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Introduction.

The standard proceddre for computing the moving average method of
moments parameter estimates for an ARMA process involves the numerical
solution of a system of non-linear equations. In this paper it will be
shown how the so-called inverse autocorrelations introduced by Cleveland
[3] can be utilized to compute the moving average parameter estimates as
the solution to a system of linear equations, and that that method is
faster and more accurate than solving the non-linear equations alluded
to above. In addition, the procedure described below ensures that an
invertible solution is obtained. It also provides a natural procedure
for obtaining estimates when the usual estimates do not exist. These
"estimates'" are shown to provide reasonable initializing values for cal-

culating the maximum likelihood parameter estimates.

Text.

The method of moments (or preliminary estimates, see Box and Jenkins

[2] A.6.2) may be defined as follows:

A

Definition 1. Let p(j) be the sample autocorrelation function of a

stochastic process and let ¢1,...,¢n be the solution to

p(m+1) = ¢,0(m) #eeex ¢ p(m-n+l) (1)
p(m1) = ¢ p(men-1) +++ex ¢ o(m)
Futher let 61,...,6m be the invertible solution (i.e., the solution which

1-6z —---—enlzm has all of its roots outside the unit circle) to the
system of equations

P(3) = p(33¢y5--0s0 5 650058 ), J=1,...,m (2)
{where p(j;al,...,an, 81,...,Bm) is the autocorrelation function of an
ARMA(n,m) process with autoregressive parameters S EERERL N and moving

average parameters Bl,...,Bm)-
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We call ¢1,...,¢n, 61,...,6m the method of moments parameter

estimators of an ARMA(n,m) process and

. K|1-8 e2ﬂ1w ceee- § e21r1wm|2
1
s(w) =
T 2miw ~ 2mwiwn, 2
|1- ¢,e -tee- e |

is called the method of moments ARMA(n,m) spectral density
estimator, where K is chosen so that

.5 A
[ s(w)dw = 1.

-.5
Verbally ¢1,...,¢n and 61,...,6m are those parameter values whose

theoretical autocorrelation function p(j;¢1,...,¢n, 61,...£m)

A

agrees with p(j) for j=1,...,m+n.
As is well-known, for m > 0, even if p(j) is a positive defi-

~ A A

nite function, a solution for ¢1""’$n’ 61,...,6m need not
exist (e.g., for n=0, m=1,take .5 < ; (1) < 1). In that case
we say that the method of moments parameter estimators and the -
method of moments spectral density estimator do not exist.

In Morton {7 ], a spectral density estimator called tﬁe
G-spectral estimator was introduced (actually it was called the
modified G-spectral estimator, it being a modification of a
spectral estimator introduced by Gray [5 ] and studied by Gray,
Houston and Morgan [6 ]).

The G-spectral *estimator may be defined as follows.

~

Definition 2. Let p{j) be an estimator for the autocorrelation
. . . 2miwi” .
function p(j) of a stochastic process. Further let fj = e p(3i)

J
and F. = I fv’ where k =max{1;n-m-1} and m and n are given,
v=-k



non-negative integers. We then define

Gn’m(w) = 2Rea1(en(Fm)-F0) + 1,

where
menel 0 Fm+1 1 ees 1
en(Fm) - fm-n+1 °te fm+1 : fm—n+1 ot fm+1
fm ese fm+n fm. coe fm+n

> = ]
for n > 1 and eO(Fm) Fm
The following properties of the spectral estimator introduced

above are proved in Morton [ 7].

Theorem 1. Let Gn,m(w)’ s(w), and ¢1,...,¢n, 61,...,6m be as
defined above. Define aj = ¢je2Wiwj, j=1,...,n
Then
(i) if s(w) exists then
s(w) = Gn,m(w)
Foel = %1Fm 7777 %Fpne
(ii) G (w) = 2Real - F + 1
n,m 0
1 - ap =cec- o

where the Fj are as given in Definition 2.

