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ABSTRACT

The estimation of mixing proportions pl,pz,...,pm in the mixture
density f(x) = Z?=l pifi(x) is often encountered in agriqultural remote
sensing problems in which case the pi's usually represent crop proportions.
In these remote sensing applications, component densities fi(x) have
typically been assumed to be normally distributed, and parameter estima-
tion has been accomplished using maximum likelihood (ML) techniques. 1In
this paper we examine minimum distance (MD) estimation as an alterna-
tive to ML where, in this investigation, both procedures are based upon
normal components. Results indicate that ML techniques are superior
to MD when component distributiomns actually are normal, while MD esti-
mation provides better estimates than ML under symmetric departures from
normality., When component distributions are not symmetric, however, it
is seen that neither of these normal based techniques provides satis-

factory results.

This research was supported by the Office of Naval Research

Contract No. NOO0O14-82-K-0207 and Nasa Contract No. Nas 9-16438.
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l. Introduction -

A common objective in remote sensing is the estimation

of the proportions pl,p ,...,pnlin the mixture density

2

f(x) = p£;(x) + Pofy(x) + .00+ pmfm(x) (1.1)

where m is the number-of components(crops) in the mixture
and for component i,fi(x) is a (possibly multivariate)
density. In past practice this density has been assumed to
be (multivariate) normal with X being the reflected energy
in fourv bands of the 1light spectrum, certain linear
combinations of these readings, or other derived "feature"
variables. Generally the parameter estimation has been
accomplished using maximum likelihood techniques. In this
paper we examine the use of minimum distance estimation as
an alternative to maximum likelihood and we will compare
the performance of the two estimation techniques when
dealing with mixtures of normal and of non-normal densities
with varying amounts of separation. We will focus on the

mixture of two univariate distributions given by

f(x) = pfl(x) + (l—p)fz(x)- (1.2)



We are also assuming that only data from the mixture
distribution are available. Other sampling schemes in which
training samples from the component distributions are also
available have been discussed by Hosmer (1973),

Redner (1980), and Hall(1981) among others,
2. Estimation in the Mixture of Normals Model

In this section we will assume that fl(x)'and f2(x) in
(1.2) are normal densities with mean and variance My oi and
uz,cg respectively where it is assumed that all five
parameters “1r°ivlb'°§' and p are unknown. Techniques for

estimating these parameters will be discussed.

(a) Maximum Likelihood

Several recent articles have dealt with the problem of
6btaining the maximum likelihood estimates of My cf, By s
og, and p (Hasselblad(1966), Day(1969), Wolfe(1970),
Hosmer (1975), Fowlkes(1979), Lennington and Rassbach{(1979),

and Redner (1980).) Since the likelihood function

L = f(xl)f(xz) .ee f(xn) (2.1)

where n is the sample size, 1is not a bounded function in
this case (see Day(1969)), the objective in the maximum
likelihood approach is to find a local maximum of L. This
maximum is usually found by setting the partial derivatives
of iog(L) with respect to each of the 5 parameters equal to

zero and solving the resulting set of equations, called the



likelihood equations. Since closed form solutions of these
equations do not exist, they must be solved using iterative
techniques. Hasselblad(1966) and Wolfe(l969) suggested that
these equations be solved by taking advantage of ﬁheir
fixed point form. Redner(1980) and Redner and Walker(1982)
have pointed out thét this fixed point technique is
essentially an application of the EM algorithm (see

Dempster, Laird and Rubin(1977)) with the only difference

2
1

at step k involve the updated kth step estimates of ¥,

being that using the EM algorithm, the estimates of o

2
2

and U2

and

ag

Fowlkes(1979), on the other hand, maximized the
likelihood function directly by utilizing a quasi-Newton
method for minimizing -log(L) and found that good starting
values were crucial for acceptable performance.
Hosmer (1975) stated tﬁat using the likelihood equations,
starting values were not a serious problem in his
experience. In order to determine which of the two
techniques seemed preferable in our simulation studies we
replicated simulations performed by Fowlkes in which
various sets of poor starting values were used to initiate
the minimization procedure. We simulated realizations from
the mixture utilized by Fowlkes and estimated the
parameters using both direct maximization and the EM
algorithm. The results of our simulations indicate that
the EM algorithm approach is preferable ahd.hence we have

used this technique for obtaining MLES in our simulations.



