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Quantiles play a fundamental role in statistics although
many times their use is disguised by notational and other
artifices. They are the critical values we use in hypothesis
‘testing and interval estimatioﬁ and often are the character-
istics of a distribution we wish most to estimate. Sample
quantiles are utilized in numerous inferential settings and,
recently, have received increased attention as a useful tool
in data modeling.

Historically the use of sample quantiles in statistics
dates back, at least, to Quetelet (1846) who considered the
use of the semi-interquartile range as an estimator of the
probable error for a distribution. Subsequent papers by
Galton and Edgeworth (see eg. Galton (1889) and Edgeworth (1886,
1893) and references therein) discussed the use of other
quantiles, such as the median, in various estimation settings.
Sheppard (1899) and then Pearson (1920) studied the problem
of optimal quantile selection for the estimation of the mean
and standard deviation of the normal distribution by linear
functions of subsets of the sample quantiles. Pearson's paper
also contained most of the details involved in the derivation of
the asymptotic distribution of a sample quantile. The large
sample behaviour of a sample quantile was later investigated
by Smirnoff (1935) who gave a rigorous derivation of its
limiting distribution. Smirnoff's results were generalized

in a landmark paper by Mosteller (1946) which, along with work
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by Ogawa (1951), generated considerable interest in quantiles
as estimation tools in location and scale parameter models.
In more recent years quantiles have been utilized in a variety
of problems of both classical and robust statistical inference
and have played an important part in the work of Tukey (1977)
and Parzen (1979a) on exploratory data analysis and nonpara-
metric data modeling.
In this article the focus will be on the role of

quantiles in various areas of statistics both as parameters
of interest as well as means to other ends. We begin by
defining the notion of population and sample quantiles.

Let F be a distribution function (d.f.) for a random

variable X and define the associated quantile function (q.f.)

by
Q(u) = F-l(u)=inf{x:F(x):p}, 0< u< 1 . (D

Thus, for a fixed p in (0,1) the pth population quantile for

X is Q(p). It follows from definition (1) that knowledge of
Q is equivalent to knowledge of F. Further relationships
between F and Q are
i) FQ(u) > u with equality when F is continuous,
ii) QF(x) < x with equality when F is continuous and
strictly increasing, and

iii) F(x) > u if and only if Q(u) < x.

Another important property of the q.f. which follows easily

from 1ii) is that if U has a uniform distribution en [0,1] then
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Q(U) and X have identical distributions. This fact provides
one of the basic tools in many areas of statistical analysis.
For example, in statistical simulation it has the consequences
that a random sample from the uniform distribution may be used
in conjunction with Q, to obtain a random sample from X.

The sample analog of Q is obtained by use of the empirical

distribution function (e.d.f.). Let Xl:n’XZ:n""’xn:n

denote the order statistics for a random sample of size n
from a distribution F; then, the usual empirical estimator of

F is
> X < Xl:n ’

%(X) = , X, < x<X j=1,...,n-1, (2)

jin — j+1l:n’

= Hdj O

x > X .

’ n:n

Replacing F with F in (1) gives the sample or empirical

quantile function (e.q.f.)

E2(u)=X

jm,J—rfll<uii—,j=1,...,n. (3)

Thus, the fundamental sample statistics é, % and the order
statistics are all closely related. In fact, it is clear
from (2) and (3) that knowledge of any one implies knowledge
of the other two.

The previous discussions apply to both continuaus and

discrete random variables. However, in subsequent work it

will be assumed that F is continuous and admits a density

f = F'. In this case we also define the density-quantile
function (d.q.f.) £Q(u) = £(Q(u)), 0 < u < 1. Differentia-

tion of FQ(u) = u reveals that Q and fQ are related by
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Q'(u) = 1/£Q(u). Table 1 contains d.f.'s, q.f.'s, densities
and d.q.f.'s for several common continuous distributions.

In the next two sections we study the properties of
sample quantiles and their use in statistical inference.
Subsequent sections then deal with the role of quantiles
in exploratory data analysis as well as other areas of
statistics.

