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SUMMARY

The relationship of minimum distance (MD) estimation to other methods
of estimation is coasidered, M -estimation is viewed as a special case.
with interesting interprstations in terms of the defining ¢ - function
as related to components of goodness—of-fit statistics and modified
Fourier approximations to the efficient score. Applications to the compo-
site and simple goodness-of-fit problems are coosideresd.
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1. TIatroduction, Definitions, and Consistency

Robust estimation has received much atteation in recent statistical
literature, with a compreheasive survey given by Huber (1977). The
problem considered is as follows; a random sample Xl’ ooy Xn is observed
from some unknown distribution G, where it is presumed (although not

necessarily true) that Ge I' = {F_,, 8 ¢ Q}, where the model T is a

e'
parametrized family of distribution functioms. The goal of robust estima-

tion is to estimate 6 with an estimator T[Gn]’ such that T is aearly
fully efficient whea G e I', i.e. when the model is correct, and which -
estimates a meaningful quantity with reasonable efficlency whea G €T,
but G is close to I' in an appropriate topology oa the sPaEe of distribu~-
tion functioas.

Minimum distance estimation was first subjected to compreheasive
study in a series of papers culminating in Wolfowitz (1957), and has
since been considered as a method for deriving robust estimators by
Kniisel (1963) and Parr and Schucany (1980). An exteasive bibliography
is given by Parr (1980). The basic philosophy of minimum distance (MD)
estimation is to match the empirical distribution function Gh to an
element, En,'of the model I' as closely as possible; Thus, for a suitably
‘chosea "distance function" 8(.,.) measuring the discrepancy between
two dis;ributioq functions, an MD-estimator of 9 based on Gn and with

respect to the model T and the discrepancy &8(.,.) is given by a value T

'such that

(1) S(Gn,FT) = inf S(Ga’Fe) -
8eQ :



Due to possible nonuniqueness of the value T achieving the infimum or
to nonattainability of the iafimum in ', we are forced for generality

to the following definition.

Definition. A sequence of random variables {Tn}:?l is a sequeace

of asymptotic minimum distance estimators based on {Gn}:-l with

respect to the model I and the discrepancy 6(.,.) 1if and only if
i) T, e@ for all o > 1

and ii) there exists a nonnegative fuaction K(an) with 1im K(a) =0

oo
such that for all n>1

(2) §(G_,F. ) < inf &(G ,F.) + K(a) .
o Tn ~ 8eq n’" 9

_ Some natural choices for the discrepancy 46(.,.) would inéiu&e

the'KglmogorGG discrepancy, !

D(K,L) = sup

=@ K<Lo

R(x) - L) ,

the Kuiper discrepaacy,

V(R,L) = sup [{K(b) - K(a)} - {L(b) - L(a)}]| ,
~w<a<bh<»

and the class of discrepancies givea by

. = - 2

(3 L&D =af K - LEPLE +bIf KE) - L@lam®,
’ -y -

considered by Sahler (1970), which includes the Cramer-von Mises dis-

crepancy W2 for a =1, b = 0; the Watson U2 discrepancy for a = 1,

b = -1; and the Chapman discrepancy, 02, for a=0,b =1, We assume

[\ ]



here and henceforth that_all distribution functions in T are absolutely
continuous. Actual choice of which discrepancy to use for a specific
gsituation would depead upon. 1) which aspects of the sampled population
one desires to match, 1i) efficiency considerations, and iii) robustf
ness considerations. The connectioas of MD-estimation with other
methods discussed should prﬁvide some insight into the trade-off among
those competing criteria.

ftis of interest to determine conditions under which 'a sequeace
of asymptotic MD estimators is coansistent. The following theorem
(a generalization of Theorem 1 of Parr and Schucany (1980)) provides

suitable (if somewhat stringeat) restrictions on T, §(.,.) , and the

sampling situation.

Theorem 1: Let {Gn}:=l be a sequence of random distribution functioas

1 1@

oa R™, and {Tn;n=1 be a sequence of asymptotic MD-estimators based

on {Gn}:_l with respect to T = {Fe,e e Qtand §6(.,.) . If the
following hold:

i) there éxists a metric ||-[| on F _ (where F is the  _
space of one;dimensional distribution functions) such that
llc;n - G|| — 0 with probability ome,

ii) the class of functioms {6(-,Fe) , 8 e} is equicontinuous.
 at G (with respect to the metric ||:]|])»

i;i) there exists a point éo € @ such that G(G,Fe') < S(G,Fe)

" for o 4 0., @€ 2sand ?

