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MODELING SEASONAL ARMA PROCESSES

Jeffrey D. Hart and H. L. Gray
Southern Methodist University

INTRODUCTION

Gray, Kelley, and McIntire (1978) have introduced a method, based
on arrays of numbers called R- and S-arrays, for ideatifying p and q in
an ARMA(p,q) process. In addition, they have illustrated how the same
-method is useful in'detecting_nonstationary factors in an observed process,
and in suggesting an appropriate transformation to staéionarity. In the
present paper special attention is given to the problem of modeling
seasonal ARMA processes using the S—array method. A general definition is
given for a seasonal process, and the procedure for identifying and model-
ing such processes is discussed in detail. Additiomally, an interesting
theorem characterizing the S—arrays (based ﬁpon éhe sample autocorrelation)
of seasonal processes is stated and a proof indicated. Finally, a data
set (the intermational airline data) which exhibits the properties of a
seasonal process is analyzed using the method discussed, and two models

for the data are proposed.
I. Definitions and Theorems

The following definitions and theorems provide the motivation for

the remainder of the paper.

Definition 1. A stochastic process {Xt}, t=0, £1, #2, ... is said to

be autoregressive of order p and moving average of order q, or ARMA(p,q), if

&
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where the 1 and ek are constants and'{Zt}Lis-a:White-neisg.process.with
finite variance. If we define the operator B by'BXt i‘Xt_L; then (1) may

be written as

9(B)X, = 8(B)Z, ) (2)
where $(B) = 1 ~ ¢,B - ¢ B2 - -9 5° and
¢l 9 o Pu
6(B) = 1~ 8,B - B2 - -8 5%
el 62 ves eqn

It is well known that'{Xt} is stationary if and only 1if all of the rocts
.of $(x)=0 lie outside the unit circle. For our purposes, a nonstatiomary
process will be one for which one or more of the roots of ¢(x)=0 lie on the
unit circle.

Definition 2. Suppose {Xt} is an ARMA(p,q) process with ¢(B)Xt =

G(B)Zt. A factor a(B) of ¢(B) will be called a seasonal factor if

¢(B) = 1-a.B + B2 , Ial, < 2 or

1

a(B) =1+ B ;

i.e. a factor a(B) is seasonal if the algebraic equation a(x) = Q has

complex roots on the unit circle or the root -l.

Definition 3. An ARMA(p,q) process will be referred to as a seasonal
process if it has one or more seagonal factors.
Definition 4. Let m be an integer and £ be a real valued function.

Further, let fm = £(m),



fm fm-i-l -
gre] = |fmbr T2 .-
o m
£ pn-1 £t
Eb[fm] =1, and
1 1
£ £
.Hn_i_l[l, fm] = |m o+l
el Er2
fm-m—l fm-l-n
Now define
B _.[1; £]
s (f) = DL @ .
o m B [£]

m+n-1

m+2n-2

m+2n-1




The S—-array (for the function f) is the following array of mumbers:

n -
m 1 2 k
-2 §5,(E_y)
-2+1 S (E_pip) S,(E_,)
. sz(f—2.+l)
-4+k~1 : : .e sk(f-z)
-1 5, (£_)) S, (£_y) : S ()
0 5, (£, S,(£_1) e Sy (€ _iy)
1 5, (£)) S,(£,) Sy (€ i)
=kl AT T))
i-1 5; (5 ) Sy(E5_9)
1 51(€,)



A recursion relationship for calculating S—array values and a
complete discussion of how S-arrays may be utilized in identifying
p and q for an ARMA(p,q) process may be found in Gray, Kelley, and

McIntire (1978).

Definition 5. Denote by pm(ll, ceny Ap) the autocorrelation function of
a statiomary ARMA(p,q) process whose characteristic equation has roots

ll, kz, ceay Ap. Let rl, Tys eves rp be the roots of the characteristic
equation of an ARMA(p,q) process with j roots on the unit circle, which

for convenience ara denoted by Tys Tgs oo rj. Now, define

* .
o0 = pm(rl,rz,...,rp) > 3 =20
and

p* =2 lim o (@r,,08r.,...,08C,,T
m . l’ 2’ b j’ 2

a-)-l.'. m J+l"’"’rp), J = l’z’...,p .

