)’ the estimator s computed with (tj,yj) deleted from
the data, as an estimator of o. A closed form expression for S%j)’

obtained using (2.11), is

2 n

(1) =iil(ri + hijrj/(l—hjj))z/tr(In_l-H[j]) (3.4)
1#]
where
el 23, +0l/am)) . (3.5)
j=1 it ij jJj
i#j

Using S(j) to estimate ¢ in (3.1) gives the diagnostic
measures

/2

- _ 1 .
T(j) = rj/s(j)(l hjj) i =1l,eee,n . (3.6)

The T(j) are referred to as studentized deleted residuals and
might be compared to percentage points from a Student's t distri-
bution with tr(In?l—H[j]) for its EDF. An indication of the
efficacy of such a bound is provided by simulation results in
Table 1, obtained in the same manner as those for studentized
residuals by comparison of the lT(j)! to 5% (two-tailed) critical
values. The approximation seems quite good with the observed
significance levels somewhat closer to the nominal 5% level than
those of studentized residuals.

The T, and T

i G4) are useful in the detection of fit inadequacies.

However, for assessing influence a standard approach is to consider
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some aspect of the fit both with and without a particular observa-
tion. A class of diagnostic indicators derived from this perspec-
tive can be described as follows. Let £ be the set of all bounded
linear functionals on W?[O,l]. A common practice is to use 2(%)

to estimate 2(n) (see Wahba 1983a and Wahba and Wold 1975). Now

to each fef there corresponds an n-vector & = (l(xl),...,l(xn))'
which dictates how & acts on ;. Thus, to assess the influence

of (tj,yj) on 2(;) we could examine (z(a)—z(%[j]))z = [&f(é:é;j])]z.

Motivated by this discussion we define, for a given positive definite

matrix Q and positive constant c, the set

and the corresponding diagnostic measures

5 (@e) = sup

' “Saon[312 L L
€£(Q,c)[2(n)-£(n )17, 3 = 1,e..,n.

By use of identities (2.11)-(2.12) and results on the extrema

of quadratic forms, pj(Q,c) can be expressed as

_ 2 2, _
p5(Q0) =0 lTj(o)I x1DQDx, /e(1-h, ), (3.7)

where 55 is the jth row of X. The pj(Q,c), j=1,..e.4n, provide
an entire class of diagnostics indexed by both Q and c. We now
address the question of choices for these index parameters.

A convenient choice for Q in (3.7) is Q = D—l. In this case,

-1
p(D

,c) = olej(0)|2hjj/c(l—hjj) which is obviously invariant
under change of basis. This particular measure can also be moti-

vated from the Bayesian model (2.7). Using (2.10) we obtain

v(e(n) |y) = 0%&'D& and it then follows that
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sup(2(m-2(n 312w ey |y
el

- &) 2,2
(n(tj) n (tj)) /o hjj

]
©
~

o
i
-
~
L]

Thus, apart from a constant multiple,pj(D-l,c) has the inter-
pretation of being £he maximum "scaled" change in 2(%) due to
deletion of:(tj,yj) over all bounded linear functionals. 1In
particular, since point evaluation is a bounded linear functional
we have

(el P ey < aee-nt e n e’
Consequently, to assess the impact of (tj,yj) on the fit we need
only examine, initially, its influence on the fit at yj.
Another option is to take Q = D_2 which gives the measures
-2

.(D
pJ(

can be motivated directly from model (1.l1l) since it can be shown

,c) = Glej(c)Iz/c(l—hjj}, j=1,...,n. .These diagnostics

that
0.0 2,6%) = sup(a(m-2H ) 2 viam)) .
J e L

We prefer measures such as pj(D_l,c), however, due to their
similarity to those commonly used in ordinary regression analysis.