(b)Minimum Distance

Although ML estimation proéédures are known to have
certain 6ptimality properties, their sensitivity to
violations of the underlying assumptions is also
recognized. The development of estimation procedures which
perform well even under moderate deviations from
assumptions has been a topic of major interest in recent
.. .-literature. One of these robust procedures which has
vreceived recent attention is that of minimum distance(MD)

estimation introduced by Wolfowitz (1957). Parr and
Schucany (1980), for example, have shown that MD techniques
provide robust estimators of the location parameter of a
.symmetric distribution. Minimum distance estimation has
been used for parameter estimation in the mixture model by
Choi and Bulgren(l968) and MacDonald(1971) with some
success although, to our knowledge, the question of
sensitivity to assumptions in +this setting has not been
~addressed. These previous authors assumed ' that the
parameters of the component distributions were known and
that only the mixing proportion(s) was to be estimated.

In order to briefly describe minimum distance
estimation, we let xl,xz,,.,,xndenote a random sample from
a population with distribution function F and 1let Fn
denote the empirical distribution function, i.e. Fn(x)=k/n
where k is the number of observations 1less than or equal
to x. Further, 1etH= {He:een} denote a family of

distributions depending on the possibly vector valued



parameter 8. The MD estimate of 6 is that value of ¢ for
which the distance between F. and Hg is minimized. It is
not necessary that Feﬁk Of course, when a mixture of two

normals is used as the projection family, H gy becomes

| X 1, Y-Hy 2 1 ¥Y¥, 2
1 -5 (=) ¥ -5 (=
He(x) =p [ — e 1 dy + (1=-p) [ — e 2 dy.
—C m ol L , —o vVar 02 .

Certain considerations become obvious at this point.
First, we must define what we mean by the "distance”
between two distributions. Several such distance measures
have appeared in the literature. The reader is referred to
the article by Parr and Schucany(1980) for a discussion of
these measures. For our purposes we have chosen the
Cramér-von Mises distance, w? + between  distribution

functions Gl and G2 which is given by

W = 16, (-6, (x) 1246, (x) .

In our setting a computing formula for the Cramer-von

Mises distance between %I'and H, is given by

G}
2 _ 1 n i-.5,2
Woo=1op * I [Hg(Y) - =1,
i=1
where Yi is the ith order statistic. The similarity

between wi and the sum of squared differences between the

empirical distribution function Fn and H,_, used by Choi and

)
Bulgren(1968) should be noted.
Another consideration involves the minimization

procedure to be employed in minimizing vvé Parr and



Schucany used the IMSL quasi~Newton algorithm ZXMIN. .Our
comparisons have shown ,however, that the IMSL routine
ZXSSQ which uses Marquardt's(1963) method for minimizing a
sum of squares was significantly faster, usually taking no
more than half the time required by. ZXMIN. In the
simulation studies reported in the next . section we have
used the Marquardt minimization procedure Qhen calculating
the.MDE. It shouid be noted that minimization is subjec£
to the constraints ciio, c%zo ,.and 0<p<l. Another finding
which deserves mention before proceeding is that similar
to the technique we have chosen for calculating the MLE,
the MDE has the desirable propetty that it is relatively_ 

insensitive to starting values.