;v) for any sequence {ek};;i of elemeats of Q, ii:.G(G,Fek) =

S(G,Feo) implies Z_I..im.ek =8, >

j; S

thea Tn-——a 8, with probability one.



Proof: The proof is trivial and hence omitted.

Notes:
1) Conditions 1ii) and iv) are designed to insure uniqueness

of the mipimum of G(G,Fe) and a resasonable parametrization

of T, respectively.

2) Condition i) is the only restriction on the sémpling situation.
While iﬁ is easily satisfied for "small" choices of ||°|| ,
i1) compeées by being easily satisfied by "big" ||°]] . &
typical choice might be the L” metric (Rolmogorov discrepancy).
For such a choice and random sampling, if T is a translation
family with @ the translation paraméter (Fe(x) = Fo(x - 8)
for all (x,8) and G & T), the conditions are satisfied for
all discrepancies meationed in this section. They are also
satisfied for the above discrepaancies whea G ¢ I' 1if 1ii)
and iv) hold.

3) Condition i1ii) can be omitted if §(.,.) 1is a metric on
F.oo

4) The theorem is really a statement of continuity of the fun;tional
T[Gd] = Tu at G witﬁwfeéﬁeétAgo the metTic [l'll .

5) Coandition 1i) could (at a sacrifice of simplicity) clearly be
relaxed to requiring equicontinuity of the 5(-,Fe) at G only
for 8 in a neighborhood U(eo) of 80 , and that

inf  §(H,F) > M+ o([E - ¢l
8e0-U(8 )

Z
for some M > G(G,Fe ) .
o



The statemeat of general results for asymptotic distribution
theory proves to be much less succinct. MD estimators divide into two
basic types: 1) those based upon "integral-type'" discrepancies such
as Hi,b or weighted versions thereof, and 2) those based upon
"sup~type" discrepancies such as D,V, or weighted versions thereof.
The first type are ésymptotically normal:under suitable conditions (Sahler
(1970), Parr and Schucany (1980), Parr and DeWet (1979) and Boos (1980)), while
the second ﬁype are tyﬁically not asymptotically normal (Bolthausen (1977))
even in the simplest and smoothest cases. Littell and Rae (1975), _
and Pollard (1980) are also good refefences in this area.

As we shall see in the following sections, frequency-domain
analyses of MD-procedures can yield a great amount of insight into the
proper choice of the discrepancy 6(.,.) , based upon the competing
goals of deriving an estimator with high efficiency whea G € T and
of maintaininog robustness whea G ¢ T . The fifst criterion (efficiency)
will require high fidelity of a particular tapered Fourier approximation
to the efficient score, while the sécond (robustness) will amount to
use of a 1aw—pa$s filter to dampen out.high frequency componeats of

the same approximate.

2. Components of Goodness~of-fit Statistics
and MD Estimation

Durbin and Kaott (1972) iatroduced the idea of interpreting the

quantities zij in the 6rthogonal representation of the Cramer-von

Mises statistic

2
° Z
4) ®° = § 8l



as components representing different aspects of the discrepancy between

G and F_, where
n 8
(5) zIlj = ¥/(2a) jn ._(; {Gn(x) - Fe(x§ sin{ije(x§ dx

a
= /(Z/niZl cos{}vFe(Xi{} .

Here, Xl’ ceesy X.n is a random sample of size n from some distribution

G and the statistic Hz
1,0

For "smooth" alternatives, the main source of the discrepancy between

is being used to test whether or not G = Fe .
Gn and Fe should be in the first few components. For a aull hypothesis
of Xi standard normal, Durbin and Kanott found that

i) an contained most of the information about pure location

shifts, having an asymptotic power of .93 against contiguous
location changes when the t-test had power .95.

ii) an was similarly efficient against scale changes.

iii) an was orthogonal to cont;guous scale changes and an
orthogonal to contiguous location shifts.