Sample Quantiles: Asymptotic Properties and Nonparametric

Inference

Sample quantiles provide nonparametric estimators of
their population counterparts that are optimal in the sense
that for any fixed p in (0,1) no other translation equi-
variate asymptotically median unbiased estimator is
asymptotically more concentrated about Q(p), than is &(p).
This result is due to Pfanzagl (1975) who also shows that
similar properties hold for tests about Q(p) based on 6(p).

There are several alternatives to 5 as defined in (3) that
also have useful properties. This estimator duplicity stems,
in paft,from the discreteness of % which entails that for
E(Xj—l:n) <p :-%(Xj:n) any value between Xj—l:n

can, intuitively, act as the pth sample quantile. Thus, one

and X,
j:n

could consider combining both Xj-l- and Xj'n or, more

generally,several order statistics in the neighborhood of

Xj_n to obtain an estimator of Q(p). Such considerations

have led to the usual definition for the sample median, which agrees
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with a (.5) only when n is odd, and have prompted several

authors to propose linearized versions of 6 (see e.g.

Parzen (1979a)). Estimators of Q(p) that utilize local

smoothing of the order statistics near Xj:n and appear to

have good‘small sample properties have been suggested by

Kaigh and Lachenbruch (1982), Kaigh (1983) and Harrell and Davis (1982).
Reiss (1980) has considered the use of quasiquantiles and

shown them to be superior to sample quantiles when compared

on the basis of deficiency rather than efficiency.

For 0 < p < 1 it is well known (c.f. Serfling (1980))
that, for fQ positive and continuous near p, 5 (p) is
asymptotically normally distributed with mean Q(p) and
variance p(l~p)/an(p)2. An extension of this result to k
quantiles, for fixed k > 1, can be found in Mosteller (1946)
and Walker (1968) with the case of k growing with n treated
by Ikeda and Matsunawa (1972). Necessary and sufficient
conditions for the existence of moments for sample quantiles
and for the convergence of these moments to those of the
limiting distribution are provided by Bickel (1967). For a
discussion of the asymptotic properties of 6 (p) for certain
types of dependent samples see Sen (1972) and Babu and
Singh (1978).

It follows from the asymptotic distribution of § (p) that

an asymptotic 100(1-a)% confidence interval for Q(p) is given

by Q (p) i_®-l(a/2)/(p(l—p)/an(p)2 which, unfortunately,
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requires knowledge of £Q(p). This difficulty can be resolved
by using, instead, the interval (&(kl/n),a(kzln)) where kl
and k2 are integers chosen so that kl = np—é-l(a/Z)/;E?I:Ej
and k, = np + ®_l(a/2)/55?1:5$: This latter interval is

2

asymptotically equivalent to the former but utilizes the
asymptotic relationship between a(ki/n) and 5(p) to estimate
fQ(p) (c.f. Serfling (1980, pg. 103)). An alternative, but
similar, approach is given in Walker (1968). For an exact
confidence interval based on order statistics see Wilks (1962,
pg. 329). Interval estimates obtained by bootstrapping and
jackknifing have been proposed by Harrel and Davis (1982) and Kaigh (1983).

In testing hypotheses about Q(p) the most widely known )
procedure is probably the quantile test. This test is based
on the fact that if HO:Q(p)=Q0(p) is true then the number of
sample quantiles below or equal to Qo(p) will be binomial
with parameters np and np(l-p). As a result, the binomial
distribution may be utilized to obtain an exact test, or the
normal approximation to the binomial for an approximate test,
of HO. The quantile test, as well as several otheg tests
concerning the median, can be found in standard texts such
as Conover (1971).

From a data modeling perspective what is of interest is not
Q(p) for some particular p, but rather the entire function Q(-),

as its knowledge is equivalent to knowing the data's under-

lying probability law. Thus, we now consider the construction
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of nonparametric estimators, Q(+), that are random functions
or stochastic processes on (0,1) (this is the quantile domain
analog of nonparametric probability distribution and density
estimation). The natural estimator of Q(*) is 5(-) whose
asymptotic distribution theory, when considered as a stochastic
process, has been studied by Shorack (1972), Cs8rgd” and

