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ABSTRACT: Two adaptive estimation procedures are developed for
location or scale parameter estimation through the use of the asymp—~
totically best linear unbiased estimator based on sample order statistics.
The two procedures differ in their use of the data to guide optimal order
statistic selection and are, consequently, termed partially and fully
adaptive to indicate the associated degree of guidance. The partially
adaptive procedure is developed in a data summary framework, similar

to that utilized in exploratory data analysis, which provides a computa-
tionally simple scheme for obtaining estimators with high guaranteed
asymptotic relative efficiency. The partially adaptive approach can

also be viewed as providing techniques for adaptive data summary

construction.
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1. INTRODUCTION

The location and scale parameter model assumes that a random

sample, X ,...Xn, is obtained from a distribution function of the

1
form F(EEH) where U and O are respectively a location and scale
parameter. Usually W or O requires estimation from the data. In
this paper attention will be focused on the asymptotically best’
linear unbiased estimator (ABLUE) of U ox O based on k < n sample
order statistics.

The objective of this paper is to construct an adaptive approach
to location or scale parameter estimation which is based on the ABLUE

and applicable to both symmetric and skewed distributions. Using

techniques developed by Eubank (1981), two adaptive approaches are

suggested. The first procedure, termed partially adaptive, entails

the use of certain goodness of fit criteria and/or prior knowledge to
identify a set of probability laws to whieh F is believed to belong.
Then, a "best" set of oxder sta;istics is obtained for estimator con-
struction. The entire procedure utilizes only one subsample from the
entire set of sample guantiles and is developed in a data summary frame-
work similar to that used in. exploratory data analysis. The second proce-
dure is termed fully adaptive as it requires the estimation, from the
sample, of the density-quantile function (c.f. Parzen (1979)) prior to
the selection of the order statistics used: in. estimator constructien.
Although both érocedures are derived using large sample theory, work by

Chan and Chan (1973). and Chan, Chan and Mead (1973 a,b) suggest that in

certain cases these techniques may work well for even moderate or small n.



There are several reasons for using the ABLUE in the context of
adaptive estimation. Perhaps the foremost of these, for the purposes
of this paper, is that asymptotically (as k=) the location of optimal
quantiles for the ABLUE can be completely charactized in a closed,
easily used form for many symmetric and skewed distributions (c.f.

Eubank (1981})). Such characterizations may be employed to obtain
insight into éhe issues of robust and, as will be seen in Section 4,
adaptive estimation. Other reasons for the use of ABLUE's are the

high asymptotic relative efficiencies (ARE's) obtained from the ABLUE
for even small k, when F is known, and the ease of estimator computation.
In fact, many of the calculations in the partially adaptive procedure
are readily accomplished without computer assistance.

Adaptive estimation of a location parameter by ABLUE's has been
considéred by Chan and Rhodin (1980). They assume that F is an element
of the Tukey's lambda family or corresponds to the normal, double ex-
ponential, or Cauchy distribution. Thus, in contrast to this paper,
their results apply only to symmetric distributions and location para-
meter estimation. Their approach is to first obtain three quantiles which
are utilized to estimate a measure of tail length. The locations of the
optimal quantiles for ABLUE construction are then foundby maximizing the
minimum ARE obtainable through an incorrect choice for F,over several dis-
tributions whose tail lengths lie within a neighberhood of this estimate.
The ARE of the resulting estimator is- called a guaranteed ARE (GARRE). This

approach necessitates the selection of two subsamples from the data at different



times. In certain instances this could make their approach unfeasible
(c.f.Eisenberger and Posner (1965)). Surveys and references on the
general problem of adaptive estimation can be found in Hogg (19274) and
Huber (1977).

The development of the adaptive procedures presented in Section 4
is facilitated by the use of results obtained by Eubank (1981).
In Section 3 these results are reviewed and utilized to make certain
distributional comparisons. Section 2 is devoted to background and
notational preliminaries. Section 5 considers the implications of
the contents of Sections 3 and 4 for robust location and scale

parameter estimation.

2. THE DENSITY-QUANTILE FUNCTION AND THE ABLUE

In subsequent discussions it will be assumed that F admits a

probability density function, f£. The quantile function corresponding

to £ is Q(u) = F-l(u), 0 <u <1l. The density-quantile function is

defined as d(u) = £(Q(u)), 0 < u < 1.

Using the sample order statistics, Xqy ¥y L --0 2 Xy,
define the sample guantile function by

~ } i1 <3 .

