THE DETERMINATION OF SEASONAL ARMA MODELS bу Michael Morton Technical Report No. 141 Department of Statistics ONR Contract October 1980 Research sponsored by the Office of Naval Research Contract N00014-75-C-0439 Project NR 042-280 Reproduction in whole or in part is permitted for any purpose of the United States Government This document has been approved for public release and sale; its distribution is unlimited DIVISION OF MATHEMATICAL SCIENCES Department of Statistic Southern Methodist University Dallas, Texas 75275 #### THE DETERMINATION OF SEASONAL ARMA MODELS bу #### Michael Morton # SECTION I ## INTRODUCTION Gray, Kelley, and McIntire [1978] have described a method for determining the order of an ARMA process and for identifying roots of the characteristic equation on or near the unit circle. In this paper, we will demonstrate how that approach can be utilized in modeling seasonal data. Many practitioners, at present, perfunctorily employ the operator 1-B^S on any data set believed to have a period of length S. Use of that operator, however, tacitly assumes not only a frequency of 1/S to be present in the data, but of all the harmonics of 1/S (i.e., it assumes the frequencies 0, 1/S, 2/S,..., $\boxed{S/2}$ where $\boxed{\cdot}$ is the greatest integer function). We shall demonstrate a technique which will aid in determining when such an operator is called for and when other seasonal models are called for. In the next section, we define our terms and give the theorems which are necessary for describing the method which we employ. In the following section, we illustrate the procedure using two example series: the International Airline series given in Box and Jenkins [1976] and the so-called Radio series given by Siddiqui [1962]. ## SECTION II ## DEFINITIONS AND THEOREMS ## Definition 1 By an ARMA (p,q) process, we mean a stochastic process $\{X_t\}$ which satisfies $$\phi(B) X_{t} = \theta(B)a_{t}, t = 0, \pm 1, \pm 2,...$$ where $$\begin{split} &\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p, \\ &\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q \quad \text{with} \\ &\phi_p, \theta_q \neq 0 \quad \text{and} \quad B^k X_t = X_{t-k}. \end{split}$$ The algebraic equation $\phi(r) = 0$ is called the characteristic equation of the corresponding ARMA process. We assume that $\phi(r)$ has all of its roots on or outside the unit circle, and that $\phi(r)$ and $\phi(r)$ are relatively prime. $\{a_{+}\}$ is assumed to be a white **n**oise process. It is well known that $\{X_t^{}\}$ is a stationary process if, and only if all of the roots of its characteristic equation are strictly outside the unit circle. By a non-stationary ARMA process, we will mean an ARMA process with one or more of the roots of $\phi(r)$ lying on the unit circle. That is, we exclude the case of roots inside the unit circle. The term seasonal model will be used to designate the following class of non-stationary ARMA processes. ### Definition 2 A factor $\Psi(B)$ will be said to be seasonal if $$\Psi(B) = 1 + B$$, or $$\Psi(B) = 1 + \Psi_1 B + B^2, |\Psi_1| < 2.$$ An ARMA (p,q) process will then be referred to as seasonal if it consists of one or more seasonal factors. Motivation for the above definition is seen most easily in the frequency domain. A seasonal factor is any (irreducible) non-stationary factor with associated frequency greater than 0. ### Definition 3 The autocorrelation of a stationary ARMA process is given by $\rho(k) = E(X_t X_{t+k}) / E(X_t^2).$ Strictly speaking the autocorrelation of a non-stationary ARMA process does not exist. However, if one regards a non-stationary ARMA process as a limiting case of a sequence of stationary processes, the following definition will appear natural. ## Definition 4 Let ρ_k $(\lambda_1,\ldots,\lambda_p,\underline{\theta})$ denote the autocorrelation at lag k of a stationary ARMA process with $\lambda_1,\ldots,\lambda_p$, the roots of $\phi(r)$ and $\underline{\theta}=(\theta_1,\ldots,\theta_q)$ the moving average parameters. Now suppose that $\{X_t\}$ is a non-stationary ARMA (p,q) process with roots of $\phi(r)$ $\lambda_1,\ldots,\lambda_p$ of which $\lambda_1,\ldots,\lambda_m$ are on the unit circle. We then extend the definition of $\rho(k)$ by letting $$\rho(k) = \lim_{\alpha \to 1^{+}} \rho_{k}(\alpha \lambda_{1}, \alpha \lambda_{2}, \dots, \alpha \lambda_{m}, \lambda_{m+1}, \dots, \lambda_{p}, \underline{\theta})$$ We will call $\rho(k)$ the autocorrelation of the non-stationary process $\{X_{+}\}.