Révész (1981), Csdrgd” (1983), Mason (1984) and others. From
their work it follows that when f£Q is positive and diff-
erentiable dn [0,1] and satisfies certain other regularity
conditions near 0 and 1, /E-fQ(u){a(u)-Q(u)} converges in
distribution to a Brownian bridge process on (0,1), i.e., a
zero mean normal process with covariance kernel K(u,v) =

u-uv, u < v (analogous results for a linearized version of

6 and for the case of randomly censored data can be found

in Bickel (1967), Sander (1975) and Csdrgd” (1983)). Tests in this
setting are of the goodness-of-fit variety. The asymptotic
distribution of many classical statistics, such as
sup0<u<lfOQ0(u)Ié(u)—QO(u)l, are available under the null
hypothesis HO:Q(-) = Qo(-), for specified QO’ from Csbrgo”

and Révesz (1981, pg. 171) and Csdrgd” (1983, Chap. 7). Conse-
quently, such statistics can be utilized to conduct quantile
based goodness-of-fit tests. Another goodness-of-fit proce-
dure that can be naturally formulated in the quantile domain
is the Shapiro-Wilk test for normality (see Csargb'and

Révész (1981, pgs. 202-212) and Csorgo (1983)).
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Several procedures are available for constructing smooth
estimators of Q formed from suitably rich function classes.
The Tukey lambda distribution and its generalizations as -
well as g—and-h distributions are examples of curves derived
specifically for this purpose (see LAMBDA and g- AND- h
DISTRIBUTIONS). Other techniques, developed by Parzen (1979a),
utilize certain analogies with time series analysis to provide
estimators for fQ and Q as well as goodness-of-fit tests.
Another important asymptotic result is the Bahadur repre-
sentation for sample quantiles which describes the relation-
ship between the % and 6 processes. One statement of this
result is that, for fQ positive and differengiable at p,
with prdbability one
nl/

2 -
nl/ (p-FQ(p)) + O(n_l/4(logn)3/4).

2=t = 2

This has the immediate consequence that nl/z(Q(p)—Q(p)) and
nl/z(p-FQ(p))/fQ(p) have identical asymptotic distributioms.
The Bahadur representation may also be used to obtain a law

of the iterated logarithm for sample quantiles, namely, with

probability one

/2

., ol lam-a@] | a-p1t _
n> (2 loglog n)l/2 £Q(p)

This problem was first considered by Bahadur (1966). More
general results and references may be found in Kiefer (1970),

CsSrgd” and Révész (1981l) and Csdrgd”(1983). The case of
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¢-mixing random variables is treated by Sen (1972) and Babu
and Singh (1978).

Parameter Estimation

In this section we consider the use of quantile based
estimators in parametric models of the form F(x)=F0(x;Q),
where FO is a known distributional form and 6 is a vector of
unknown parameters. An important special case of this model,
that we will focus on initially,is the location and scale
parameter model where F(x) = FO(§§E) for 1 and ¢ unknown
location and scale parameters. In this instance it is readily
seen that Q(u) = u + GQo(ul where QO is the q.f. for FO.

The problem of location parameter estimation for
symmetric distributions has been a subject.of extensive study.

Several quick estimators of u that are useful for data from symmetric

distributions are based on symmetric quantile averages of

the form ;(p) = [é(p) + 5(l—p)]/2, 0 <p < .5. One example
is the Tukey trimean {;(.5) + ;(1/4)}/2 while another
is the estimator suggested by Gastwrith (1966), .4;(.5)

+ .5;(1/3), which was found to be nearly 80% as efficient
(asymptotically) és the best estimators for the Cauchy,
double exponential, logistic and normal distributions. For
references and a general discussion of the robustness and
efficiency properties of symmetric quantile averages see

Brown (1981).