This suggests that a suitable rewéighting of the components in (4)
or a similar test might result in a higher efficieacy. This program of
study is carried out in Schoenfeld (1977). To discuss such extensions
we need the following notation:

Let {;o(l), ;l(l), ...} be a complete orthonormal basis for the
space.of square integrable functions on {9,1]. Require co(u) =1,

0 <u<1l so that jéi(u)du =0, 1i#0. Let Fe = {Fs,e e Q.
be a parametrized fagily of distribution functions (called the "model")

and Gn and G be as above. Further paralleliang (5), define the

random functions



Dli—‘
MD

6 4 = cj(F (%))

When cj(u) Y2 cos(jmu), va dnj(e)is an , the jth component of

the Cramer-von Mises statistic as in (5). Thus

2
2 = nd_ . (8) _
" H 0~ ) —-J——Z 5 in this special case.
> =1 j"n

[y

More generally, it is expressed as a weighted sum of the squared dnj @).

Since the i;j ('-) will usually have a frequency-type interpretation,
different weightings of the squared components will correspoad to the
creation of a goodness—of-fit test sensitive to departures from the null_
hypotheses having specific frequeacy interpretatioas. As we shall see
from the following, similar interpretations v:zill be possible for MD-
estimators related to these tests.

In the context of (possibly robust) minimum distance estimation_,
this suggests a broadening of the class of estimators. Define the random
functions which are céndidates for useful new discrepancy measures
between Fe and Gn’

®  X(e,a56,) = jzl d, 5 (8

for some fixed sequence {aj} such that

2 .

] a2<es
Cg=1 3

and

(9) L(8,b3G) = Z b, d2 €8

=1 12

-Vfor X |b|<=.
=1 3



We are now able to consider MD-estimation utilizing the discrep-

ancies K(_e,é:-cr;)-_an-d L(e,B_:Gn) .

Case l: Estimators minimizing K(e,a;Gn)

K(e,a;Gn) may be written as a functional of Gn in the form

2
_{, le a,z. (yec}o) dGn(x)} :

K(e,a;Gn)

Observe that

2
K(e,a;Fe) { (F (*{)) dFe(x)} = 0 , so that
- J=l
when G ¢ I'y the estimand is a root of the equation
1 =
an [ T e (70) a6

It follows that the value TK[Gn_]- , which minimizes K(e,a;Gn)__-‘ as a function
of 8 is (subject to the conditions of Thecrem 2) a root of

1 555 ( F) 46 @ =

- ary J=
i.e. that TK[Gn] is an M-estimator with defining ¢y-function given by

(12)  ¥(x38) = Z a,z. (F (x)) .
=1 Jd3 8
j=1
Thus, ‘the usual theory for M-estimation is applicable.

For the following result we further require that the ;j(') be
individually continuous and uniformly bounded. Such orthonormal bases
for L2[0,l] do exist, such as 5j(u) = ?.]72 cos(jmu), 3 =1, 2, cuu .
These conditions are stronger than necessary, but serve to reduce the

mathematical complexity of the results.



Theorem 2: If

1) ] |a,

| <, and
j=1 :

ii) 86 f Z a.g. <Fe (x)) dG(x)| is finite and nonzero,
= g=1 9=9 _

where eo is a root of

{:j=1 cj(F (x))dG(x) =0,

then there exists a sequence {TK[Gn]}:=l of roots of equation
(11) such that

'I'K [Gn]-—) 60 with probability one.

Proof: The result is a' simple corollary of elementary consistency theorems
for M-estimators, since 1) 8, is an isolated root, and ii) (F (x))

_ j=l
is continuous and bounded.

Theorem 3: If in addition to the assumptioms of Theorem 2,

ae Z aj’;j(F ("))Ie

is uniformly continuous in x, then any sequence {TK[Gn]} satisfying

...TK[Gn]—) eo also s;tisfies

' d 2
fa(Tel6 ] = 8.) —— N(0,07) >

with
E, [lb (X801,

R

Proof: This is also a simple consequence of standard normality theorems

(13) '

for the associated M-estimator.

- a.zr'e (x) ézFe (=)
Note: If Ge T and S0% 3728 almost everywhere, with




10

aFe(x)
1lim 38 = (0 for all 8, then
Xt
°Z° 2
%
(14) of = L ——
af_ ( 2
{ Z aj f Cj<Fe(x) 9(X) dx}
j=1 "= 36
"f 2
a,
2y d
'Z a.C, 2
jop 31
® Blnfe(x)
where Cj = -£ Cj( e(x)) — 5 fe(x)dx

is the jth Fourier coefficient in the expansion of the score
function

' <
1) J@ =t @] = [ co .