Theorem 1. Suppose an ARMA(p+j,q) process has j roots of its charac-
'teristic-equation on the unit circle and that M of tllese j roots are of
highest multiplicity. Let rl,rz...,erenotethe M distinct roots on the
unit circle which are of highest multiplicify. Tﬁen p; satisfies a linear

homogeneous difference equation of order M whose characteristic equation is
-1 -1 -1
(l—rl x)(l—-r2 X) eee (l-r:M x) = 0.

For a proof of this theorem see Findley (1978) or Quinn (1980). The
importance of Theorsm 1 lies in its suggestion of the probable behavior
of the sample autocorrelation function from nonstationary ARMA processes.
The next two theorems will illustrate how S~arrays may be used to take
advantage of the information in Theorem 1. -

For the remainder of this paper we shall define the autocorrelation

*

Dm-
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of a nonstatiomary process as Pn and hence will write Pa



Theorem 2. Let fm denote either Pp OF (-l)mpm where °n is the auto-
correlation function of an ARMA(p,q) process. Then the condition that
Sz(fm) is constant'(as é function of m) for some £ < p is bdth-necessary
and sufficient for nomstatiomarity. Further, £ =M (where M is the same

as that in Theorem 1) and
M M
Sy(f£) T e, = (-1)[1~2
M "m £ k=l

af,kBk] where

pm - Blpm-l - e, = BM P = 0 for m >0 and

L, fm Pa

k"

k
(-l) ’ fm

D%_ .

The proof of this theorem follows from the proof of therocem 9 in
Gray, Relley, and McIntire (1978) and from the proof of the previous
theorem in this papef. | '

Theorem 3. Suppose {Xt} is an ARMA(p.q) process and that

N-k _

zl(xt - EI-N) (xt+k - XN]
‘;N(k) = ta N ~ 2 -
L (T %

=

Then {Xt}lis nonstationary if and omnly if p-lim 5:56N(k)) Z ¢ for some m<p.
Noaw =

Moreover, if Sm(ﬁk) is definmed for all k, then

n
c= (-l)m(l - Z'Bk , Wwhere
k=1



This theorem has been proven by Findley in personal communications
to H.L. Gray and by Morton (1980).

Theorems 1, 2, and 3 provide the basis for modeling seaéonal data.
Theorems 1 and 2 indicate respectively the effecﬁ which seasonal factors
have on the autocorrelation fudction, and the way in which seasonal
factors are manifested in S—-arrays. Theorem 3 assures.us (at least for
reasonably large sample sizes) that the constancy behavior which charac-
terlzes the parametric S—array of a seasonal process will also be apparent

in the S-~array based upon the sample autocorrelation.
II. Some General Remarks

Before considering a specific example of real data, it will be
helpful to comsider an example which illustrates the comnsequences of

Theorems 1 and 2. Suppose the process {Xt} is given by

(1-B) 2’(1—/‘23 + 132)q>(1?,)xt = G(B)Zt

where the zeroes of ¢(x) are all outside the unit circle. Note

that the equation (l—x)z(l-/ix + xz) a ( hés the three distinct roots 1,

%?(l+i), and %;(l-i) which are all om the unit circle. However, since
the root 1 is repeated, Theorem 1 implies that px(m), the limiting auto-
correlation function of {Xt}, satisfies the first order difference

equation

Yn " Tp-1 T 0.

If Wt = (l—B)Xt, we can make the further observation that Dw(m), the
limiting autocorrelation fumction of {Wt}, satisfies the third order
'difference equation

yo - T+ Dy g+ (Z+ Dy, =75 =0

m-3



It is also important to see that Theorem 2 implies

-2,

s.(p, @) 20 , §;(C-D% @)
and

2(2+v2).

S4(p(m)) =0 ,53((—1).mpwfm)' =

With this example in mind, we are now in a position to outline the
general procedure for detecting and estimating the parameters of seasonal
factors present in a process which is being observed. In the following
it will be assumed that a realization {xl,xz,...,xN} has been obtained
from an ARMA process of the form in (2), where all of the roots of the

characteristic equation ¢(x) = 0 lie on or outside the unit circle.