Q(u) X(j), —;%;—— < u o3 l,...,n. (2.1)

Given a spacing, T = {ul,...,uk}, (k real numbers satisfying
O<u1<u2<.,.<uk < 1) , the corresponding sample quantiles, Q(ul),...,

Q(uk), have been shown by Mosteller (1946) to have a normal



limiting distribution. Ogawa (1951) has used the form of the limiting
distribution to obtain formulae for the ABLUE's, u*(T) and o*(T), of
¥ and 0, and their corresponding asymptotic relative efficiency with

”»
respect to the Cramer-Rao lower variance bound.

Let T = {ul, e oy uk} be a spacing and let uy = 0, w . = 1.
Define the quantities Kl and Kz by
k+1 2
K, (TF) =3 fd(u;) - dlu; ;)] (2.2)
i=1 u, = u,
i i-1
and 5
k+1 [d(u,)Q(u,) - d(u, .)Q(u, .)]
X, (T:F) = % i i i-1 i-1 (2.3)

i=1 b R P

The asymptotic relative efficiency formulas given by Ogawa are, in

this notation,

K, (T;F)
ARE_ (u*(T)) = L (2.4)
£1 (%) \2
EflF @
and
KZ(T;F) (2.5)

AREF(O'* () =

£ (X)\2
E (Xf<x)> -1

where AREF denotes ARE under the assumpfion that F is the true
distribution function.

To obtain optimal estimators,T should be chosen to maximize one
of (2.4) or (2.5). A spacing which resultsvin a maximum for one of

these expressions is termed an optimal spacing.




Chan and Rhodin (1980) have obtained spacings which are robust
in the sense that they provide high ARE's over several, user specified,
distributional forms. In contrast, the objective of this paper is to
provide an adaptive approach to spacing selection. Consequently, the
procedures which will be developed will utilize the data, either
fully or in part, to guide the spacing selection process.

In the next section a spacing selection procedure will be
discussed which, when F is known, can be utilized to obtain spacings
which correspond to near maximum ARE's. It will then be seen that
these spacings exhibit similiar kehaviour for certain distribution.
types. This latter fact provides the basis for the adaptive techniques

presented in Section 4.
3. ASYMPTOTICALLY OPTIMAL SPACINGS

Parzen (1979) has shown that location and scale parameter estima-
tion by linear functions of order statistics can be considered as a
regression analysis problem for continuous parameter time series
through use of the model

awow = uaw + od(Qw + o B, ue (0,11, (3.1)

where CB = c//;-and B(*) is a Brownian bridge process. If samples are
taken from this model at a finite number of design points, u and ¢ may

be estimated through the use of generalized least squares. Eubank (1981)
has shown that the resulting estimators and corresponding variance formulae
agreewith those for the ABLUE given byOgawa (1951). Therefore, the problem of

‘optimal regression design, in the minimum variance sense, for model (3.1) is



identical to the optimal spacing problem.
Using asymptotic theory for regression designs for continuous
parameter time series, Eubank (1981) has shown that certain density

functions on [0,1] can be used to obtain spacings which have "good

properties" which will be discussed subsequently. These densities are

@™y 2’3

Pas)m? 3as
h(a) = 0 _ (3.2)

, when 0 is unknown,

([d (w0 (a)1") /3

ft (1a(s)0(s) 1" % 3as

, when ¥ is known.

Let H denote the distribution function corresponding to h. Then the k-
eleme;t spacing generated by H is T, = {H_l(iéi), H-1 (E%I) roeee
H l(ﬁ-'l')} .

To be more precise about the "good properties" these spacings
possess;consider the problem of location parameter estimation when o
is known. If h denotes the appropriate density in (3.2), then, by
successively increasing k, h may be used to generate a sequence of

spacings, {Tk}:=l' This sequence satisfies

: - *
lim 1 - ARE (u (Tk))
k>

=1 (3.3)

1 - inf ARE(U*(T))

TEDk

where Dk denotes the set of all k element spacings. For scale parameter
estimation an analogue of (3.3) holds with u* replaced by o%*.

Equation (3.3) has the important implication that the spacings



generated by h will, for large k, behave like the optimal spacings
with respect to ARE’s. The spacings in a sequence which satisfy (3.3)

are termed asymptotically optimal spacings. The densities in (3,2) are

termed optimal spacing densities.