8 x=Fé (u) i=1 3

(The expansion is valid if the Fisher information is finite.)
For notational convenience, the derivative of a function with respect
to its argument will be denoted by a prime (7)), its derivative with

_ . 3F, (x)
respect to § demoted by a dot (+). TFor example, F (x) = ag and

Fé(x) - fe(x}. Second order derivatives with respect to & will be

‘denoted by two dots (+-). Also, we write 1e(x) = lnfe(x). Hence,

2

2 _q=1 3 =1 3 . 1
Tk E a.C 2 fm .02
=1 373 = {ze(x)} fe(x?dx

and efficiency of TK is related to the "correlation" of the a and ¢

sequences. A by product of the proof is the fact that

(26)

~1
Yy
()
Ne-18
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l n
(7n /n{IK[G ] -8 - = izl ICT.F (Xi)} o ,
where E a.c (F (w))
-1 373\e
18 1c;, , W = 1 .
! - Z a,c
j=1 44

Note further that, for the case of an unbounded score function, full

' efficiepcy of the estimator is inconsistent with absolute summability
of the aj . However, when the aj are absolutely summable, we have that
IC, (W) is bounded and continuous, and hence.TK[Gn] is robust in

g’ Te
[o]

that sense. (In fact, z aJC (u) is uniformly continuous.)
j’l '

Case 2: Estimators minimizing L(e,b;G )

Computing the influence curve for TF yields.if;;_
) Z 3 Fy (x?)
L i=1
(19 IC f, Y .
; a,z. {(F, (y) F dG(y)
L4 JJ( ) eo(y) (v
X a, F_(x)

1_1 eo ) .
-X a
i=1

The_second equality is true with C, as defined in the note ﬁo Theorem 4,

3

under the conditions to. be stated in that note.

:yey;jcomputing-the‘influence curve for T,, we obtain

1,
- | Zbe(en(e(x))
(20) 1 (x) = i3 >
e T SICR
=1

vhere ej(e) [(F <X>)F (z):] .
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a, R
Thus, the choice of bj(éé) ='E—%§:) yields locally the same influence
) b
ngvg_fqr the two methbds_of_MD-estimaﬁioﬁﬂ' In fact, the follo&ing strongar

ﬁeéuignholds.

Theorem 4: Let {cj, j =01,...}be a complete orthonormal basis for

LZ[O,l], where the Cj(-) are individually continuous and uniformly

{T (G )} -1 0 be such that

componentwise and 60 minimizes

bounded. Let 1,{L(6,b;Gn)}n=l -

ﬂ&fcn)}g=l minimizes {L(e,b,Gn)}n=l
L(8,b;G) . Then if
i) 'I'L(Gn) —_— 8, in probability

ii) for some ¢ > 0, G (8o - e,eo + ¢) implies

Uac F, () ] |
< hj, where

_E ijll,Cj(‘)]]th < » , with |]‘||V the total variation
norm, and
i1d) ;; J F (x9 is a continuous function of ¢ at Bo for a set of x

having G-probability omne for each j, then

d
AT (6 03— N(o,cfceo)) :

where . . [ ; ) 2]
4E b e (8 )c F (X‘}
G 6
ol(e ) = =L 2Ll

1 is assumed finite.

T
{1 (8,,b50)}

Hence, subject to the conditions of thaose twe theorems, the estinators
TK(Gn) and TL(Gn) have the same asymptotic distribution if

bj(eo)ej(eo) =3 .
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Proof: The proof is given in the appendix.

Notes:

1) If G=TF, , or more generally {z, ( (xa dG(x) = 0 for

° 2
3=1,2, ..., then{L(e yb: c)} { 1 b, eJ(G )} .

2) Condition 1i) is the crucial one for the proof of this result.

N

It_is not necessary as can be seen by considering the weights

by = 1/3%2  and 2 ) = 2¥2c0s(jru) , for which L(g,b,G;) is
the Cramet-von Mises statistic, the desired asymptotic normality
holding in the location case if G ¢ I' and the population demnsity
is cube integrable. However, ii) fails in this case.