The first étep in simply detecting the presence of seasonal factors
(which should of course follow an initial look at a plot of the déta) is
an examination of the sample S—-arrays (i.e., the S—arrays for Sm aﬁ.@d)mgm).
Theorem 2 implies that seasonal factors are in the process if and only if
one of the following situatioms holds:
(1) S

(1ii) Sl(pm)

(fm) 2 c for some j>2

-2

0

m

(id) S (D% )
If N is reasonably large, Theorem 3 assures us that this constancy behavior
in the parametric S—array should also be evident in the sample S-array.
Thus, in order to detect seasonal factors the sample S-array should be
examinéd for the presence of a near comstant column. (The interpretation
of "ﬁear constant'" will be elaborated on later.) Upon detecting a nonsta-
ticnarity in the process, Theorem 1 suggests clsarly that the next step
in identifying the full order of the procaess is to operaté on the data by
the correct nonstationary operator. The reason for this is that the auto-

corralation function of a nonstationary process may satisfy a difference



equation of order less than p (where p is the order of ¢(x)); and there-
fore the constancy behavior expected in the pth column of the sample
S~array may be completely obscured by the presence of nomnstationary
factors. If, ﬁowever, the data is transformed by the correct non~

stationary operator, the resulting S—array may be examined for

additional.stationary or nonstationary factors. The example to be
presented later should make these ideas clear.

The question of how to choose the parameters of the nonstatiomary
(seasonal or nonseasonal nonstationary) operator now arises. In the
discussion of this problem it should be understood that process factors
whose zeroes are not on but only close to the unit circie will also
induce a near constant column in the sample S-array. Thus, when
referring to the problem of estimating the parameters of a nomstatiomary
operator, we leave open the possibility that the appropriate operator
is mathematically stationary but has ze:oesrwhicb are clése to the unit
circle. The procedure to Be suggested for choosing the parameters con-
sists of two stages. Suppose that the kth column of the sample S array
is near constant, or (as sometimes occurs in practice) that the kth
column and one or more columns previous to the kth are nearly constant.
The first stage, then, in choosing the parameters of the nonstatiomary
operator is the fitting of a kth order autoregressive model to the data,
estimating parameters by the Yule~Walker method (see Box and Jenkins
(1976))., After fitting the model, the roots of the resulting characteristic
equation should be examined. Associated with each complex conjugate pair
of roots aj * ibj (which may be indexed by Xj = aj + ibj, bj > 0) is the

1 1

b.
frequency uﬁ =5 tan-l(;l) and the modulus ]Agll =
e 23 : o va% + 12
3 3

. For real




roots, A, = aj and we have

]
'Q , a, >1
W, = . and
J ¥ ,a, <1
b]
|A-ll - 1

The mj and.llgll c;n be used in the same way that a spectrum would be
used to compare the relative contribution of each frequency to the over-
all variation in the process. The mj‘and [k;ll have an advantage over
the specﬁrum, however, in that the mj are not "smeared" as they would be
in the speétrum and the llgll can be used to determine séationarity and
nonstationarity. Note that the closer ll;ll is to 1 the closer the
corresponding factor is to being gonstationary. The wj here may be thought
of as the natural frequencies of the process rather thamn as the harmonics
in a Fourier series expansion. This initial fitting of a model and the
subsequent examination of roots should be used as an investigative procé—
dure to simply identify the nature of the nomstatiomary (or nearly "
nonstationary) factors in the process being observed. The preliminary
naCufe-of the initial f£it indicates why que-Walker estiﬁates were
suggested rather than, for example, MLEs (under the assumption

Zt n N(O,cz)) since the computing time required to calculate MLEs is
usuaily much greater than that needed for Yule-Walker estimates.

The second stage in the parameter estimation problem involves
choosing between a nonstationaryland a stationary model. In part,
resolving this question requires us to elaborate somewha£ on the meaning
of the phrase "mear comstant column in the sample S—array." Besides a
simple examination of the kth column (the "constant" column referred to
previously), another method for determining the degree of constancy is