Since (3.3) is only an asymptotic result, caution must be utilized
when discussing the properties of asymptotically optimal spacings for
finite k. However, for most distributional forms, the asymptotically
optimal spacings have ARE's quite close to those of their optimal
counterparts even for k as small as 3. This remark is readily verified
through reference to Table 1 where the difference in efficiencies between
optimal and asymptotically optimal spacings are given for various choices
of ¥ when k = 3, 7. |

In addition to being used for actual spacing computation, the h
(or equivalently H or H-l) functions are useful tools for distributional
comparisons since they provide (asymptotically) a characterization of

. . . -1 . . .
the behaviour of the optimal spacings. Since the H function is required

1

’

for spacing computation it will be more convenient to compare the H
rather than h, functions for various choices of F.

The H_l function dictates how the elements of asymptotically optimal
spacings are concentrated for a particular distribution type. Figures
1 and 2 show H-l fungtions for several common distribution types for
the case of either 0 or u known. Through examination of these figures

it is possible to recognize three common types of behaviour for H_l'

(1) Uniform: H-l(u) = u (e.g. the logistic when ¢ is
known and the Pareto with u known and shape parameter,

v, equal to 1).



TABLE 1, Loss in ARE from the use asymptotically optimal rather than optimal spacings

(a)

Parameter to Loss in ARE
Distribution - be estimated k=3 k=17
Normal H .0092 .0017
o] .0107 .0182
Logistic H oGUV oEv
o : .0152 ..t
Cauchy u .0581 .0116
g .0524 .0078
Extreme Value H .0143 .0013
Exponential g .0143 .0013
Pareto v = .5 Y .0006 .0001
v= 1 (o] .001 .0001
v= 3 g .0025 .0002
Lognormal g .0092 .0017

(a) References and values for ARE's pertaining to the optimal spacings as well as the ARE's
for asymptotically optimal spacings may be found in Eubank (1979).

(b) The asymptotically optimal spacings coincide with the optimal spacings in this instance.

(c) The optimal spacings for this case are, to the author's knowledge, unknown.
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Figure 1, The H functions for various distributions in the

|
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(2) Skewed: In this case H_l often behaves like u3 or
l—(l-u)3 (e.g., the extreme value when 0 is known
and the exponential when ¥ is known).

(3) Symmetric: l—H-l(u) = H_l(l—u) (e.g. the normal or

logistic when ¥ or ¢ is known).

. -1, : : | : :
Since H is the quantile function corresponding to H its charac-

teristics may be interpreted as one would interpret those of anf
quantile function (c.f. Parzen (1979)). Thus many spacing elements
will be selected from an interval (on the H_l axis) which corresponds
to a relatively flat shape (near O slope) for H-l while intervals wbich
correspond to sharp rises will have low spacing element concentration. For
example, the spacing elements for the exponential, when i is known,
will be concentrated near 1 with few elements near 0. This will entail
selection from among the larger, rather than the smaller, order
statistics for the estimation of 0 from exponential data. When H-l

is symmetric spacing elements are equally and symmetrically distributed
about .5.

In the process of constructing a partially adaptive approach to
estimation based on the ABLUE (see Section 4) it becomes necessary to
compare the various H—l functions. Through grouping together distri-
butions whose H—l functions have similar shapes it is found that by
slightly altering the asymptotiéally optimal spacings it is possible
to suggest 5pacings which work weli for several distributions
simultaneously. These perturbed'or altered spacings are nearly as

efficient -as the asymptotically optimal or optimal ones due, in part,
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to the continuity of Ki(T;F), i=1,2, as a function of T (continuity
is readily established by reference to the work of Sacks and Ylvisaker

1 1 1 2

(l966)). Thus, if T = (t ,...,t ) and T = (tl,...,tz) are two spacings,

the difference lK (T ;F) - Ky (T ;F)| will be small provided maxkltj - t§|
<]<
is also sufficiently small. Precise bounds for this difference, or equi-

valently for the loss in ARE, may be obtained by imposing smoothness

conditions on Ki or by examining specific classes of F's.

4. ADAPTIVE LOCATION OR SCALE PARAMETER ESTIMATION

In this sectiqn adaptive data analysis procedures are presented
which are based on ABLUE's. Both fully and partially adaptive location
or scale parameter estimation schemes are considered and, as a cénse—
quence of the development of the partially adaptive approach, techniques
for adaptive data summary construction are discussed.