The first result above shows that Gn,m(w) is an ARMA spectral
estimator which does not require calculation of the moving average
parameter estimates. The second result provides a simple formula
for calculating Gn’m(w). The calculation formula we note does
require the calculation of the autoregressive parameter estimates
(from (1), for instance); however (1) is a linear system of

equations which may be solved rather easily. Calculating Gn m(w) by

(ii) provides a much more efficient means of calculating Gn (w)

’

than does direct evaluation of the above determinants at every

desired frequency.



We are now in the position to give the result we will utilize
in the calculation of 61,...,6m.

A ~

Theorem 2. Let ¢1,...,¢n, 61,...,em and Gn m(w) exist as defined

b4

above. 1If Gn m(w) > 0 for all w and
-3 os (2miwk)
ci(k) = [ SALLE dw
0

IICHR IR ®

~ A

then 61,...,em is the solution to

ci(1l)

elciEO) +oeey em ci(l-m) (3)

61c1(m—1) +eee g em ci(0)

ci(m)

Proof. From the results above

L - ! - f(w) (say)
IZGn’m(w) KIe(eZHiw)IZ

Ig(eZHiw)

We note that f(w) is proportional to the spectrum of a AR(m) process

with parameters 61,...,em. Thus,

.5

.5 .
ci(j) = [ cos(zmiw) f(w)dw = 3 [ ¢ fw) du,
0 -.5
and we note that ci(j) is proportional to the autocorrelation func-

tion of an AR(m) process with parameter values 61;...,gm. So it
follows that 51,...,6m is the solution to (3).

In this paper, we will refer to algorithms based on solving
the system of equations in (3) as Method 1. We note from the above
Theorem that Method 1 will always yield an invertible moving

average operator (an algebraic proof that the operator resulting

from (3) is invertible is given in Morton [ 7]).



The standard procedure for calculating the moving avérage
parameter estimates is via an algorithm based on a solution
to (2). The standard procedure for that calculation requires
an iterative solution to a nonlinear system of equations (see
Box and Jenkins [2 ], pp. 201 ff). Algorithms based on finding
the solution to (2), we will call Method 2. The two methods
may be compared by the computational speed and accuracy which
they afford and as to whether or not an invertible solution
is guaranteed. First we consider the question of invertibility.
It is well-known that, even if a solution to (2) exi§ts,
it is not unique. (See Box and Jenkins {2 ], pp. 198-199.)
Uniqueness is then guaranteed, typically, by requiring that
the polynomial

6(z) =1 - Blz N Bmzm

have all of its roots outside the unit circle (i.e., 8(3) is
required to be invertible). Thus a numerical algorithm which
merely requires that the equations in (2) be satisfied does not
guarantee an invertible moving average operator. In particular,
one commonly used subroutine, FTMPS in IMSL, does not guarantee
an invertible solution. As noted above, Method 1 always yields
an invertible solution.

To compare the computational speed and accuracy of Method
1 and Method 2, we consider a comparison between the IMSL sub-
routine FTMPS and a program written by Morton which calcu-
lates the ci(j) by Simpson's rule with Richardson extrapolation

(see, for instance, Dahlquist and Bjork [4], pp. 269 ff).

To make the comparison, the true autocorrelations were



_input for moving average orders q=2,3,4,5,6 and the two methods
were compared for accuracy of the calculated coefficients and
for the CPU time required to make the calculation. Method 1 was
applied using grid sizes of 20,40,60,80,100 in the numerical inte-
gration scheme. A summary of the results is given in Table 1.
'Note that, for these models, Method 1 is faster and more accurate in
e§ery case except for q=3 with a grid size of 100 for which Method
2 was slightly faster (though much less accurate). For the q=5
case, we note that Method 2 failed to yield an invertible
operator, and, for the q =4 case, we note that Method 2 failed
to converge to a solution at all.'