Several choices can be suggested for c. Of particular interest

are ¢ = s2 and ¢ = S%j)' These correspond to. the use of measures

such as

1/2
DFITS, = T.(h../(1-h,. s G =1,0ue, 3.8
| 3 J( JJ/( JJ)) h| R n, (3.8)

and

DFITS /2

= ‘ - 1 LR
Gy = Tepy g/ @y D™ 3 =ln s (3.9)
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Rough bounds for these indicators can be obtained by first approxi-
mating hjj and (l—hjj) by their averages n—ltrH and n_ltr(In—H) to
obtain the approximation trH/tr(In—H) for hjj/(l—hjj). In view of
the results in Table 1, one might then set aside for closer inspec-
tion those observations with values for DFITSj or DFITS(j) which
exceed 2(trH/tr(In—H))l/2.

Other choices for c include c = sztrH and c = s%j)trH/tr(In—H).
These lead to smoothing spline analogs of Cook's distance measure
(Cook 1977) and a measure due to Atkinson (1981).

The reader may have observed the ubiquitous role played by the
leverage values, hjj’ in the diagnostics proposed in thi#s section.
Since the hjj provide diagnostics pertaining to the independent
variable (Eubank 1984b) their appearance is a natural consequence
of the fact that (tj,yj) can be extreme in tj and/or yj. Thus,

for example, we see that the measure pj(Q,o2 1/2 consists of two

and lTj(;)l which reflect diag-

nostics for the value of tj and fit to yj, respectively. This

fact can be used to suggest various graphical methods for displaying

the pj(Q,gz) such as plots of([§%DQD§j/(l—hjj)]l/2, !Tj(g)[)’ j=l,...,n0.
The leverage values for smoothing splines have a distance

interpretation similar to that of their counterparts in the least

squares regression setting. To see this, set_g = n_lel_where

1 is an nxl vector of all unit elements. Then, since:g'=LL'Xl{g']

and Xinl = 1, we have

— - -1
x,-x)'"D(x,-x) = h,. - n
(_J X) (_J X) ii R

where §j is the jth row of X. Thus hjj—n_1 can be regarded
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as measuring how extreme the jth row of X is relative to the
average'g. It follows from Eubank -(1984b) that Of_hjj <1
and hjj =1 if and only if hij = 0 for all i # j. Consequently,
hjj which are close to one indicate extreme rows in the X matrix
and the corresponding response will tend to dominate its own fit.
Since the ith row of X consists of the wvalues Xj(ti)’"j=l""’n’

extreme rows of X typically correspond to extreme values for the

t..
i

In concluding this section we note that, in some instances,
it may be useful to consider extensions of measures such as (3.3),
(3.6), and (3.7) where k>1 observations are under inspection.
Development of techniques for addressing such problems are beyond
the scope of the present paper. However, measures applicable to

this purpose can be readily derived through appropriate generali-

zations of identities (2.11)-(2.12).

4, NUMERICAL ILLUSTRATION

In this section the German hyperinflation data is examined
using the methodology developed in the previous section. The
objective is to illustrate the additional insight that can be
obtained from the measures proposed in Section 3, over the use of
tools such és:residual plots alone, rather than to provide a
complete, in depth, analysis of the data.

For ease of exposition, the German hyperinflation data,

shown in Figure 1, is given in the Appendix. Throughout this
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section specific cases will be referred to by the observation
numbers assigned there, This data set has also been studied in
the context of smoothing splines by Wecker and Ansley (1981).

Many of the important aspects of the cross-validated smoothing
spline fit to the hyperinflation data are revealed by a plot of

the points (Xi’zi) = ([hii/(l_hii)]l/z

’lT(i)l)’ i=l,...,0n, shown
in Figure 2. The curves shown in this figure are the contours
IDFITSI = constant, for constant values .5, 1 and 1.5. For this

1/2 = 1.41, which provides

data a rough bound is 2[trH/tr(In—H)]
us with a quantitative measure.of which observations should be
judged influential and indicates where our attention should be
focused on the plot.