"to form one (or both) of the ratios



N ¥ ~ki
iil'sk (B ers) el iig,sk((-l) I
fo,e T T T BT O ay-l ’
IS () L os (D7)
jp-lf KT o i=e-l

where ay is some constant which depénds on the record length and & > 2.
A rule of thumb which has proven useful in practice is to give serious
1
consideration to a2 nonstatiomary model whenever [Ri k[E > .95. In order
5l

to see the rationale behind this rule of thumb recall that for a polynomial

: 2 k

- y + o o @ +
1+ alx + azx 2.x

k -1,

Iak' = igi |z;71 , where T1sTgreeesTy (3)

are the k ‘zeroes of the polynomial. It can also be shown (see Woodward

and Gray 1979) that

- VL -
T56 TP e
© -k S (DT p_y)

where $k is the Yule-Walker estimate for the kth coefficient of an auto-
regressive process of order k. Because of the assumed constancy behavior
in the kth-colqmn, Ri,k is obviously another (and usEally better)
estimate for the k' coefficient, and thus if IRi’kIE > .95 it can be
seen from (3) that most of the Irzll for a fitted model will neéessarily_
be close to ome. (It should be remembered that we have disallowed roots
inside the unit circle in all our discussion.) Ri,k ié thus informative
for purposes of choosing between a nonstationary and a stationary model.
"Qf course, once a kth order model has been fit the |rgl| can be examined

directly as has already been described. The use of Ri K? though, is still
,k?

11
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helpful as a preliminary means of checking whether an observed "comstancy"
behavior is evidence of a nonstaticnmarity in the process. Ultimately,\
ﬁowever; the decision to fit a nonstationary model should also be based
upon an understanding of the physical aspects of the time series under
consideration and/or the desired nature of the forecast fumctionm.

Once the decision has been madevto fit a noustationary model, a
method of estimating the parameters of the model is needed. 1In order to
outline one method, first suppose that 1t has been decided to treat the
factors associated with ll,lz,...,li (where the lj's are a subset of the
roots obtained:-in the preliminary Yule-Walker fit) as nonstationary
factors. The suggested procedure for obtaining the seasonal or non-

seasonal nonstationary model is to adjust these factors from

(1—-)\513) (1-x,71s) =1- 2a, lxgllza + | A‘J.'ll 2%

i
to 1 - ujB + B2 where

4, = sgn(tan(2mw,)] 2 | .

. 3 /EanZ(ZWWj)+1,
Note tha£ the frequency associated with the adjusted factor'(l-ajB+Bz)
is still the natural frequency mj but that the zeroes of thisg factor are
on the unit circle. This adjustment is anmalogous to what is frequently
done in the special case mj = 0 when the data is differenced. (If mj =0

or %, A, is real and the adjusted factors are 1-B and 1+B respectively.)

3

Since the adjusted factor depends only upon w,, another possible method

j’
for obtaining the nonstationary factor is to determine mj from a spectral
analysis. A spectral analysis alone is not sufficient to determine that

a factor isnonstationary, but it may be helpful in determining mj precisely
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once it is determined that.the factor associated with mj is nonstationary
(i.e., that [x;.'llzl).

In order to identify the full order of the model, the data should be
transformed by either.the operator from the initial Yule-Walker fit or the
adjusted operator. Since it has been'observed that the S-arréy values for
transformed data are sometimes senmsitive to slightly different transform—
ing operators, it is not always clear which of the two operators should
be used. For this reason, examining the S-arrays for beth transformations
is often useful for purposes of identifying the full order of the quel.
In practice it will sometimes happen that one ﬁransformation will induce
a clear pattern of constants in some column of the S~-array, whereas the
other transformation will not. Since such a pattern of constants indicates
that the sample autocorrelation of the transformed data nearly satisfies a
difference equation, examining the S—-arrays of both transformations may
actually indicate which one of the original transformatioms provides a

better fit to the data.
IIT. Modeling the Intermational Airline Data

In order to illustrate the method which has just been discussed for

modeling nonstationary data, we will obtain models for the well-known

international airlins data using this method. The airline data (see Fig.l)
was firét analyzed by Box and Jenkirs (1970) and is made up of 144 mouthly
totals of airline passengers. As Box and Jenkins have pointed ocut, if
{Yt} is the airline series and Xt = %of, then the series {Xt} is more
compatible with the linearity and homoscedasticity assumptions inherent in
ARMA models than is the series {Yt}. Their model is thus for {Xt} as will

be the models in the present amalysis. The Box and Jenkins model is
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(1-3) (1—312)xt = (1-0.4B) (1-0.6BY%) z, (4)