$ # Definition 5 If X_1,\ldots,X_n are consecutive random variables from the ARMA process $\{X_t\}$, we take as our estimator of $\rho(k)$ $$\hat{\rho}(k) = \sum_{t=1}^{n-|k|} (X_t - \overline{X}) (X_{t+|k|} - \overline{X}) / \sum_{1}^{n} (X_t - \overline{X})^2$$ Fundamental to the discussion to follow is the so-called S-array. For completeness, we give a formal definition of the S-array; however, its importance for our purposes is contained in the two theorems which follow. (Our definition differs slightly from that normally given. It represents a simple shift in index in order to give the format of the shifted S-array suggested by Woodward and Gray [1979] in simpler notation). # Definition 6 Given a doubly infinite sequence $\{f_m\}$ let $$S_{n}(f_{m}) = \begin{bmatrix} 1 & 1 & \dots & 1 \\ f_{m-n+1} & f_{m-n+2} & \dots & f_{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ f_{m} & f_{m+1} & \dots & f_{m+n} \end{bmatrix} / \begin{bmatrix} f_{m-n+1} & \dots & f_{m} \\ \vdots & \vdots & \ddots & \vdots \\ f_{m} & \dots & f_{m+n-1} \end{bmatrix}$$ The S-array is then the numbers $S_n(f_m)$ displayed as in Table 1. TABLE 1 | m/n | 11 | | k | |------|-----------------------|-----|---| | _ | 0.7.1 | | | | - & | S ₁ (-l) | ••• | s _k (-l) | | -2+1 | S ₁ (-l+1) | ••• | S _k (-2+1) | | • | • | | : | | -1 | s ₁ (-1) | ••• | s _k (-1) | | 0 | . s ₁ (0) | ••• | s _k (0) | | 1 | s ₁ (1) | ••• | s _k (1) | | 2 | s ₁ (2) | ••• | s _k (2) | | • | : | | · • • • • • • • • • • • • • • • • • • • | | • | • | | • | | j | S ₁ (j) | ••• | s _k (j) | $s_n(f_m)$ If $\{X_t\}$ is a stationary ARMA (p,q) process and if $f_m = \rho(m)$ or $f_m = (-1)^m \rho(m)$, then $S_n(f_m) = C_1$ for all $m \ge m_1$ and $S_n(f_m) = C_2$ for all $m \le m_2$ if, and only if n = p, $m_1 = q$, and $m_2 = -q-1$, where C_1 and C_2 are constants. ## PROOF SEE GKM [1978] We thus note that, given the true autocorrelation function of a stationary ARMA process, the S-array provides an unequivocal identification of p and q. Given an estimate $\hat{\rho}(k)$, we then look for a similar pattern in the S-array to provide information as to the order of the process $\{X_+\}$. ### Theorem 2 If $\{X_t\}$ is an ARMA (p,q) process and if $f_m = \rho(m)$ or if $f_m = (-1)^m \rho(m)$ then $\{X_t\}$ is non-stationary if, and only if for some n and some C, $S_n(f_m) = C$ for all m, where C is a constant. In that case n is the number of roots of highest multiplicity among those roots of $\phi(r)$ located on the unit circle. PROOF See Quinn [1980] and Theorem 1 GKM [1978] Theorem 2 suggests that a stepwise procedure will be required for identifying the complete model whenever $\phi(r)$ has roots on the unit circle. First, the presence of non-stationarities are detected by noting a column of the S-array which is relatively constant. The series is then transformed by the indicated non-stationary factor and the residual series is then investigated. Few distributional properties of the S-array are known. However Gray, Kelley, and McIntire [1978] have shown through a variety of examples that the S-array is relatively robust to stochastic disturbance. We also give two asympotic results. ## Theorem 3 Suppose that $X_1, X_2, ... X_T$ are consecutive random variables from an ARMA (p,q) process satisfying $\phi(B)X_t=\phi(B)a_t$ and $r_T(k)$ is the sample autocorrelation function at lag k. (i) Suppose $S_n(\rho(k))$ is defined and P - $\lim_{T\to\infty} r_T(k) = \rho(k)$, then P- $\lim_{T\to\infty} S_n(r_T(k)) = S_n(\rho(k))$ if the roots of $\phi(r)$ are strictly outside the unit circle. (ii) X_t is non-stationary if, and only if for some n and C P - $\lim_{T\to\infty} S_n(r_T(k)) = C$ for all k, where C is independent of k, and $S_n(\rho(k))$ is defined. #### PR00F - (i) This easily follows since S_n is a continuous function and P $\lim_{T\to\infty} r_T(k) = \rho(k)$. - (ii) The proof of part (ii) relies on two quite useful results which were established by Findley [1980] and which we state as lemmas. ### Lemma 1 Suppose all quantities are as defined in Theorem 3 and that $$\phi(r) = \begin{bmatrix} m \\ \pi(1-\alpha_i r) \end{bmatrix}^d \Psi(r)$$ where the α_i are distinct, $|\alpha_i| = 1$ and $\Psi(r)$ has no roots on the unit circle of multiplicity greater than d - 1. Writing $$\pi$$ $\Pi (1-\alpha_i r) = 1 + a_1 r + ... + a_m r_m$ we then have $$P - \lim_{T \to \infty} \left(r_T(k) + a_1 r(k-1) + ... + a_m r_T(k-m) \right) = 0$$ for all $k = 0, \pm 1, \ldots$ <u>Lemma 2</u> If we let: the denominator quantity in the S-function, we have, taking m as in Lemma 1, $$\lim_{T}\inf |H_{m}(r_{T}(k))| > 0$$ for all k, almost surely. We may now prove part (ii) of Theorem 3 using the notation introduced above. (\Longrightarrow). Assume X_t is non-stationary and $\emptyset(r)$ is as defined in lemma 1. Fix k and let $$U_{T}(i) = r_{T}(k + i) + a_{1}r_{T}(k+i-1)+...+a_{m}r_{T}(k+i-m)$$ for i = 1, ..., m. By lemma 2, $$P - \lim_{T \to \infty} U_T(i) = 0$$, $i = 1, ...m$. Further by performing simple column operations in the numerator determinant we have, letting A be the ijth cofactor of the matrix in the numerator of the S-function, $$S_{m}(r_{T}(k)) = (1 + a_{1} + ... + a_{m}) (-1)^{m} + U_{T}(1) A_{2,m+1}/H_{m}(r_{T}(k))$$ +...+ $U_{T}(m) A_{m+1,m+1} H_{m}(r_{T}(k))$ Now, since A_{ii} is bounded it follows from lemmas 1 and 2 that: $$P = \lim_{T \to