3, Starting Values

In order for the estimators discusSgd in the previous
chapter to be used in practice, starting .values for the
iterative procedures must be provided. We have chosen to
obtain starting values in this two componént univariate
setting using a partitioning ‘technique which is very easy
to implement. In the discussion to follow we will assume,
without loss of generality,'that 1il< Moy This technique
involves first obtaining the initial estimate of P
denoted by po, 'and then estimating the remaining féur
parameters given By Under the qurrent_ implementation,

only the 9 values .l,{2,.;.,;9 are allowed as . possible



values for Q)' For each allowable value of po, the sample

is divided into two subsamples :

Y. , Y,/ eeerX
1l 2 ny

Y 4 Y oY
nI+1 nl+2
where Y, is the ith order statistic and n; is np; rounded
to the nearest integer. The value for.p0 is that value of
p for which p (1-p )(ml-mzf - is maximized, where mj is
the sample median of the jth sqbsample. The criterion used
here is a robust counterpart to the <c¢lassical cluster
analysis procedure of selecting_the clusters for which the
within cluster sum-of-squares is minimized. It is easy to
show, however, that the within cluster sum-of-squares is
minimized in the two cluster‘case when p(l-p)(i’l-'iz)2 is
maximized, where Yj is the sample mean of cluster j and-
and p=nl/n with n, the number of sample values placed in
cluster 1. Such a clustering is based upon a cut-point,
¢ , for which all sample values below ¢ are assigned to
the cluster associated with population 1. It must be
observed, however, that due to the overlap between the two
mixéure distributions, some sample points assigned to
cluster 1 may be from population 2 and some observations
from population 1 may be in éluster 2. The effect of this

truncation of the right tail in population 1 is that the

sample mean from cluster 1 is 1likely to underestimate My

while Hy is likely to be overestimated. In addition ci and
cg are likely to be wunderestimated by 512 and sg. If we



assume that the overlap between the two populations is not
too severe, then the sample values in cluster 1 to the
left of my are relatively pure observations from
population 1 in which case m; 1is a "good" estimate of thé
population mean in the case of symmetric distributions. .
This. reasoning also indicates that my and m, should
provide better estimates of v, andy, than would ;1 and
§é. In order to estimate - the variances of the component
distributions we again will depend upon the'fact that the
values to the left of m; and t§ the right of m, are "pure"”
samples from populations 1 and 2 respectively. Thué, we
will use only this portion of the data for estimation of
the sample variances. We have used the fact that the
semi~interquartile range of a standard normal distribution

is .6745, to estimate ci by

| _ _ (.25)
20 = (-1 )
1 - .6745 r

where r?ﬁ_ is the g™ percentile from the jth cluster,

(.75) —mz)/.574512.‘ |

In the next section we will discuss the results of a

. 2
j=1,2. Similarly, 02(0)-[(r2

major simulation investigation comparing ML and MD
estimation. In these simulationé the itérative techniques
were initiated by the starﬁing valdeé as discussed in the
previous paragraph. A preliminary simulation‘-investigated
the performance of the 'starting values described here. 1In

this preliminary study we Compared the convergence



initiated from these starting values with that when the
iterative procedures are started at the true parameter
values. The convergence from these two starts was almost
always to the same parameter estimates, a result which
held for both the MLE and MDE. For this reason and results
to be shown in Section 4, we'.believe this starting value

procedure to be adequate.
4. Simulation Results

In the previous two sections we have discussed ML and
MD estimators for the parameters of the mixture of two
distributions. In this section we report the results of .
simulations designed to compare these two estimators when
the component distributions are hormal and when they are
non-normal. In addition we have made our comparisons under
varying degrees of separation between. the two -
distributions. All computations were performed on the CDC
6600 at Southern Methodist University.