Siﬂce the properties of the ABLUE derive from the limiting distri-
bution for the sample guantiles, the results presented in this section
are designed for use, primarily with large data sets. It is therefore
important to note that the subsequent adaptive techniques deal simul-
taneously with the issues of estimation and data compression.

Adaptive data summaries and a partially adaptive estimation procedure.

Data summaries consisting of 7, or fewer, sample order statistics
are frequently utilized in exploratory data analysis (c.f. Parzen (1979)).
The construction of a data summary may be an end in itself or, only a
preliminary step before transformation or re-expression of the entire
data set. In either instance the estimation of location or scale para~

meters, from the quantiles which compose the summary, plays an important
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role in the analysis of the data. Thus, it is reasonable to consider the
construction of data summaries which, among other things, are capable of
providing good estimates of u and o. The partially adaptive estimation
procedure presented below provides such summaries.

Using the results of Section 3 it is possible to develop an adaptive
approach to data summary construction. The quantiles indicated in Tables

2 provide what is termed a 19 number adaptive data summary. The values

indicated in Tables 2 contain as subsets various 7 number sub-summaries
which may be utilized to summarize data from each of the distribution con-
sidered in this paper. The sub-summaries appropriate for any particular
distribution are composed of quantiles which may be utilized to obtain
good estimates of either ﬁ or ¢. For this reason, Parzen (1980) has termed
the quantiles in Table 2 a "universal data summary"”.

To use Table 2 to construct a data summary the following procedure
may be utilized. First, the 19 quantiles, consisting of the median, the
j/16 percentiles, j = 1,...,7, and the .0l and .02 percentiles are obtained
from the data. These guantiles are then used to determine one or more laws
among those listed in Tables 3 or 4, which seem to fit the data throuygh the
use, perhaps, of goodness-of-fit procedures. The goodness-of-fit techniques
developed by Parzen (1979) are perhaps best suited to this purpose since
their use does not entail the estimation of p or o. Let‘D denote this
set or laws. The ARE's in Table 3 or 4 can then be used to find which
element of D maximizes

min AREF(°|G)
GeD

, (4.1)

where AREF(-]G) denotes the ARE obtained by using the spacing corre-

. w
sponding to F when G is the true d.f. and the ° 1is used as a place



TABLE 2. An Adaptive 19 Number Data Summary

10.

The

The

The

The

The

The

The

The

The

~

median, Q(.5).
_]7.—6- percentile, Q(.4375) and Q(.5625).
3 percentile, é(.375) and é(.625).

percentiles, Q(.3125) and Q(.6875).

r—-lun o)
o

quartiles, é(.25) and é(.75).

3 percentiles, 0(.1875) and Q(.8125).
16

1 percentiles, é(.125) and é(.875) .
8

1 percentiles, é(.06_25) and é(.9375).
16

2 percentiles, é(.OZ) and é(.98).

100

1 percentiles, Q(~0l) and 0(.99).
100

14
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TABLE 3. The AREF(u*(T) lG) for various combinations of F and G

¥/G Normal Cauchy Logistic Extreme Value
Normal .9622 .9264 .9713 .9364

Cauchy .9450 .9496 .9844 .8663 -
Logistic . 9450 . 9469 . 9844 .8663

Extreme .8978 .8464 . . 9450 .9653

Value
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holder for the appropriate one of u*(T) or o*(T) depending on whether
the objective is location or scale parameter estimation. If F* is

the distribution which maximizes (4.1) then the 7 element data summary

is obtained by selecting those of the initial 19 quantiles which corre-
spond to the check marked spacings under the F* column in the apporpriate
one of Tables 5 or 6.

The partially adaptive estimation procedure consists of using the
quantiles obtained for the 7 number data summary to construct an '
estimator of Y or o. This is readily accomplished through using the
coefficients for the quantiles presented in Tables 7. Table 7 also
gives the ARE for the estimator assuming F* is the true distribution.

In contrast, the GARE for the estimator is the minimal value of AREF*(‘IG)

over GeD. This value was found in determining the approvpriate
subsummary.
EXAMPLE. To illustrate the use of the partially adaptive procedure
two numerical examples will be considered. 1In each example, the approach
proposed by Parzen (1979) for ascertaining the goodness of fit of a pro-
bability law is utilized to determine a set of likely candidates, D, for
the parent distribution of the data. The necessary computations were
conducted using the ONESAM statistical package developed by Parzen and
Anderson (1980).