\infty} S_m(r_T(k)) = (-1)^m(1 + a_1 + ... a_m)$$ (\leftarrow) Suppose then that there is an n so that $$P_{T\to\infty}$$ - lim $S_n(r_T(k)) = C$ for all k and that $S_n(\rho(k))$ is defined for all k. If X_t is stationary, then with the above conditions: P-lim $$S_n(r_T(k)) = S_n(\rho(k))$$ $T \to \infty$ which is not the same for all k. Hence X_t is non-stationary and the theorem is proved. # SECTION III ## ANALYSIS To illustrate the usefulness of the S-array as a model identification tool, we consider two real data examples. Our first example is the International Airline Series given by Box and Jenkins [1976]. This example we will briefly examine even though it is analyzed in much the same manner by Gray and Woodward [1980] and by Hart and Gray [1980]. Our purpose for including the Airline Series is to show the contrast between it and our second example series: the so-called Radio Series, given by Siddiqui [1962]. The International Airline Series consists of the natural logarithm of the number of passengers in International air travel. The data are monthly values from January 1949 to December 1960. A plot of the data (see figure 1) shows that it appears to have a linear trend and a quite distinctive yearly periodicity about that trend. The S-array, evaluated using $f_m = (-1)^m \hat{\rho}(m)$, is shown in Table 2. An ambiquity regarding the identification is noted, since both the 1st and 13th columns are relatively constant. The series will clearly not be well-modeled as a 1st order process; however the near constant 1st column indicates the presence of a near 1st order non-stationarity. It is usually best to remove that factor before attempting further identification. That factor is estimated as roughly 1-.95B, using the Yule-Walker estimate. We next transformed by the operator given above. The S-array, | (| • | | |---|---|--| | | , | | | 1 | | | | ĺ | | | | | | | | 995 2.83 5.4 5.5 5.6 5.7 5.8 5.9 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 <th>\$14</th> <th>-9.664

-3.679
7.580
-6.092
-35.207
-7.228
-13.185
-1002
-460
45.097</th> <th>1.549
290
.001
.688
3.561
7.291
25.674
1.726
-3.683
4.338</th> | \$14 | -9.664

-3.679
7.580
-6.092
-35.207
-7.228
-13.185
-1002
-460
45.097 | 1.549
290
.001
.688
3.561
7.291
25.674
1.726
-3.683
4.338 | |--|------|--|--| | 2.385 -2.63 2.499 -3.510 3.360 -3.750 3.086 -4.329 3.427 -5.308 1.393 -3.729 21.070 -3.808 12.898 -8.780 11.177 -5.623 12.594 -5.712 4.653 -8.022 -5.513 -2.865 8.001 1.289 -42.149 -1.259 -5.287 -5.326 10.528 15.202 -2.665 -3.746 9.968 41.646 -4.329 12.594 -5.712 2.98 17.524 -2.865 8.001 1.058 -2.988 29.780 -33.196 2.798 17.544 12.773 -0.941 11.472 -2.965 49.694 -5.416 5.786 -9.041 11.472 -2.965 49.694 -5.416 -2.965 -2.965 -9.941 -2.876 -9.941 -4.876 -2.965 -9.941 -5.366 -9.941 -1.147 -2.965 -9.941 -5.366 -9.941 -5.166 -9.941 -5.865 -2.966 -9.9 | \$13 | 10.060
10.293
7.722
6.993
5.391
5.513
4.746
5.050
4.482
3.933
3.426
3.085 | -1.498
-1.655
-1.870
-2.147
-2.504
-2.504
-2.954
-3.319
-4.049
-2.489 | | 2. 385 5.6 5.6 5.7 5.8 5.9 510 2. 385 -2. 633 2. 499 -3. 510 3.360 -3. 750 3. 086 -4. 329 3. 427 1. 393 -3. 729 21. 070 -3. 808 12. 898 -8. 780 11. 177 -5. 623 12. 594 4. 663 -8. 032 -6. 513 -2. 865 8. 001 1. 289 -42. 149 -1. 430 -2. 257 10. 528 15. 022 2. 66 -3. 748 9. 568 -1. 057 -5. 623 12. 597 2. 981 -3. 106 -3. 58 -0. 76 10. 608 -1. 057 -2. 567 5. 78 17. 584 -3. 66 -3. 748 9. 568 -1. 057 -2. 578 6. 165 -5. 477 12. 773 -0. 56 -9. 041 11. 472 30. 163 -29. 568 5. 78 11. 289 -3. 62 -1. 057 -1. 149 9. 472 5. 663 -1. 721 -2. 683 -1. 141 9. 472 4. 365 <td>\$12</td> <td>4.938 ***** 20.039 -49.521 16.872 -43.824 35.123 -62.153 15.143 -78.790 27.761</td> <td>2.910
34.767
15.067
-35.587
9.399
-26.579
18.459
-17.403
11.931
-17.965
11.931
5.893</td> | \$12 | 4.938 ***** 20.039 -49.521 16.872 -43.824 35.123 -62.153 15.143 -78.790 27.761 | 2.910
34.767
15.067
-35.587
9.399
-26.579
18.459
-17.403
11.931
-17.965
11.931
5.893 | | 2. 385 54 55 56 57 58 59 2. 385 -2. 633 2. 499 -3.510 3.360 -3.750 3.086 -4.329 1. 393 -3.729 21.070 -3.808 12.898 -8.780 11.177 -5.623 4. 663 -8.022 -6.513 -2.865 8.001 11.289 -42.149 -1.430 10. 528 15.202 -2.66 -3.748 9.968 41.646 -48.707 1.229 2. 981 17.584 7.68 -3.895 2.320 -1.057 -5.136 -29.858 2. 758 -91.139 6.362 10.397 -10.813 -1.151 50.555 -26.161 5. 758 -91.139 6.362 -10.813 -1.151 50.555 -26.161 4. 365 -10.489 9.36 -1.081 -1.147 -5.146 -2.966 5. 758 -91.139 6.362 -10.391 -1.151 -5.136 -29.858 5. 63 -1.721 <td>SII</td> <td>-5.308
-5.712
-35.616
-40.475
-33.198
-58.766

-59.416
-20.459
-23.463</td> <td>-2.792
-1.792
-17.677
-19.554
-12.493
-18.384
-74.994
-74.994
-16.839
-18.321
-13.964
-12.257</td> | SII | -5.308
-5.712
-35.616
-40.475
-33.198
-58.766

-59.416
-20.459
-23.463 | -2.792
-1.792
-17.677
-19.554
-12.493
-18.384
-74.994
-74.994
-16.839
-18.321
-13.964
-12.257 | | 2.385 -2.633 2.499 -3.510 3.360 -3.750 3.086 1.393 -3.729 -3.510 -3.360 -3.750 3.086 1.393 -3.729 21.070 -3.808 12.898 -8.780 11.177 10.528 15.202 -2.66 -3.748 9.968 41.646 -48.707 2.981 17.584 7.668 358 076 10.608 - 2.06 2.798 17.584 7.668 358 076 10.608 - 2.06 2.798 17.584 7.668 358 076 10.608 - 2.06 2.798 17.584 7.668 358 076 10.608 - 2.06 5.758 -91.39 .362 - 1.071 - 1.677 - 5.136 4.05 -9.41 11.472 30.163 3.763 ******** 4.05 -9.131 -1.8935 -1.151 -1.657 -5.136 4.05 -9.131 -2.601 -2.602 | 810 | 3.427