In our comparison of the MDE and MLE we have begun by
comparing their performance when the normality - assumption
is valid, i.e., when the component distributions actually
are normal. We should mention that because of the
optimality properties of the MLE we would expect that the
MLE would be superior in this situation. Since in practice
the validity of the normality assumption is subject to
question, we are also very interested in the performance

of the MDE and MLE when the component distributions are
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not normal., To this end we have simulated mixtures in
which the component distributions are - distributed as a
Student's t with 4 degrees of freedom. We simulated 500
samples of size n=100 from mixtures of normal and of t(4)
components for each of' the following parameter

configqurations:

Mixing proportion
.25
.50
.75

vVariances -
2 2

9 = 9%
o% = 20%

"The nature of the mixture model _élso depends on the
amount of separation between the | two component
distributions, - While, for sufficient separation, the -
mixture model has a characteristic bimodal shape,
Behboodian(i970) has shown, for example, that a sufficient
condition for the mixture dgnsity (of two normal
components) to be wunimodal is that lur¢bkfmdnkﬁjo£A of
course, in this situation, parameter estimation is
difficult. ‘

For purposes of quantifyihg this separation between
the components, we will define a measure of "overlap”

between two distributions. Without loss of generality we



assume that population 1 is centered to the 1left of
population 2. We define "overlap" to be the probability of

misclassification using the rule:
Classify an observation x as:
population 1 if x < X
population 2 if x >'xc,
where X, is the unique point between Hq and Mo such that

pfl (xc) = (1-p) fz(xc) .

We have based our current study on "overlaps” of .03 and

.10. In Figure 1 we display the mixture densities associated

2.2
150y
scaled components pfl(x) and (l—p)fz(x) are also shown. Note

with normal components and o For each mixture, the

that the densities for p=.75 are not displayed here since
when oi=c§, it follows that fp(x)=fl-p(ul+u2-x)where fh(x)
denotes the mixture density associated with a mixing
proportion of h. Thus the shapes of the densities at p=.75
can be inferred from those at p=.25. Likewise, parameter
estimation for p=.75 is not included in the results of the
simulations when or]z_= og. |
Although both estmation procedures provide estimates of

all 5 of the parameters, only the results for the estimation

of p will be shown since the mixing proportion is the

parameter of primary interest. In addition, when dealing

with the non-normal mixtures, the remaining parameter

11
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FIGURE 1 -~ Mixture Densities Assoéiated with

Normal Components and ci = 03 =1
o.as
.2
..llT
o1 A
A )
N '
i o \'\.1"
...‘,\'\Q
B LA S A -
p=.25 Pp=.25
My 0, By = 2,32 Wy = o, My = 3.6
overlap = .10 overlap = .03

= 3.76

Mo

overlap = .03

............ pfl(x) "”;"Q“(l-p)fz(x)



estimates often do not have a meaningful interpretation. 1In
these simulations we have used the procedure discussed in
the previous section to obtain starting values. It should be
noted that although we refer to mixtures of t(4)
distributions here, they are actually mixtures of
distributions aésociated with the random variable T'=aT+b,
where T has a t(4) distribution. These modifications are
made in order to obtain the desired separation and variance
ratios,

In Table 1 we show the resulﬁs of the simulation
comparing the performance of the MLE and MDE. In particulat,
let 51 denote the estimate of p for the ith sample. Then
based upon the simulations, esﬁimates of the bias and MSE

are given by:

A l ns
bias = =— I~ (p,-p)
ns i=1 1
MSE = — I (p.-p) .
Ng i=1 1

where n is the number of samples. It should be noted that
nMSE is the gquantity actually given in the table. 1In

addition, we provide the ratio

P = MSE (MLE)
~ MSE (MDE)

as an efficiency measure.
Upon viewing the results, it can be seen, as expected,
that the bias and MSE associated with the MLE were generally