The elements of the Parzen approach which are important for this
discussion may be summarized as follows, Let Fo be.a hypothesized distri-
bution with corresponding density-quantile function d0° Under the null

hypothesis, that FO is the parent distribution of the sample, the function
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TABLE 5. Order Statistic Selection for Location Parameter Estimation
by Seven Order Statistics

_ Distribution
Spacing Normal Cauchy Logistic Extreme Value
.01 Y
.02 /oo, v
.0625 4
.125 v/ Y Y v
.1875
.25 ‘ vV v v
.3125 v
.375 . 4 v
.4375 " v
.5 v/ v v
.5625
.625 v/ v
.6875 4 Y
.75 4 v
.8125
.875 v/ v v
.9375
.98 v

.99
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Table 7. Coefficients and Efficiencies for the ABLUE based on Seven

Order Statistics 20
bl 5 b3 b4 bs b6 b7 b0 ARE
a. Normal Distribution, ¢ Known
.0464 .1517 .2026 .1986 .2026 .1517 .0464 .0 .9622
b. Normal Distribution, u Known
-.0383 .0691 -.2338 .0 .2338 .0691 .0383 .0 .8538
c. Exponential Distribution, u Known
.2906 .2252 .1587 .0898 .055 .0204 .0144 .854 .9653
d. Pareto Distribution, v = .5, u Known
.5398 .3195 .1508 .1548 .0954 ' .0349 .0127 1.3079 .9838
e. Pareto Distribution, v = 1, i Known
.5833 .4286 .2976 .1905 .1071 .0477 .0119° 1.6667 .9844
£. Pareto Distribution, v = 2, u Known
.7698 .6708 .4717 .2893 .1947 " .0684 .0264 2.4912 .9792
g. Pareto Distribution, v = 2,u Known
1.211 .9448 .6031 3995 .2934 .N779 .0154 3.4549 .9757
h. Pareto Distribution, v = 4, o Known
1.4387 1.0941 .7184 .4946 .2383 .1006 .0337 4.1184 .9761
i. Cauchy Distribution, o Known
-.0518 .3018 5 .3018 .0 .0518 .0 94986
j. Cauchy Distribution, u Known
-.1232 -.1311 . -.276 .0 .276 .1311 .12 .0 .9463
k. Logistic Distribution, ¢ Known
.0832 .1429 .1786 .1905 .1786 .1429 .0833 .0 .9844
1. Logistic Distribution, Known
-.0334 -.1351 -.,2644 .0 .2644 .1351 .0334 .0 .9009
m. Weibull Distribution, vy = 4/3; U Known
.2274 .2147 1722 .1078 .071 .0286 .021 .8427 .9653
n. Weibull Distribution, y = 2,_u Known
.1779 .2047 .1868 .1294 .0916 .0403 .0308 © .8616 .9653
Q. Weibull Distribution, ¥ = 4, u Known
.1392 .1952 .2027 .1554 .1183 .0566 .0451 .9126 .9653
P. Extreme Value Disfribution, g_Known
.0661 .0796 .1526 .18686 .22 .1861 .1089 -.4314 .9653
g. Lognormal Distribution, u Rnown
.3615 ”.4793_ o .33Q?q7 , .1986 .1243 .048 .0059 1.548 .9622
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d
o(x)
d(x)
To utilize Parzen's procedure one first forms, from the data, raw estima-

1
r(t) = do(t)/(d(t){f0 dx}) will be identicallyone over all of [0,}].
tors of ¥ and its corresponding distribution function, R, which will be
denoted by r and R respectively. Then a variety of diagnostic statistics

~ ~

based on r and R are available for judging the goodness of Fit of FO. In
particular, one may consider how well i conforms to the uniform distribu-
tion of [0,1]. Further anaysis is provided by determination of the optimal
order, m, of an autoregressive smoother of ¥. oOne approach to the selection
of m is through the use of the CAT criterion. When CAT chooses m = 0 this
is regarded as additional confirmation that H0 holds.

As a first example consider estimating a location parameter from the
data on lifetimes, in hours, of 417 40-watt intefnéily frosted incandescent
lamps studied by Davis (1952). The 19 sample quantiles listed in Table 2
were obtained and analyzed using the Parzen procedure. Although CAT selected
order zero for all four of the laws, through comparison of R to the uniform
distribution it is found that the normal and logistic distributions provide
far superior fits. Therefore, an appropriate choice would be D = {normal,
logistic}.