12.594
-2.257
15.062
29.780

49.694
-80.379
9.472
9.275
25.536
-39.497 | 2.524
6.980
-1.562
10.689
10.501
29.393
11.578

4.450
10.573
19.482
-16.824 | | 2.385 -2.633 2.499 -3.510 3.360 -3.750 1.393 -3.729 21.070 -3.808 12.898 -8.780 4.663 -8.032 -6.513 -2.865 8.001 11.289 10.528 15.202 .266 -3.748 9.968 41.646 2.981 -3.106 3.828 -3.895 2.320 -1.057 2.78 17.584 7.668 358 076 10.608 2.78 17.584 7.668 358 076 10.608 5.75 1-1.319 6.362 10.813 -1.151 2.663 -1.721 -2.681 -18.935 47.713 -50.202 4.093 -3.0 83 55.979 -31.416 82.985 112.223 4.055 -3.25 13.463 -2.507 -2.507 -5.396 -2.487 1.295 -3.255 13.463 -2.822 15.228 -4.762 8.564 5.741 9.358 -2.80 | 89 | -4.329
-5.623
-1.430
1.229
-29.858
-29.655
-26.161
-149
-9.446
-19.338 | -2.697
-3.369
-1.694
-10.521
-13.919
-11.853
-11.852
-1.852
-1.852
-1.852
-1.852
-1.852
-1.852 | | 2.385 -2.633 2.499 -3.510 3.360 1.393 -3.729 21.070 -3.808 12.898 4.663 -8.032 -6.513 -2.865 8.001 10.528 15.202 .266 -3.748 9.968 2.981 -3.106 3.828 -3.895 2.320 2.798 17.584 7.668 358 076 6.165 -5.477 12.773 .056 -9.041 5.758 -91.139 6.362 10.397 -10.813 2.663 -1.721 -2.681 -18.935 47.713 4.093 -30.833 55.979 -31.416 82.985 18.571 -42.443 -94.592 -21.649 -54.007 2.183 -2.325 13.463 -3.357 4.451 3.688 -6.048 -2.624 -2.822 15.228 3.568 -6.048 -2.624 -2.822 15.228 3.568 -6.048 -2.624 -2.822 <td< td=""><td>88</td><td>3.086
11.177
-42.149
-48.707
-5.136
30.163
50.555
50.171
******</td><td>2.239
7.285
59.831
23.564
-9.655
-9.810
239
11.770
118.806
146.726
-17.057</td></td<> | 88 | 3.086
11.177
-42.149
-48.707
-5.136
30.163
50.555
50.171
****** | 2.239
7.285
59.831
23.564
-9.655
-9.810
239
11.770
118.806
146.726
-17.057 | | 2.385 -2.633 2.499 -3.510 1.393 -3.729 21.070 -3.808 4.663 -8.032 -6.513 -2.865 10.528 15.202 .266 -3.748 2.981 -3.106 3.828 -3.895 2.798 17.584 7.668 358 2.78 17.584 7.668 358 5.758 -91.139 6.362 10.397 2.663 -1.721 -2.681 -18.935 4.093 -30.833 55.979 -31.416 18.571 -42.443
-94.592 -21.649 2.183 -2.302 2.247 -2.507 1.295 -3.255 13.463 -3.357 3.688 -6.048 -2.624 -2.822 8.564 5.75 1.914 -3.774 3.051 -3.143 4.308 -5.806 2.944 5.7414 9.358 -0.81 7.205 -5.346 18.708 -5.39 6.195 -6.1608 11.31 -195 -9.128 <tr< td=""><td>57</td><td>-3.750
-8.780
1.289
41.646
-1.057
10.608
11.472
-1.151
-50.282
37.763</td><td>-2.487
-8.754
-4.762
-41.300
.052
9.436
13.541
12.538
-14.192
-2.014
********</td></tr<> | 57 | -3.750
-8.780
1.289
41.646
-1.057
10.608
11.472
-1.151
-50.282
37.763 | -2.487
-8.754
-4.762
-41.300
.052
9.436
13.541
12.538
-14.192
-2.014
******** | | 2. 385 -2.633 2.499
1.393 -3.729 21.070
4.663 -8.032 -6.513
10.528 15.202 .266
2.981 -3.106 3.828
2.798 17.584 7.668
6.165 -5.477 12.773
5.758 -91.139 6.362
2.663 -1.721 -2.681
4.365 -91.39 6.362
18.571 -42.443 -94.592
2.183 -2.302 2.247
1.295 -3.255 13.463
3.051 -3.143 4.308
2.944 5.7414 9.358
7.220 -5.046 11.015
2.484 -18.937 30.603
11.863 -25.187 -51.183
2.376 -2.746 2.945 | 98 | 3,360
12,898
8,001
9,968
2,320
-,076
-9,041
-10,813
47,713
38,563
82,985
-54,007 | 2.396
4.451
15.228
9.626
2.110
542
-1.999
-13.444
-14.982
17.589
14.515 | | 2. 385 -2.633
1.393 -3.729
4.663 -8.032
10.528 15.202
2.981 -3.106
2.798 17.584
6.165 -5.477
5.758 -91.139
2.663 -1.721
4.365 -91.139
2.663 -1.721
4.365 -91.139
2.963 -3.255
3.051 -2.302
1.295 -3.255
3.051 -3.143
2.944 5.7414
7.220 -5.346
6.195 -61.608
2.484 -8.480
3.515 11.312
-4.744 -18.937
11.863 -25.187 | | -3.510
-3.808
-2.865
-3.748
-3.895
358
358
10.397
-18.935
-29.006
-31.416 | | | 2. 385
1.393
4.663
10.528
2.981
2.798
6.165
5.758
5.758
2.663
3.651
2.944
7.295
3.051
2.944
7.296
6.195
3.515
2.484
7.296
6.195
3.515
2.484
7.296
6.195
3.515
2.484
7.296
6.195
2.484
7.296
6.195
2.484
7.296
6.195
2.484
7.296
6.195
2.484
7.296
6.195
6.195
7.44
8.51
8.51
8.51
8.51
8.51
8.51
8.51
8.51 | \$4 | 2.499
21.070
-6.513
.266
3.828
7.668
12.773
6.362
-2.681
9.331
55.979 | 2.247
13.463
-2.624
1.914
4.308
9.358
18.708
11.015
195
8.480
30.603
-51.183 | | | 83 | -2.633
-3.729
-8.032
15.202
-3.106
17.584
-5.477
-91.139
-1.721
10.489 | -2.302
-3.255
-6.048
5.575
-3.143
57.414
-5.346
-61.608
-8.480
11.312
-18.937
-25.187 | | 995
995
995
997
997
997
997
997
997
997 | . 25 | 2.385
1.393
4.663
10.528
2.798
6.165
5.758
5.758
4.365
-4.093 | 2.183
1.688
3.688
8.564
3.051
2.944
7.220
6.195
2.484
3.515
-4.744
11.863 | | 2 | SI | -12 -1.995
-11 -1.982
-10 -1.986
- 9 -1.991
- 7 -2.026
- 5 -2.038
- 4 -2.052
- 3 -2.057