In the simulations above, a2 solution for 81,...,6m exists.
However, it is well-known that that need not be the case. 1In
fact, for the pure moving average case, a solution exists if,
and only if,

m A
f(w) =1+ 2 j§1 p(j) cos(2mwj) > 0, -.5<w< .5

(see, for instance, 0. D. Anderson [1 ] pp. 137 ff.; for mixed

processes, let f(w) = |¢(e2n1w)!2

A

that ¢(B) be a stationary operator). Thus, if f(w) < 0 for some

G and add the condition
n,m

w, no method of moments solution exists. One solution to that

difficulty is to replace f(w) by

m 7.
g (w) =_~f_£_(i&+_+% = 1 + 2 .Z ?—%—?—1— cos(2mwj)

j=1
where ¢ is chosen so that g(w) > 0.
In the m=1 case, for instance, an invertible solution

exists if, and only if, -.5 < p(1) < .5. Then, if p(1l) is



~

is outside that interval, the adjusfment above simply "shrinks" p(1)

(1) , where ¢ is chosen so that p(1)/(l1+c¢) is in the

to
l+c
admissible region.

The procedure described above for modifying the estimated
autocorrelations in order to obtain a solution is not inherently
restricted to either Method 1 or Method 2. However, it is not
utilized by any of the commonly used algorithms which employ
Method 2 (in pérticular, it is not utilized by FTMPS in IMSL); so
its use will only be considered here in conjunction with Method 1.
For the remainder of this paper, Method 1 will refer to calculating

~

61,...,6m by the equations in (3) where the function

£@ = 16292 6 ()

n,m
Ais shifted upward if it takes on non-positive values. The precise
statistical properties of the above estimator are unknown. However,
as is illustrated below, it often provides '"reasonable” initialiiing
values for a maximum likelihood estimation procedure.

For many practitioners, the calculation of 81,...,8m is per-
formed solely for the purpose of providing initializing values
for an iteratively calculated, but more statistically efficient
estimation routine (e.g., maximum likelihood). We, thus,
now consider the effect of the above results on the computation
time and the number of iterations required to calculate the
maximum likelihood estimate using Method 1 as against the standard
procedure of using Method 2 to calculate initializing values.

To that end, 5 realizations of length 200 were simulated from

each of the 5 models used above. Maximum likelihood estimates



were calculated for each realization using both Method 1 and
Method 2 to obtain the initializing values. Both the number
of iterations required for convergence of the process and the
total CPU time for the 5 realizations from each separate model
were recorded.

To summarize the earlier results, we record the ways in
which the two methods differ:

(1) Method 1 is typically both faster and more
computationally accurate.

(2) Method 1 always yields a solution and Method
2 need not. Further it requires Method 2
longer to determine that no solution can
be obtained than it does for Method 1 to
adjust the equations and determine a
solution to the adjusted set of equations.

(3) Method 1 ensures an invertible solution,
while Method 2 does not.

We summarize the results of the simulation in Table 2. 1In
every case, and, for each partition size used, initializing by
Method 1 required less computation time ‘than initializing by
Method 2. The difference is primarily due to the fact that Method
1 is faster computationally and always gives a solution. We also
note that in the case in which Method 2 yielded a non-invertible
operator, the maximum likelihood procedure required many more
iterations than the procedure required when initialized by an

invertible operator.



In summéry, then, we have introduced an alternative to the
standard procedure for calculating the moving average parameter
estimates. This procedure is computationally faster and more
accurate than the standard procedure. It also ensures a solution,
as well as ensuring that that solution be invertible. That was
shown to be important, in speeding up the convergence of the max-
imum likelihood estimates calculation when used as initializing

values for the iterative calculation of those estimates.
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TABLE 1