smaller than those for the MDE when the components were

13



Simulation Results Coﬁparing MLE and MDE

Number of replications = 500

TABLE 1

Sample Size =

100

14

NORMAL
Overlap = .10 Overlap = .03
P Bias nMSE* E Bias nMSE E
cl = 02 MLE - MDE MLE MDE MLE MDE MLE MDE
p = .25 .052 .125 4.26 7.80 .55 .008 .026 : .54 1.09 .50
p= .50 ,000 .010 3.21  3.86 .83 .000 .001 .38 .42 .90
2 2
91 = 29,
= ,25 .002 .084 2.25 5.30 .42 .006 027 .49 .96 . .51
= ,50 =~.009 .005 2,41 2.79 .86 .009 .008 .42 A4 95
= ,75 -.,086 -.137 4.87 -8.36 .58 -.002 -.024 47 -1.08 44
t(4)
Overlap = ,10 Overlap = .03
02 - 02 Bias nMSE E " Bias nMSE E
1 2 MLE MDE MLE MDE MLE MDE . MLE MDE
P = .25 .096 .104 7.35 6.18 1.19 .029 .020 .88 44 2,00
p = .50 .015 .004 5.59 1.82 3.07 -.005 .000 47 .27 1.74
2 .2
o, = 202
p = .25 .061 .098 4.63  5.20 .89 .044 .029 .95 .61 1.56
p = .50 .028 . .022 4,49 1.80 2.49 .010 .001 .55 .30 1.83
p=.75 -,076 -.058 7.84 3.68 2.13 -.012 -,016 .57 .36 1.58
*nMSE = n times the MSE where n = sample size



normally distributed. This relationship between the
estimators held for both overlaps. The MLE and MDE were
quite similar at p=.5 while for p=.25 and p=.75 the
superiority of the MLE is more pronounced.

For the t(4) mixtures the relationship between MDE and
MLE is reversed in that the MDE generally has the smaller
bias and MSE. The superiority of the MDE in this case is due
in part to the heavy tails in the t(4) mixture., The MLE
often interpreted an extreme observation as being the iny

sample value from one of the populations with all remaining

15

observations belonging to the other. Due to the well known

singularities associated with a zero variance.estimate for a
component distribution, Day(1969), we were concerned tﬁat
the observed behavior of the MLE was due to the fact that we
did not constrain the wvariances away from zero,
However,simulation results in .which equal variances were
assumed (which removes the singularity) and also those which
used a penalized MLE suggested by Redner(1980) were very
similar to those quoted here.

Although the MSE is a widely used measure among
statisticians for assessing the performance of an estimator,
the practical implications, for example, of an estimator
having-an MSE three times 1larger than that for another
estimgfor, may not be immediately apparent. Recall that each
MSE quoted in Table 1 is based upon 500 estimates of p. In
order to provide a better appreciation for the practical
impact of differences in MSE, in Fiqure 2 we display

histograms of the 500 estimates of p associated with three



16

6550° = ASK TZE0" = 4SH
d d
T gL* 0s* 6¢° 0 1 GL*  0§° T 0
t 1 8 4
J
ml u sos -
slls “H' HH H 1
U J “ rr n 1. BB
; ol : Tot "} - 01
- hd
u o o
02 o L 0¢
: :
i i : -
T
-0t _Mu - 0€
o m of
: ,
oy - 0Y

¢* = d YoTym U SAINIXIH
wox3 QQT 9221S Jo sofdwes QQg uodn
poseg d 30 s93Buflsy JO sweiZ0ISTH

¢8T0° = dSH

d
1 SL* 0s* YA
r|~A~w m OO
HH L
'
.
4
v
telaree
"
d
R
*7 @andyy

01

0¢

[1]3

oYy

Aouanbaag



different MSEs in the table. The true value of p in each
case is p=.5. It is obvious that as the MSE increases, the
performance of the estimator deteriorates. Notice that the
MSE for Figure 2(c) 1is approximately three times greater
than the MSE associated with Figure 2(a), while the MSE for
Figure 2(b) is aprroximately twice that for Figure 2(a).
Thus, from these histograms, an intuitive feel for
efficiency ratios of E=2 and E=3 can be obtained.