- 1 -2.049 | | S-array for the untransformed Airline Data using f $_{m}^{=}(-1)^{m_{\hat{\rho}}}(m)$. using $f_m = \hat{\rho}(m)$, for the transformed series is given in Table 3. There is now an unambiquous constancy in the 12th column. The Yule-Walker estimate of that operator is given in Table 4. At this point a subjective decision must be made as to whether or not a seasonal model is desired. If a seasonal model is desired, it must be decided which factors to alter to the unit circle. From the factors given in Table 4, it is apparent that each of the frequencies associated with the operator 1-B¹² is present. We also note, that, with the possible exception of the factor 1+.92B, all of the roots are near the unit circle. Thus a reasonable approximation to the 2nd estimated operator is given by $1-B^{12}$. Likewise the operator 1-.95B, initially estimated, may be adjusted to the non-stationary operator 1-B. Other possibilities might be considered (see Gray and Woodward [1980]), but the work done so far indicates that the operator $(1-B)(1-B^{12})$ is not unreasonable. Table 5 gives the S-array, using $f_m = (-1)^m \hat{\rho}(m)$, for the original series transformed by $(1-B)(1-B^{12})$. The residual series appears to be well-modeled by an AR(12). The Yule-Walker fit is given in Table 6. We thus arrive at the model $$(1-B)(1-B^{12})_{\phi}(B)X_{t} = a_{t}$$ (1) where $\{a_t\}$ is a white noise series with var $a_t = .00136$ and $\emptyset(B)$ is the stationary operator given in Table 6. Taking $1-B^{12}$ as the only non-stationary component of the model, Gray and Woodward [1980] arrive at the model $$(1-B^{12}) \Phi(B) X_t = a_t$$ (2) | | \$14 | 907
-5.716
.181
528
2.519 | -4.046
.197
-1.713
7.473
2.769 | .439
.773
1.455
.079
1.437
-1.299
.597
734
.112
-2.328
.317 | |---------|------------|--|--|---| | | S13 | 1.265
1.265
1.296
1.096 | .,982
1.,798
1.,101
.,716 | 379
-1.396
847
519
779
779
770
790
920 | | | \$12 | 2.840
359
-1.098
436 | 433
568
460
465
539 | . 405
. 345
. 489
. 322
. 387
. 290
. 486
. 260
. 524
. 121
. 121
. 654
. 3.022 | | | SII | 2.848
-2.244
-6.119 | -5.238
-3.233
10.218
-5.672 | -1.626
4.884
-4.558
6.840
-2.320
-3.797
3.382
-1.595
-1.595
-1.595
-1.329 | | | 810 | 5.099
18.038
7.476
5.258
8.097 | 23.042
11.184
5.218
6.827
22.754
10.331 | 2.114
4.011
14.708
7.603
7.603
4.201
6.044
18.092
8.820
4.541
5.784
15.136
4.592
2.616 | | | 89 | -9.582
-3.532
4.333
-3.998
-16.649 | - 6.109
16.270
-3.146
-10.186
- 5.407 | -1.755
-15.814
-3.088
-3.019
-10.311
-4.442
19.111
-2.112
-7.173
-4.651
13.309 | | rable 3 | 88 | 2.194
1.632
2.010
4.945 | 4.130
3.893
4.850
3.959
4.861 | 1.802
1.880
1.599
1.870
3.919
3.741
3.340
3.196
4.522
3.092
3.859
1.965 | | • | 27 | 5.551
5.660
-4.023
-2.072 | -2.112
-1.759
-3.299
14.727
16.442 | -1.308
-8.239
-7.547
547
-2.148
-1.829
-1.857
-13.626 | | | 98 | 015
-5.578
-51.692
508 | 2.372
2.289
3.567
243
-14.989
69.661 | 1.144
- 8.662
146
8.103
180
265
1.810
2.998
36.863
066
13.780 | | | S 5 | 3.324
3.324
5.170
339 | 007
-2.255
-3.432
-4.939
******* | -1.125
-1.413
220.279
3.115
-307
.009
.180
-2.620
-3.018
-2.693
-2.693
-14.894
8.723 | | | S4 | 1.503
1.427
1.402
048 | 327
.218
3.279
4.970
4.466 | 1.203
1.4113
1.4111 (1.396
1.396
1.396
1.396
1.396
3.836
3.836
3.262
1.199 | | | 83 | 10.671
10.671
164
-1.523
764 | -1.478
1.979
-1.441
.108
-5.230 | 948
2.576
-1.442
782
1.534
2.465
-1.360
-4.277
-31.229 | | | \$2 | . 769
-2.295
-2.373
-2.373
1.803 | -49.864
3.940
.473
4.752
2.131
6.291 | | | | S | -1.409
-1.409
.021
2.282
-1.700 | -1.893
4.679
590
267
-3.617 | 778
-1.382
.364
1.440
-2.120
-2.428
2.788
050
020
3448 | | | | 11. | 11111 | 0
10
10
10
10
10 | S-array for the Airline Data after being transformed by (1-.958) TABLE 4 | | .7511 | | | | | | | | | | | | | | |--------------------------------|-------------------------|------------------------------|--------|---------|----------|---------|-----------|---------|----------|--------|--------|----------|----------|----------| | | .0430 | Period | 2,3906 | 2.3906 | 12.0383 | 12.0383 | 2.000 | 5.9798 | 5.9798 | 2.9959 | 2.9959 | 8 | 4.0414 | 4.0414 | | | .06460730 | cy | .4183 | .4183 | .0831 | .0831 | .5000 | .1672 | .1672 | .3338 | . 3338 | 000000 | .2474 | .2474 | | | 032701781139 | Absolute Value of Reciprocal | .9771 | .9771 | 7066 | 7066 | . 9242 | .9910 | .9910 | .9865 | . 9865 | .9615 | . 9717 | .9717 | | | 01750845 .048103 | Absolute Value | 1.0234 | 1.0234 | 1.0097 | 1.0097 | 1.0821 | 1,0091 | 1.0091 | 1.0137 | 1.0137 | 1.0137 | 1.0291 | 1.0291 | | .001922 | 048701 | | 4798) | (8624. | 4938) | .4938) | 000000 | 8600) | .8600) | 8529) | .8529) | 0.0000 | 9716) | .9716) | | 3 VARIANCE | .0767 | Reciprocal of Root | (8512, | (-8512, | ,8585, | ,8585, | (9242, | ,4925, | (.4925, | (4957, | (4957, | ,9615, | (.0156, | (.0156, | | ESTIMATED WHITE NOISE VARIANCE | ESTIMATED AR PARAMETERS | | .5025) | 5025 | .5034) | 5034) | 0.0000,0 | .8757) | 8757) | .8764) | 8764) | 00000.0 | 1.0289) | -1.0289) | | ESTIMATED | ESTIMATED | Root of
Operator | (8915, | (8915, | (.8752, | (.8752, | (-1.0821, | (.5014, | (.5014, | (5093, | (5093, | (1.0401, | (.0155, | (.0165, | (12)fit to the Airline Series after being transformed by 1-.95B. AR TABLE 5 | S11 | S12 | \$13 | \$14 | |---------|-------|---------|--------| | -63.460 | 3.090 | -1.861 | .188 | | - 1.330 | 3.535 | -3.286 | 270 | | - 2.188 | 3.514 | -41.970 | 4.285 | | - 8.356 | 3.125 | - 1.442 | 6.143 | | 1.075 | 2.827 | - 9.870 | 5.802 | | 1.364 | 3.012 | 323 | 2.478 | | 1.584 | 3.067 | - 2.659 | 2.781 | | - 3.155 | 3.069 | 3.985 | 10.676 | | 11.752 | 3.282 | -11.955 | 24.985 | | -15.269 | 2.812 | 7.770 | 11.889 | | 711 | .952 | 848 | .914 | | 4.219 | 1.152 | - 1.511 | 1.152 | | -5.292 | 1.096 | 601 | -5.016 | | .031 | 1.064 | 6.888 | -2.831 | | -1.613 | 1.057 | .125 | 1.715 | | -1.536 | 1.036 | -1.491 | 1.579 | | -1.430 | 1.064 |