which is arrived aﬁ‘by a consideration of the ﬁhysical aspects of the
airline data. It will be shown in the present analysis how models similar
- to (4) may be obpained by allowing the data to "speak for itself.”
Following the outline in the previous section, the first step in our
analysis is an examination of the sample S-~array. A portion of the S-array

for (-l)m'ﬁm is shown in Table 1. Note the strong degree of constancy in

the first column. With £ = 2 and ay =.8 we have 'Rl,l, = ,96, which is
evidence that a nonstationary or nearly nonstationary first order factor
is in the process. From our discussion earlier, an estimate for this
factor is (1-.96B). The constancy behavio; seen in column thirteen of
the S—-array may be explained after the data is transformed by (1-.96B).
The S—-array (using 5m) for the transformed data is seen in Table 2.
Column twelve of this array exhibits a consfancy behavior which seems

to be of the type which characterizes stationary autoregressive processes
(sée Gray, Kelley, and McIntire 1978). Howéver, ﬁpon fitting a thh
order Yule~Walker model to the transformed data and examining the_roots
of the resulting characteristic equation (Table 3), it is seen that the
observed comstancy behavior is actually indicative of an operator which
is quite nearly the seasonal operator (l—BlZ). From Theorem 2, 1f a

process 1s of the form
12
(1-B)0 (BIX_ = 8(B)Z,

(where ¢S(B) is a stationary operator), then Slz(pm) =2 0. It is now

clear, then, that the values in columm 12 of the sample S—array are

estimates (in the sense of an average) of some value near zero, and the

observed constancy behavior is thus consonant with the theory which has

14
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1
2
previously been discussed. By considering [RO 12|l for the]Fransformed
3

. Tz
data the initial comfusion could have been avoided. RO lZI =
s :

.970 (L = 2, ay = 6), which clearly indicates that the constancy in the

thh coiumn is evidence of a seasonality in the data.

12
Table 3 exhibits clearly that an operator quite similar to (1-B )

should be included in our model for the airline data. The frequencies

associated with the roots of the fitted characteristic equation are quite

compatible with those of 1 - le = ), and the root -1.0811 is the oaly

one which might not be comnsidersd sufficiently close to the unit circle.

For reasons of simplicity énd par%imony, then, the models in the present

analysis will include the operator l—BlZ. At this point, if it is not

desired to treat the'factor (1-.96B) aé nonstationary, a reasonable

procedure would be to fit 2 model to the series (l-BlZ)Xt. ‘The S-array

for the data transformed by (l—BlZ) indicates that the transformed data
' !

may be adequately modeled as a lBth order, stationary autoregressive

procass. A reasomable initial model for the airline: data would thus be

12 :
(1-B )“’1<B)X: zt , , &)
where .
~ 2 3 4 5
$,(8) = 1 - .535B - .2728% + .0578° - .0188" - .0873
- .0418% + 07687 - .038B® - .1588° + .1368%°
+ .1558T1 + .2878%% - .2958%°

An estﬁna;e of the wvariance of Zt for this model is &i =-_00127. If the
original data is transformed by (l-B)(l—BlZ), a thh order, statiomary

autoregressive process is a satisfactory model for the transformed data.

Another contending model would thus be !

12
(1-B) (1-B )4, (BX, = 2, (6)

where

16
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S Table 3.

- -

Roots.(ki) of characteristic equation from

model fitted to transformed data

.Ei frequency (1)) |1;1|
1.06Q7 0 L9627
.8747 + (.5039)L  .0832 9906
.5012 + (.8757)% .1673 .9911
.0165 + (1.0285)1 L2474 9721
-.5091 + (.8763)1 .3338 .9867
-.8912 + (.5025)1i .4183 9774
-1.0811 .5000 .9250
Roots (r,) of
1l - xlzla 0
.Ei frequency (r,) lrzll
T 0 I
.8660 + (.50)i .0833 L
.50 + (.8660)1i .1667 1
+i .2500 1
-.50 + (.8660)1 .3333 1
-.8660 + (.50)1 L4167 1

-1 ©.5000 1
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9,(8) = 1+ .3588 + .054B% + .1518° + .1108%
-.0478° - .0898° + .01587 - .0318% - .1643%
-.0368%° + .0813™ + .33981% and Szz = .00136 .