Approximated Values of ei Using Various Partition Sizes in Simpson's Rule

Compared to Standard Methods for Various MA(q) Processes

q =2
True Parameters(ei) 1.3 -.42 CPU TIME
Method 1
Partitions
20 1.29977- - - -.41950 .014
40 1.29996 -.41993 .016
60 1.30000 -.42000 .019
80 1.30000 -.42000 . .022
100 1.30000 -.42000 ) .026
Method 2 ’ 1.28450 -.41493 .032
q=3
True Parameters 1.38 -1.15 .6
Method 1
Partitions .
20 1.37519 -1.14078 .59026 .019
40 1.38013 -1.15032 .60027 .024
60 1.38006 -1.15012 .60013 025
80 1.38001 -1.15002 .60003 . .031
100 1.38000 -1.15000 .60000 038
Method 2 1.38109 -1.14937 .60074 ' .034
q = 4
True Parameters ~-.95 -.9 -.85
Method 1
Partitions
20 -.94726 .89509 -.84354 -.79266  .019
40 -.94726  -.89428 -.84105 -.78760  .026
60 -.94922 -.89825 ~.84708 -.79578  .035
80 -.94986 -.89964 -.84935 -.79895 .037
100 . -.95001 -.90001 -.84997 -.79991  .045

Method 2 No Convergence .081



True Parameters
Method 1

Partitions

20
40
60
80
100
- Method 2

True Parameters
Method 1
Partitions

20

40

60

80

100
Method 2

*
This operator is

-1.85

-1.840
-1.846
-1.849
-1.8500
-1.8501
-2.031

-.995
-.997
-.996
-1.0000
-1.0001
-.9995

-1.
-1,

-1
-1
-1

TABLE 1 (Con't.)

1.75

733
740
.748
.7497
.7501
.917

.18

.183
.177
.1792
.1799
.1800
L1791

non-invertible,

.640
.644
.655
.6591
.6600
.822

.17

.175
.166
.1684
.1696
. 1699
.1712

-1.
-1.

-1
-1
-1
-1

1.56

536
538
.553
.5586
.5600
711

.15

.155
.145
. 1479
.1494
.1499
.1489

)

t

.72

.703
.707
.716
L7192
.7200
.862*

.61

.594
.600

.6072
.6094
.6100
.6094

.61

.590
.597
.6062
.6092
.6160.
.6101

11

CPU

Time

.022
.030
.041
.043
.053
.071

.023
.034
.044
.050
.059
.082



TABLE 2

12

Table of the Number of Iterations Required for Method 1 and Method 2

Realization

Total CPU
Time

q=3

Realization

Total CPU

Realization

Total CPU

Time

[ o8]

Vi 5w

v A KB N

[ B - S T S R

Method 1 Method 2
Partitions T
20 40 100 200
9 9 9 9 9
11 11 11 11 24*
13 13 13 13 17+
9 9 9 9 9
13 13 13 13 17*
.775 2,780 2.859 2.935 4.149
Method 1 ~ Method 2
Partitions S
20 40 100 200
17 17 17 17 17*
21 25 22 21 19*
11 11 11 . 11 11
15 13 13 13 15* -
15 15 15 15 15
5.552 5.659 5.558 5.698 6.177
Method 1 Method 2
Partitions T~
20 40 100 200
23 21 19 19 53**
15 15 15 15 15
9 9 9 9 13*
15 19 17 -17 19*
23 23 23 23 25*
7.940 8.279 7.961 8.143

12.714
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TABLE 2 (Cont'd.)

Method 1 Method 2
q =5 —_— e s T~
Partitions
20 40 100 200
1 63 53 35 33 73*
2 45 45 57 43 41*
Realization 3 33 35 35 35 45>
4 23 35 21 21 43*
S 41 35 35 35 37*
Total CPU 24.296 24,290 22.163 20.454 31.477
Time
Method 1 Method 2
Q=6 Partitions S
20 40 100 200
1 13 17 17 17 15*
2 13 13 11 13 . 11*
. Realization 3 17 13 - 13 13 13*
4 25 21 21 21 15*
S 13 7 11 11 15+
Total CPU 12.905 il.610 11.521 12.3500 16.689
Time

Summary of the efficiencies for choosing starting values for the maximum
likelihood estimation routine of Method 1 and Method 2. The values given
in the Table are the number of iterations required for convergence to a

solution.

*No solution exists to (2.2).

o g
A non-invertible solution to (2.2) was obtained.
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