1.107 | 1.825 | | 1.781 | 1.292 | -1.396 | 2.104 | | 487 | 1.280 | 18.507 | 118 | | 798 | 1.401 | 1.558 | .095 | | 27.383 | 1.028 | .841 | 2.240 | S-Array for the Airline Series after being transformed by (1-B)(1-B¹²). $f_m = (-1)^m \hat{\rho}(m)$ TABLE 6 Estimated White Noise Variance .001364 | Estimated AR Parameters | rs35960528 | 1516 | 1092 .0473 .0883 | 0144 .0304 .1 | .1648 .0357 | .08053387 | |-------------------------|-----------------------|---------|---------------------------|---------------------------------|-------------|-----------| | Root of
Operator | Reciprocal
of Root | _ | Absolute Value
of Root | Absolute Value
of Reciprocal | Frequency | Period | | (7281, 7832) | (.6367. | 789 | 1.0694 | . 9351 | .1308 | 7.6449 | | · | (6367 | 789 | 1.0694 | . 9351 | .1308 | 7.6449 | | | (- 6595 | - 63(| 1.0964 | .9121 | .3786 | 2.6410 | | (- 7928 - 7573) | (= 6595 | 93 | 1.0964 | .9129 | .3786 | 2.6410 | | • | (- 2987. | - 828 | 1.1352 | . 8809 | .3051 | 3.2781 | | Ė | , 2987 | 828 | 1,1352 | . 8809 | .3051 | 3.2781 | | | (8403 | - 21 | 1.1534 | .8670 | .0396 | 25.2783 | | • | (8403 | | 1,1534 | .8670 | .0396 | 25.273 | | · - | (2103) | 1 92 | 1,0557 | .9473 | .2136 | 4.6823 | | | 2149 | 926 | 1.0557 | .9473 | .2136 | 4.6823 | | - | (- 9135 | 78.2 - | 1.0602 | . 9432 | .4599 | 2.1742 | | (-1.0268,2640) | (9135, | . 2349) | 1,0602 | . 9432 | .4599 | 2.1742 | AR(12) Yule-Walker fit to the Airline Series after being transformed by (1-B)(1-B¹²). where $\phi(B)$ is a 13th order stationary operator and $\{a_t\}$ is a white noise process with var a_t = .001267. Gray and Woodward [1979] discuss some of the considerations which are relevant in deciding between models (1) and (2). They argue for model (2) based on the models' respective forecast functions. They also give some comparison between the Box-Jenkins model, model (2) above, and a model given by Parzen [1979]. The reader is directed to the paper for further details. The 2nd example we will consider is the so-called Radio Series given by Siddiqui [1962]. The data consists of the 240 monthly median f_0F_2 values observed in Washington, D.C. from May 1934 until April 1954. A plot of the series and of the autocorrelation function (see Figures 2 and 3, respectively) each indicate the presence of a low frequency component and a quite distinctive yearly periodic oscillation. Noting the yearly period, many practitioners would apply the transformation $1-B^{12}$ to the data. Further analysis below, however, will show that operator to be unnecessary and in fact deleterious for this particular data set. The S-array using $f_m = (-1)^m \hat{\rho}(m)$ is given in Table 7. The 1st column is seen to be roughly constant, reflecting the low frequency component. Since the S-array is not too distinctive, in view of Theorem 2, it seems reasonable at this point to prefilter the data by 1-.9B. At this point, of course, we do not mean to imply that 1-.9B is a factor in the model but simply an appropriate high pass filter which allows clearer identification of the model. The S-array for the transformed series, using $f_m = \rho(m)$ is given in Table 8. The S-array is relatively constant in the 13th column which indicates that the untransformed series should be well fit by an AR(14). The Yule-Walker fit is shown in Table 9. Note the Figure 2. Plot of the first 236 points from the radio series Figure 3. Plot of the estimated autocorrelation function of the radio series Estimated AR Parameters 1.0066 -.1849 -.0346 .2085 -.2017 .1158 -.0697 .0821 -.0745 .0039 .2840 .1572 .437271 -.1267 -.2234 Estimated White Noise Variance | Root of
Operator | | Reciprocal
of Root | | Absolute Value
of Root | Absolute Value
of Reciprocal | Frequency | Period | |---------------------|----------|-----------------------|---------|---------------------------|---------------------------------|-----------|----------| | (5424. | 1.0460) | (3907, | 7534) | 1.1783 | .8487 | .3261 | 3.0662 | | . 5424 | -1.0460) | . 3907. | . 7534) | 1,1783 | .8487 | .3261 | 3.0662 | | 8693, | . 5105) | (8553, | 5023) | 1.0082 | .9919 | .0845 | 11.8327 | | (-1,0034, | 8356) | (- 5885. | 4901) | 1.3058 | . 7658 | .3895 | 2.5675 | | (-1,0034, | -,8356) | , 5885, | .4901) | 1,3058 | . 7658 | .3895 | 2.5675 | | 5128. | 8859) | (4894. | -,8455) | 1.0236 | . 9769 | .1665 | 6.0063 | | 5128, | 8859) | (4894, | .8455) | 1.0236 | . 9769 | .1665 | 6.0063 | | (-1 1873 | 2043) | (- 8180. | 1407) | 1.2048 | .8300 | .4729 | 2.1147 | | (-1.1873) | 2043) | ,8180, | .1407 | 1.2048 | .8300 | .4729 | 2.1147 | | 0120 | 1.0466) | (0110, | 9554) | 1.0467 | . 