For illustrative purposes ;l(B) and &2(3) were fit by the Yule-Walker '
method, although MLEs may be desirable for a more refined model.
Approximate standard errors for the coefficients in these operatdrs
are given in Table 4. (The standard errors were found under the
assumption that Zt~N(o,cz) by using the approach of Box and Jenkins
(1976).)

It is clear that many other reasomable models could be obtained by
using different operators of the forﬁ (l-¢B)¢12(B) where ¢12(B) is some
12th order operator similar to l-BlZ. Models (5) and (6) certainly seem
adequate, however, and they illustrate well the method for modeling
seasonal data through S-arrays. Note that model (6) has two foots of
unity and will thus have a forecast function possessing a linear trend;
whereas the férecast function for model (5) will not contain the linear
trend for fqrecasts at long lead.times since; inséead of two units roots,
this model has one unit root, one root equal to 1.345, and an additional
low frequency component. In general, this kind of a difference between
the forecast functions of stationary and nonstationary models can provide
a means of choosing between competing models.,

A comparison of forecasts obtained from models (4) and (5) may be seen
in Fig. 2-4. The, forecasts are made from origins 24 mon;hs, 36 months, and
48 months prior to the end of the data set. SSE (i.e. izl(x£°+i-xto+i)2)
for model (4), the Box-Jenkins model, is seen to be more erratic than that
of model (5) in the sense that it does not increase momotomically as the

maximum number of steps ahead to be forecast increases. The reason for this

appears to be that the trend component of the forecast function for model



Coefficient

1,1

" 81,2

41,3

91,4

41,5

41,6

Model (5) ¢l,7
91,8
1,9
41,10
1,11
41,12

%1,13

%2,1
42,2
%2,3
2,4

9.5
Madel (6) 4, ¢

Table 4
Estimate

535

272

© -.057

.018
.087
.041
-.076
.038
158
-.136
-.155

-.287

Standard Error

.083
.092
.96
.093
.092
.093
.092
.093
.092
.093
.09
.092

.083

.082
.088
.088
.088
.088
.088
.088
.088
.088
.088
.088

.082
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AN -

1959 1960

Maodel (4) SSE = .6888

M 1959 1960
Model (5) SSE = ,0203

Figure 2

Airline Data 24 Month Forecasts
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1958 1859 1960

Model (4) SSE = .1656

_ 1958 1959 1960
Model (5) SSE = .3066

Figure 3

Airline Data 36 Month Forecasts
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1957 1958 - 1939 1960

Model (4) SSE = .4627

1957 . 1958 1959 1960
Model (5) SSE = .3335
Figure 4

Airline Data 48 Month Forecasts



(4) is determined by only 13 values previous to the forecast-origin; whereas
the corresponding component for model (5) is determined by 25 preceding
values. Since a close inspection of the data reveals evidence of a 24 month
period, it is understandable why a forecast function using only 13 months
pfior to the.farecast origin might perform eratically. When one considers
that model (5) was fit through a purely data analytic approach it is not
surprising that its,forecast function contains the low frequency component
not found in model (4).

" For an interesting and more completg discussion of forecasts obtained

from (4), (5), and 2 model proposed by Parzen see Gray and Woodward (1980).
IV. Conclusion

A method of modeling nounstatiomary ARMA processes (with special emphasis
on seasonal processes) has been examined in . this paper. A brief outline of
this method is as follows:

(i) Detect the presence of ﬁonstationary factors by examining

the sample S-array.

(ii) Determine the nature of the detected nonstationary factors

by fitting an appropriate Yule-Walker model to the data.

(iii) Transfarm the data by the aperator obtained from the Yule-

Walker fit or an adjusted operator and examine the S-array
of the transformed data for the presence of additiomal
stationary or nonstationary factors.

(iv) After identifying the fﬁll arder of the model, decide which

factors are to be treated as nonstatiomary. Transform the

24



25

data by the nonstationary factors and fit a model of
appropriate ordei: to the_.-. transformed data.
Using this methodology, it has been shown how models for the internatiomal
airline data may be obtained through a data analytic technique rather than by

simply considering ﬁhe physical aspects of the data.
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