From Table 3 it is seen that when F is the normal distribution

ARE_ (u* (T) |Normal) = .9622
AREF(u*(T)ILogistic) = .9713

and that when F is the logistic distribution
ARE_ (u* (T) |Normal) = .9450

AREF(U*(T)lLogistic) = .9844 .

As the choice of the normal distribution results in the largest minimum

ARE over D, the estimate of u is constructed using the spacings in Table
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5 for the normal distribution and their corresponding coefficients in

Table 7. The resulting estimator is

u*(T) = .04640(.02) + .15170(.125) + .20260(.3125)

+ .1986Q(.5) + .20260(.6875) + .1517Q(.875)

+ .04640(.98)

.0464 (623) + .1517(836) + .2026(954)
+ .1986(1037) + .2026(1127) + .1517(1243)

+ .0464(1461) '

1039.6407

which is close to the value 1044.3 given by Chan and Rhodin (1980) as
their estimate of u for this data.

A test for normalit? performed by Davis on all 417 data values
found the normal to be acceptable although a test for kurtosis indicated
that the observations were more peaked at the mean and flatter in the
tails. Indeed, if the entire set of values is analyzed using the Parzen
procedure the normality hypothesis is rejected and the logistic is seen to
be the best choice for the distribution of this data from among those laws
given in Table 3. The logistic was also used by Chan and Rhodin in obtaining
a robust estimator of u. As the partially adaptive teéhnique uses only 19
sample quantiles it is not surprizing that both the normal and logistic were
selected as the members of D. It is encouraging, however, that the choices
indicated for D included the "correct" model and that the resulting estima-
tor of u is close to the value given by other authors using the entire
sample for their analysis.

Now consider the estimation of a scale parameter from the data on

109 time intervals, in days, between explosions in mines involving more



than ten men killed from December 6, 1875 to May 29, 1951, given by
Maguire, Pearson and Wynn (1952). To determine the membership of D

the 19 sample quantiles in Table 2 were used to ascertain the goodness
of fit of several distribution candidates, including the exponential,
several Weibull distributions with shape parameters close to the expoﬁen—
tial and the Pafeto with shape parameters 2, 3 and 4. Examination of R
indicated that the data was well modeled by either of the three Pareto
distributions which were considered. 1In addition these were the.only
ihstances when CAT selected an optimal order of zero. Hence, in this
case, D was taken to consist of three members, namely the Pareto with
shape parameters v = 2, 3 and 4.

From Table 4 it is seen that, for the Pareto

ARE  _ Lo (M [v =2 = .9792

ARE _ 2(0*(T)[v =3) = .9743

ARE _ L, (0*(D)|v =4) = .9693
so that

minARE _ (0*(T)[6) = .9693

GeD
Similarly for v = 3 and v = 4 the values for minARE_(o*(T)|G) are .9741
GeD S
and .9757 respectively. As the Pareto with v = 4 has the largest minimum

ARE over the laws in D its corresponding spacings and coefficients in

Tables 6 and 7 are used in estimating o. The resulting estimator is

o* (T)

4.1184 + 1.4387Q(.25) + 1.09410(.4375)
+ .7184Q(.625) + .4946Q(.75) + .23835(.875)

+ .1006Q(.9375) + .03370(.98)

4.1184 + 1.4387(54) + 1.0941(120) + .7184(217)
+ .4946(336) + .2383(390) + .1006(745)

+ .0337(1357)

748.7935 .

23
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If the entire data set is analyzed using the Parzen procedure the
Pareto with v = 2 is eliminated from D. The end result, in terms of
the value of the estimator, will of course remain the same as the Pareto
with v = 4 still has the largest minimum ARE. Itris noteworthy that the
set D identified using the 19 quantiles again includes the laws which
were indicated as appropriate for this data through use of the entire
sample. |