9554 | . 2482 | 4.0295 | | (0120, | -1.0466) | (0110) | . 9554) | 1.0467 | . 9554 | .2482 | 4.0295 | | (1.0553, | .0577) | ,9448 | 0517) | 1.0569 | . 9462 | .0087 | 114.9376 | | (1.0553, | 0577) | , 9448, | (2150. | 1.0569 | .9462 | .0087 | 114.9376 | AR(14) Yule-Walker fit to the Radio Series. factors 1-(.94±.05i)B corresponding to the low frequency component of the data. Since the imaginary part is small, those two factors are close to being a double root of one. Noting Theorem 2 above, it is not surprising that, with only an estimate of $\rho(k)$ available, the constant behavior appears in the first column. That is often the situation when there is a strong low frequency oscillation in the data. It should be noted, however, that an oscillation is also apparent in the first column of the S-array which is contrary to the typical behavior of a process with a double root of one. Examination of the factors given in Table 9 indicates that not all of the frequencies associated with the operator 1-B^{12} are present. It also indicates that some of those frequencies which are present are too far from the unit circle to be regarded as non-stationary. Thus the operator 1-B^{12} is clearly not part of the model for this data set. In fact use of that operator causes the low frequency component to be mistaken for something very near to a double root of one (that is, the model which results by first operating on the data by 1-B^{12} has one root of one and one real root slightly larger than one). That causes forecast functions for the model to have a nearly linear component to them, which is clearly an unreasonable forecast function for this data set. As with the last example, we are now faced with the subjective decision as to whether a seasonal model is desired and, if so, which factors should be made seasonal. The factors associated with the frequencies 1/12, 1/6, 1/4, and 1/123* seem the reasonable candidates to be made into seasonal factors. However, models including the factor associated with the ^{*} Since the low frequency component is thought to be; associated with sunspot activity we have given it the period estimated in Woodward and Gray [1978] for the sunspot series. frequency 1/123 have forecast functions which are very unstable. To show the effect of choosing different seasonal models we consider the two models obtained taking the factors associated with 1/12 and with 1/12 and 1/6 as seasonal. The S-arrays for the data filtered by $1-1.732B+B^2$ and by $(1-1.732B+B^2)(1-B+B^2)$ are given in Tables 10 and 11, respectively. The residual after operating by $1-1.732B+B^2$ appears well-modeled by an AR(12), as would be expected assuming the process to be well-modeled as an AR(14). The Yule-Walker fit is shown in Table 12 and is seen to be very similar to that shown in Table 9 (disregarding the factors already removed). Examination of Table 11 indicates that the residual from the operator $(1-1.732B+B^2)(1-B+B^2)$ is well-modeled as an AR(13). The Yule-Walker fit to that model is given in Table 13. The higher order indicated here may be a consequence of Theorem 2 in that terms which were masked before removing the non-stationarities are now apparent. Forecast functions of various lengths were calculated from a number of origins. The two models performed similarly in the cases considered. Two fairly representative forecast functions are given in Figures 4 and 5. We thus have two quite tenable models, both of which explain the data very well. Which model to use will depend on the uses to which the model will be put, and on what if any physical significance can be found in the extra parameters which were fit. An important point of the above example is that the operator $1-B^S$ should not be used indiscriminately. The radio series is an example for which a cursory examination suggested the operator $1-B^{12}$ to be TABLE 10 | S9 | \$10 | \$11 | S12 | \$13 | \$14 | |---|---|---|---|--|--| | 1.237
3.822
.897
1.496
1.012
1.041
.510
.872 | -1.285
.620
.792
.107
.031
.894
.011 | .018
755
-5.444
013
-1.291
954
559
554 | .715
.731
.309
1.135
1.150
1.056
1.180
1.443 | -1.801
-1.306
-1.657
-1.624
-1.901
895
-3.655
7.162 | 3.812
.301
1.113
-4.289
-1.943
1.690
-3.696
7.757 | | 120
402
237
327
318
455
336
984
.019 | .154
.005
.151
.010
.030
.158
.137
498 | 213
154
153
031
.022
161
2.793
.014
256 | .250
.290
.324
.183
.163
.168
.434
.250 | 241
479
1.016
412
558
533
568
421
338 | .249
511
.875
.282
.386
-1.160
126
.640
270 | S-array for the radio series after being transformed by (1-1.732B+B²). $f_m = \hat{\rho}(m)$. ì TABLE 11 | S10 | S11 | S12 | \$13 | \$14 |
---|--|--|---|--| | .553
015
3.124
.565
.596
.120
1.464
1.348
1.178
1.211
3.583 | .309 -3.177 -3.191 -1.079 -1.272 -1.756 -1.626 -3.320 -1.163 -56.977 3.490 | 2.400
3.430
-7.398
.814
4.347
-2.903
906
.292
2.255
-1.012
3.434 | 855 -1.421 -1.235 -1.595305273 -1.807 -1.646 -1.799 -2.111 -1.996 | .551
1.585
4.456
-2.654
.269
16.598
1.892
-6.346
1.118
4.165
-11.104 | | .248
.470
.491
.151
.139