A very surprising result is that the starting values
obtained using the procedure outlined in Section 3 produced
estimators which were competitive with both the MLE and MDE.
In fact, for both the normal and £(4) mixtures, the MSEs
associated with the starting values were 1lower than those
for the MDE and MLE for every parameter configuration
associated with an overlap of .10. At an overlap of .03,
however, the starting values estimates were generally. poorer

than those for the MDE and MLE.
5. Mixtures of Asymmetric Distributions

The simulation results of the previous section focus on
the performance of the MLE and MDE under deviations from the
assumption of normality. However, the t(4) distribution is
symmetric, and recent studies have indicated that there is
often a substantial asymmetry in the component distributions
for variables of interest in agricultural remote sensing. A
Monte Carlo examination of the performance of the MDE and

MLE, assuming normal components, when in fact the component

17



distributions were asymmetric, was performed, and the
results of this examination will be discussed in this
section.

Eor purposes of our examination, we simulated mixtures
of xé(Q) distributions with p=.5. In these simulations the
two distfibhtions differed from each other only by a
location shift. Actually the component distribution to the
left is x2(9) while that to the right is that of a "shifted”
x2(9) with origin no longer at 0. This shift was véried to
proviae overlaps of .01, .05, and..lo. Since our estimation
procedures involve a normality assumption, we used the méans
and variances of the two component x2(9) distributions and
the true mixing proportions as our starting. values. The
problem of obtaining starting values from the data in this

case is being examined. In Table 2 we display the results of

this simulation. Only when the two component distributions

were widely separated (overlap=.0l) do the two procedures-

provide reasonable results. However, when the two chi-square

distributions are not widely separated, both estimators tend

to seriously underestimate p. In Figure 3 we display the
three mixture distributions on which these simulations were
based. We see there that it is no surprise that the estimate
of p is less than .5, especiaily-for p=.10. Both estimation

procedures view this as a mixture of normals, and therefore

make the reasonable interpretation that the density to the

left has a smaller variance and a mixing proportion less
than .5. These results point out the impact which skewed

distributions can have on the proportibn estimation in the

18



TABLE 2

Simulation Results

Mixtures of x2(9) Components

Sample Size = 100
Number of replications = 200

P = 3
MLE
p Bias  nMSE p
.28 -.22 6.8 .28
35 =15 2.7 .37
47 =03 .4 .45

19

nMSE
6.6

2.3



FIGURE 3

Mixture Densities Associated with x2(9) Components

Overlap .10

Overlap .05

Overlap .01

20



mixture model when normal mixtures are assumed.

Current investigation into this area centers around
modifying the estimation procedures by assuming that the
underlying component distributions belong to some.family of
distributions whose members can be either symmetric or
asymmetric depending on parameter configurations. At the
present time, the Weibull distribution is being examined

cdncerning its usefulness.
6. Concluding Results

We believe that the results of the preceding sections
are of sufficient substance to motivate further research in
the area of MD estimation in the mixture model. Our results
indicate that the MDE is indeed more robust than the MLE in
the sense that it is less sehsitive to symmetfic departures

from the underlying assumption of normality of component

21

distributions. Several areas for future investigation have .

already been identified in addition to the asymmetric
components problem discussed in Section 5.

First, simulations similar to the ones presented here
should be performéd without the assumption of only two
.populations in the mixture. The performance of the MDE and
MLE should be compared when the number of populations is
known and lérger than two. 1In addition the applicability of
the MDE to the problem of estimating the number of
populations alsc warrants investigation. We plan to examine

these possibilities.



Second, the problem of applying the MDE to the multivariate
setting is of interest. Preliminary indications are that
such an extension will be possible.

Third, the choice of distance measure in the MDE is a
topic of interest. Our results are not meant to imply that
W 1is optimal. |

Finally, the MDE and MLE must ultimately be compared on

22

real data. Several related practical considerations have not

yet been investigated. For example, when applying these
estimators to LANDSAT data, the number of.iterations allowed
must be small due to time constraints. In the simulations
described here, these constraints were not imposed and
iteration was allowed to continue pntil convergence was
obtained. The performance of the MDE and MLE under

convergence restrictions should be examined.
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