Some remarks regarding the procedure utilized in selecting the
quantiles presented in Table 2 now seem appropriate. The quantiles
suggested for the 19 number adaptive data summary were selected through
careful inspection of the sets of 7 element asymptotically optimal
spécings for the various distributions of interest. In many instances,
as suggested by Figures 1 and 2, these sets had maﬂy elements which were
quite similar. By identifying these similar elgments and then slightly
altering them to obtain a common value, an overall reduction in the
number of spacings, and hence the number of quantiles, required to

accurately summarize many distributions simultaneously was achieved. 1In

determining the common value to use for several similar spacing elements,
preference was given, when applicable to values frequently suggested for
data summaries such as the quartiles and eighths. The perturbation of

the spacing elements was expectedlto have minimal detrimental impact on
the ARE's of the corresponding estimators due to the continuity of these
functions as discussed in Section 3. That this expectation was realized
can be seen from examination of the ARE's presented in Table 7. Due to
the nature of their construction, it is not possible to attach any overall
optimality properties to the adaptive data summary given in Table 2.
However, the suggested summary is appealing since it works well and tends

to agree with the values frequently suggested in data summary construction.
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Fully adaptive approach. The fully adaptive estimation procedure requires

the use of an estimator for the density-quantile function. Givenm < n
sample quantiles such an estimator may be obtained through the use of the
approach developed by Parzen (1979).

The fully adaptive location or scale parameter estimation procedure
is summarized as follows:

1. Construct as estimator, d, of the density-quantile function,

d, based on m < n of the sample quantiles.

2. Form the appropriate density in (3.2) using the estimator

A

d. To estimate Q°d use the relationship Q'=1l/4.
3. Let h denote the density constructed in Step 2 and let H
represent its associated distribution function. To obtain
an estimator of ¢ or o apply the formulas given by Ogawa
(1951) .to the sample quantiles that correspond to the spacing
{ﬁ-l( —1;4 H l(—]-5---)} (c.f. also Eubank (1979) for the Ogawa
k+1 P ooy k+1 oLl e g

formulas written in density-quantile function notation).

At present there seems to be no rule of thumb to use in the selection
of m or the spacing for the initial m sample quantiles. However, if a
reasonable guess is available for the form of F, one might select the m
quantiles through use of the corresponding H-l function. 1In such instances
m = k is a good choice, since, should it be found that ﬁ-l is similar to

H ~, some or, perhaps, all further quantile selection could be avoided.

5. APPLICATION TO ROBUST ESTIMATION

Chan and Rhodin (1980) have considered the problem of robust loca-
tion parameter estimation using ABLUE's. They consider estimators which
are robust relative to a set of laws D, where robustness is measured by

the estimators GARE. As a rule one would expect GARE to be adversely
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influenced by diversity in the members of D.- This point is readily
illustrated in the situation they consider, namely, when D is composed
of members of the Tukey lambda family with different shape parameters.
For instance, if D consists of distributions whose shape parameters are

-.2, =-.1 and 0 the GARE for location parameter estimat%qg is‘found, from

Table 3 of their péper to be .8889 whereas if the shape parameters are
-.1, 0 and .1 the éARE is .8378.

A natural way to determine the influence of the diversity 6f D
on the GARE is to compare the H_l functions for the various members of
D. A marked dissimilarity among H“l functions would indicate that a
high GARE is likely not obtainable since (asymptotically) the location
of the optimal spacings would be quite different. Thus, ABLUE's should
only be expected to be robust with respect to D if the elements of D
have similar H"1 functions. The comparison of H_l functions should,

therefore, prove useful in determining reasonable choices for D.

6. SUMMARY AND CONCLUSIONS

The objective of this paper is to develop adaptive estimation
procedures for locafion and scale parameters which are based on linear
functions of order statistics. This is accomplished through the use
of the ABLUE‘and the H-l function which asymptotically éharacterizes
the distribution of the elements of tﬁe optimal spacings for the
sample quantiles. The applications of the H-'1 function to robust

estimation are also considered.

The two adaptive estimation procedures discussed in this paper
differ in their dependence on and use of the data. The fully adaptive

procedure entails the actual estimation of H_l and requires the user
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to sample twice from the original data set. In contrast, use of the
partially adaptive procedure requires only that one initial 19 quantiles
subsample be obtained. Thus, in instances when repeated use of the data
is not possible, the partially adaptive procedure may be preferable.

The focus of this paper hasybeen entirely on single parameter
estimation situations for certain distribution types. This approach can,
howeve:, be extended to include simultaneous parameter estimation in
many instances and other distribution types such as the Gamma, aﬁd
Tukey's lambda.

The concept of adaptive data summaries was developed as a conse-
queﬁce of the partially adaptive estimation procedure. Fo; large data
sets such summaries should provide a useful means of data compression.
The advantage of adaptive data summaries in this context is that the
data anlyst can obtain a summary which "fits" the data without the

need for rigorous analysis and modeling of the entire data set.
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