.081
.454
.266
.284
.007 | 232
501
11.729
234
814
488
502
595
345
431
455 | .249205 .483078 .175 .313 .841 -1.060 .301 6.170 -1.406 | 284
327
309
212
208
072
080
615
883
994
467 | .277
.627
348
.165
1.603
.081
- 4.589
.551
1.375
4.511
296 | S-array for the radio series after being transformed by $(1-1.732B+B^2)(1-B+B^2)$. Estimated White Noise Variance .443774 | 1732 | |------------------------| | 4806 | | 5030 | | 1092 | | .3147 | | .6345 | | 9608. | | .7075 | | .5644 | | 0406 | | 3516 | | 6222 | | stimated AR Parameters | | Period | 2.4801
2.4801
5.9843
3.0659
3.0659
104.7397
104.7397
2.0946
4.0232 | | |---------------------------------|--|-----------| | Frequency | .4032
.4032
.1671
.3262
.0095
.4774
.4774
.2486 | | | Absolute Value
of Reciprocal | . 7091
. 7091
. 9756
. 8524
. 8524
. 9456
. 7825
. 7825
. 9537 | | | Absolute Value
of Root | 1.4103
1.0250
1.0250
1.1731
1.1731
1.0575
1.2780
1.2780 | | | Reciprocal
of Root | (5820,4051)
(5820,4051)
(4855,8462)
(4855,8462)
(3926,7566)
(.3926,7566)
(.9439,0567)
(7746,1107)
(7746,1107)
(7746,9537) | • | | 1 | .8057)
.8891)
.8891)
1.0413)
- 1.0413)
.0634)
.1807)
- 1807) | • | | Root of
Operator | (-1.1574, (-1.1574, (-1.1574, (-1.5101, (-1.0556, (-1.2652, (-1.26 | , 00000 · | AR(12) Yule-Walker fit to the radio series after being transformed by (1-1.732B+ B^2). Estimated White Noise Variance .474858 | 429 | |---------| | .14 | | 2820 - | | 28 | | 1455 . | | 14 | | 50 | | .0620 | | 0887 | | 0: | | 4835 | | i | | 3647 | | ì | | .5313 | | 20 | | .5450 | | . 9 | | .697 | | 5 | | 9609 | | 126 | | 7426 | | 782 | | -1.4782 | | ı | | ter | | rameten | | R Pa | | y pa | | stimate | | Esti | | | | Period | 7.7707
7.7707
2.2259
2.2259
3.1643
3.1643
3.1643
101.9747
4.0190
4.0190
2.0000
2.6561
2.6561 | |------------------------------|--| | Frequency | .1287
.1287
.4492
.3160
.3160
.0098
.2488
.2488
.5000 | | Absolute Value of Reciprocal | .7119
.8398
.8398
.8912
.9473
.9473
.9668
.8648 | | Absolute Value
of Root | 1.4046
1.4046
1.1908
1.1908
1.1221
1.0556
1.0343
1.1564
1.2007 | | ocal
t | 16,5150) 16,5150) 75,2633) 75,2633) 92,8156) 92,8156) 72,9668) 72,9668) 44,5833) | | Reciprocal
of Root | (.4916
(.4916
(.7975
(.7975
(.3592
(.3592
(.3592
(.9456
(.0072
(.0072
(.8648
(.5944 | | Root of
Operator | (.9699, 1.0159)
.9699, -1.0159)
(-1.1307, .3733)
(-1.1307, -3733)
(-1.1307, -3733)
(-4523, -1.0269)
(-4523, -1.0269)
(-4523, -0650)
(1.0536, -0650)
(1.0536, -0650)
(1.0536, -8570, -8410)
(-1.1564, 0.0000)
(-8570, -8410) | AR(13) Yule-Walker fit to the radio series after being transformed by (1-1.732B+ B^2)(1-B+ B^2) Model: $(1 - 1.732B + B^2) \phi_{12}(B)X_t = a_t$ Forecast function of length 40 plotted against the realized values. Model: $(1 - 1.7328 + B^2) (1 - B + B^2) \phi_{13}(B)X_t = a_t$ FIGURE 5. appropriate. Further examination, however, showed that some of the frequencies associated with 1-B¹² are not present in the data and that some of those present are clearly not on the unit circle. In fact as already pointed out the use of the operator 1-B¹² on the radio series causes one of the most salient points of the data set—the low frequency oscillation—to be mistaken for essentially a double root of one. So if, for instance, the purpose of the analysis was to investigate the fitted model for evidence that sunspot activity influences radio transmission that evidence has been badly obscured if not lost. ACKNOWLEDGEMENT: I wish to thank Professor Henry Gray for the numerous helpful comments he has made on earlier drafts of this paper and for the many discussions we have had on this and related topics. ## REFERENCES - Box, G.E.P. and Jenkins, G. M. (1976), <u>Time Series Analysis</u>: <u>Forecasting and Control</u>. - Findley, David, (1980), Personal Communication. - Gray, H. L., Kelley, G. D., McIntire, D. (1978), "A New Approach to ARMA Modeling", Communications in Statistics, B7, pp. 1-77. - Gray, H. L., and Woodward, W. A. (1980), "Application of S-arrays to Seasonal Data", Proceedings of the 1979 Tulsa Time Series Symposium. - Hart, J. and Gray, H. L. (1980), "Modeling Seasonal ARMA Processes," ONR Tech. Report No. 140, SMU Department of Statistics. - Parzen, E. and Pagano, M. (1970), "An Approach to Modeling Seasonally Stationary Time Series," <u>Journal of Econometrics</u>. - Quinn,
Berry (1980), "Limiting Behavior of Autocorrelation Function of ARMA Processes as Several Roots of the Characteristics Equation Approach to the Unit Circle," <u>Communications in Statistics, B9</u>, pp. 195-198. - Siddiqui, M. M. (1962), "Some Statistical Theory for the Analysis of Radio Propagation Data," <u>Journal of Research NBS</u>, 66D (Radio Propagation), pp. 571-580. - Woodward, W. A. and Gray, H. L. (1979), "On the Relationship Between the R and S-Arrays and the Box-Jenkins Method of ARMA Model Identification," ONR Tech. Report No. 134, SMU Department of Statistics. - Woodward, W. A. and Gray, H. L. (1978), "New ARMA Models for Wolfer's Sunspot Data, "Communications in Statistics, B7, pp. 97-115. . 1