General classes of estimators for u are also conveniently
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(and usefully) formulated in the quantile domain. For
example, if ¢y is an odd function, an M-estimator of u is a

solution to flw(a(u)—a)du = 0, Similarly, an R-estimator
satisfies flJ?u—%(Z;—é(u))]du = 0, with J an odd function on
[-1,1], whéieas an L-estimator can be written explicitly as
flh(é(u))dM(u) for some function h and some signed measure,

0
M, on (0,1). See Huber (1981) and Fernholz (1983) for further
discussion of these estimators.

Asymptotically efficient quantile based estimators of both

W and o that are applicable to gemeral F, (not necessarily

0
symmetric) have been given by Parzen (1979a,b). Using
results from tﬁe previ;us section it can be seen that,
asymptotically, location and scale parameter estimation can
be considered as a regression analysis problem for the
quantile process via the model

£40 (W QW =UE (Q (W40 Q (W Qy (W)+9B(W) , ue[0,1],  (4)
where op = o/v/n and B(*) is a Brownian bridge process. Under
appropriate restrictions on fOQO and the product fOQO.QO’

continuous time regression techniques can be utilized to

obtain asymptotically efficient estimators

= >

rl ~
1 fo W (@)Q(w)du

= A > (5)

Q »

1 ~
[ W_(w)Q(u)du
o}
0
where A is the usual Fisher information matrix, for u and o with

Wu(u) = —(fOQO)"(u)foQo(u) and W_(u) =-[foQ0(u)Q0(u)]"f0Qo(u).
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Many estimators based on quantiles and order statistics
have strong ties to model (4) and the estimators in (5).
For instance, L-estimation of locdation and scale (see L-
STATISTICS) can be motivated from (5) through consideration
of alternative weight functions in place of Wu and Wo. By
using an analog of'model (4) that holds for left and right
censored data, estimators similar to those given by Weiss
(1964) and Weiss and Wolfowitz (1970) can be obtained.
Through sampling from model (4) at a set of k < n points

U= {ul,...,uk} which satisfy 0 < u, < ... <u, <1,

1 k

"observations" fOQO(ui)a(ui) can be obtained that, asympto-
tically have means ufOQO(ui) + GfOQo(ui)QO(ui), i=1l,...,k,
énd variance-covariance matrix consisting of the elements
Ggui(l—uj)’ i<j, i,j=1,...,k. Thus, generalized least
squares may be utilized to obtain asymptotically best linear
unbiased estimators of u and 0. Since their derivation by
Ogawa (1951) an extensive literature has developed on these
latter estimators and the associated problem of optimal
selection for the spacing, U(see OPTIMAL SPACING PROBLEMS).

The estimation of a particular quantile, Q(p) say, is |
often of interest in parametric settings such as the loca-
tion and scale parameter model. As Q(p) = u + cQo(p), we
see that to estimate Q(p) for this model it suffices to

estimate ¥ and ¢. This may be accomplished, for instance,
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using the estimators in (5) or maximum likelihood estimators.
Alternatives that have good asymptotic efficiency properties
and provide computational savings by using appropriate subsets
of the sample quantiles have been suggested by Kubat and
Epstein (1980), Eubank (1981) and Koutrouvelis (1981). Esti-
mators for extreme quantiles have been studied by Weissman
(1978) and Boos (1984).

For the estimation of a parameter vector 8, not necessarily
of the location/scale variety, LaRiccia (1982) haa proposed
a minimum quantile distance approach based on the distance
measure

D(®) = [TW(u;8) [Qw)-qy(u; ) 1%au (6)
! .

where W(u;0) is some specified weight function and Qo(u;g)

is the quantile function for Fo(x;g). Under certain restric-
tions, the estimator obtained by minimizing (6) as a function
of 8 is asymptotically normal. An optimal weight function has
also been provided for single paramgter situations that, in
the special case of location or scale parameter estimation,
results in the estimator obtained by Parzen from model (4).
Unlike minimum distance procedures based on Fn (c.f. Parr

and Schucany (1980)) the robustness properties of minimum
quantile distance estimators, such as those obtained from
(6), have as yet tb be extensively investigated. MNeverthe-

less, this approach seems promising and is intuitively

appealing since quantile based methods are closely related
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to regression techniques (as exemplified by model (4)) and
are directly related to various data oriented diagnostics
such as Q-Q plots (see GRAPHICAL REPRESENTATION OF DATAJ.
For the extension of these estimators to randomly censored
data see Eubank and LaRiccia (1984).