Examination of Figure 2 indicates that observations 19, 28,
29, 31 and, to a lesser extent, 24 are influential data points.
However, they are influential for different reasons. These are
readily deduced by the position of their respective points on the
plot.

Observations 19 and 31 are influential because of high leverage.
From examination of the data in the Appendix, we see that case 19
has high leverage resulting from inddequate information about values
of the log exchange premium over a portion of its range. Recognition
of this fact provides the explanation for the marked change in fit,
illustrated in the introduction, that occured when this value was
deleted from the data. This also indicates that conclusions drawn

about predictions made in this interval will be predicted largely



FIGURE 2. DFITS FOR HYPERINFLATION DATA
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on the information in the 19th observation. The high leverage

for observation 31 is reflective of the position of its value

for the log exchange premium at the extreme of the data set.
Observations 28 and 29 are seen to be influential because

they lie significantly far from the fitted curve as measured

by their values for IT(i) . Observation 24 also has a signi-
ficantly large studentized deleted residual. However, it is
not a high leverage point and, as indicated by its lower value
for DFITS, is less influential on the fit. This latter observa-
tion enforces the point that not all outliers will severely
influence the fit.

To demonstrate the additional utility of the diagnostics
in Section 3 over examination of residuals alone, a plot of the
residuals has been presented in Figure 3. Cases 24, 28 and 29
stand out as outliers. However, examination of their studentized
deleted residual values, all of which exceed 2, provides a quanti-
tative confirmation of this intuitive designation for these points.
In addition, by consideration of their wvalues for DFITS, we recog-
nize that, of these three points, observations 28 and 29 have the
most influence on the fit. Also note that, from examination of
the residual plot, no special importance would be attributed to
observations 19 and 31. This is not surprising since high
leverage points will always. have small residuals. Their influence

was clearly revealed, however, by examination of the DFITS values.
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In summary, the analysis in this section has pointed out
several sources of difficulty for the cross-validated smoothing
spline fit to the hyperinflation data which would not have been
recognized through examination of residuals alone. Specific
remedies would depend on the subject matter area and might
include consideration of alternative transformations for the
data, downweighting certain points in the original criterion
(1.2) or the use of robust smoothing methodology which takes
leverage into account. These possibilities will not be pursued

here.
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APPENDIX: GERMAN HYPERINFLATION DATA

The data below represent the (matural) logarithm of real
money supply (Y) and the logarithm of the premium, or discount,
on a forward contract for foreign exchange (t) during the German

hyperinflation from February 1921 to August 1923.

Observation Month/
No. Year Y t
1 03/21 6.5605 -1.8202
2 02/21 6.5474 -1.7958
3 04/21 6.5802 -1.1087
4 05/21 6.5927 - .9927
5 08/21 6.5019 - .6832
6 06/21 6.5896 - .6539
7 07/21 6.5414 - .3960
8 12/21 6.4580 - .3930
9 09/21 6.5381 - .3653
10 10/21 6.4977 - 3271
11 01/22 6.4129 - .3093
12 11/21 6.4225 - ,1863
13 02/22 6.2669 - .1839
14 \ 04/22 6.0839 - 0429
15 03/22 6.1841 - .0837
16 05/22 6.0578 0.0
17 06/22 6.0774 .0999
18 07/22 5.9321 3343
19 08/22 5.7858 1.1845
20 09/22 5.5203 1.6369
21 03/23 5.2718 1.7630
22 12/22 5.2421 1.9243
23 04/23 5.4116 2.4336
24 11/22 5.1504 S 2,4774
25 05/23 5.4239 2.5908
26 10/22 5.3290 2.6053
27 01/23 5.,1921 2.7955
28 06/23 5.4269 2.9565
29 02/23 4.9010 33,1122
30 08/23 4,7712 3.6169
31 07/23 4,7589 3.9176

Source: Wecker and Ansley (1981).
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