Descriptive Statistics and Exploratory Data Analysis

Many of the diagnostic measures and tabular summaries
utilized in descriptive and exploratory data analysis (EDA)
éan be conveniently formulated in terms of sample quantiles.
For example, the 5, 7 and 9 number data summaries that are a
basic tool in EDA"are all, essentially, collections of
symmetrically chosen sample quantiles. This point is illus-
trated by the 5—numbef summary proposed by Tukey (1977) which
(for large n) is equivalent to the use of‘&(.S) (the median),
&(.25) and &(.75) (the quartiles), and the extremes 6(E%I
and a(agiﬁ. Similarly, a 7-number summary suggested by
Parzen (1979a) consists of the median and quartiles as well
as the eighths, a(.lZS) and &(.875), and the sixteenths,
&(.0625) and 6(.9375). Such data summaries are frequently
utilized to obtain a transformation which gives a data set
an approximately symmetric or normal distribution (see
Tukey (1977) and Emerson and Stoto (1982)). The transforma-
tion is first applied to the summary and, using various dia-

gnostic measures, checked for the desired properties. 1If

the diagnostics indicate the transformation is satisfactory,
K
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it is then applied to the entire data set., Thus, in this
case, models for the data are developed by modeling 6.
Symmetric quantile averages are frequently utilized with
data summaries to provide measures of centrality as well as
diagnostics. Familiar examples are the median, ;(.5), and
the midrange, ;(l/n+l). Measures of spread are often con-
structed from tﬁe midspreads ;(p) = 5(l~p)—&(p), 0<p<.5,
as exemplified by the sample range, ;(l/n+l) and the inter-
quartile range ;(.25). Whep the data is approximately normal
;(p)/{Q—l(l—p)—Q_l(p)} provides an estimator of the population
standard deviation, A special case of this is the pseudo-standard
deviatiop, ;(.25)/1.35, discussed by Koopmans (1981, pg. 63). Various
diagnostic measures based on ;(p) and ;(p), including measures of
skewness and tail length, may be found in Pérzen (1979a, Section 11).
A useful graphical tool proposed by Parzen (1979a,b) is
the quantile box plot. This plot is a graph of a linearized
version of Q upon which p boxes have been superimposed with
coordinates (p,Q(p)), (p,Q(1-p)), (1-p,Q(p)) and (1-p,Q(1-p))
for p=1/4, 1/8 and 1/16. A horizontal line is drawn across
the quartile box (p=1/4) at the median 6(.5) to aid in the
visual assessment of symmetry. A vertical line with length
;(.25)//; is also frequently placed at the median to provide
an approximate confidence interval for Q(.5) as well as an

indication of the size of the data set from which the plot

derives. When examining the plot one looks for sharp rises
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(infinite slopes) which, when occuring inside the quartile
box, indicate the presence of two or more modes and suggest
the presence of outliers otherwise. Flat intervals (0O slopes)
correspond to probability masses and, consequently, are
indicative of discrete random variables.

An illustration of a quantile box plot is provided in
Figure 1 for the Rayleigh data (Tukey (1977, p. 49)) that
consists of 15 weights of standard volumes of nitrogen
obtained from air and other sources. The sharp rise in 6
indicates possible bimodality. It was Rayleigh's recogni-
tion of this characteristic which led him to the discovery

of argon.

Conditional Quantiles

When the relationship between two random variables, X
and Y, is being studied it is frequently of interest to
estimate the conditional quantiles of Y for a given value or
values of X. An important special case of this problem
occurs when X and Y satisfy a linear model. 1In this case
one possible definition of an empirical quantile function
has been given by Bassett and Koenker (1982). Procedures
for inference about a conditional quantile, assuming a
linear model, have been developed by Steinhorst and Bowden
(1971) and Kabe (1976), under the assumption of normal
errors. An alternative nonparametric approach has been

suggested by Hogg (1975) that allows the error distribution
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to depend on the independent variable. A parametric alterna-
tive to Hogg's procedure is provided by Griffiths and Willcox
(1978). For the estimation of conditional quantiles, in-
general, consistent estimators have been derived by Stone (1977)
under very mild conditions. An alternative is suggested by
Parzen in the discussion of Stone's paper. 1In addition, if

the conditional quantile function can be assumed monotone in

X, strongly consistent estimators presented in Casady and

Cryer (1976) can be utilized.
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