Thus, estimators derived from minimizing L(e,b;Gn) can duplicate the

behavior of those derived from K(a,a;Gn) . Examining the case of

K(8,a;G ) in (for simplicity) the location case, we have

Z a z. (F Owa
I, o (= =1
& 8 -Z

0

1 21

Thus, if we have the 7, ordered according to a "frequency” idea, i.e.

3
perhaps Cj(u) = Zyzcos(jwu) » We see that

i) Since the §, are uniformly bounded, each is continuous on [0,1],

I A @ 3
© and’ j§1 Iajl < = IC K’F (x) 1is uniformly continuqus (a

robustness property).
ii) The extent to which the weights aj "taper off“ as j*= will

correspond to the degree of differentiability of ICT F (=),
K?*"8
0

and hence t
o the degree to which TK pPossesses additional robustness

properties.
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iii) The inner product ( determines the efficiency of

(@]

HM&
—
W
. [N
(@]
. e
e 8| S~—r
[
G R

e 8
'
e N

[N
=

[
=

the estimation procedure. Thus, for instance, if the aj's taper
off fast to achieve i) and ii) and in doing so fail to maintain
a high correlation with the Cj's, the efficiency of the estimator
will be low.

[

The desire to perfectly duplicate the high frequency aspects of
ie(x) must produce non-robust estimators by violating i) and 1i)
to achieve 1ii). Many results in robustness may in fact be viewed
as means of tapering the sequence {aj} to eliminate or minimize high
frequency components of ie(x) while maintaining high fidelity. There-
fore, we have seen that both M- and MD~estimation may be linked to a
(tapered) Fourier expansion of ie(x)

Tigures 1 and 2 i{llustrate this phenomenon. They give the truncated

. M
Fourier approximates to 29(Fel(u)) of the form Z C.Cj(u) for
i=1

M=1,3,5,7, and ». (We take 9 = 0 without loss of generality.)
(Only u > .3 is shown, since both the functions and their approximates
are odd in F;l(u), and hence CZk =0, k=1,2, ...).

For the normal density, inclusion of more terms (increasing M) allows
greater fidelity to Q—l(u) = io(Fal(u)), at the price of increasing the
supremum of the approximate. For the Laplace density, the added terms
improve the approximation near the discontinuity in i (Fal(u)) =

1 - 2I(u'< .5), at the expense of making the approximate's derivatives

larger. Relative efficiencies attained by K-type estimators using the

various truncations of the efficient scores are given im Table 1.
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3. Connections of Minimum Distance
to Other Estimation Methods

Several interesting connections exist between MD and other methods
of estimation. Estimation of eo based upon minimizing K(e,a;Gn) is

easily seen to be equivalent to defining the estimator en to be a root of

Z a =0,
j=1

a.z, F (x ):}
i=-l {le 373 )

Hence, this MD estimator is an M~estimator with defining Y-function

i.e.

Pp(x38) = jzl aj; Fe(xa

as noted in Section 2.
Hodges and Lehmann (1963) obtained robust estimators of location
via the "inversion" of rank test. For a random sample Xl’ oy Xn

from G and any value -= < 6 < =, they define the mirror image of the

sample about 9 by Yi(e) = 20 - X i=1, «eey n . If the distribu-

12
tion G is symmetric about 60, then the {Yi(eo)} have the same distri-
_bution as the {Xi} . Then, taking h to be any two-sample rapk test
statistic for shift having the property that when the two populations
are identical, the distribution of h is symmétric about some value u,

they define a rank (R) estimate of location by
8 = [sup{-e:r;.(x.l, eees X3 Yl(e), cees Y'n(e))

+ inf{B:h(Xl, ooy Xn; Yi(e),...., Yn(e)) < ukl/2
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Thus, an R-estimator of location "inverts' a rank test in the sense
that it selects as an estimator that value, é such that the rank test
based upon the statistic h(zlz(é)) finds it hardest to reject the
hypothesis of symmetry. (A similar development of R-estimators

is possible from one-sample rank tests.)

Similarly, in an obvious fashion, MD-estimators invert goodness-
of-fit tests. This similarity provides a heuristic method for choosing
highly efficient MD~estimators. In R-estimation, Hodges and Lehmann (1963)
found that rank tests possessing high power against location shifts
yielded, upon inversion, extremely efficient R-estimators. Similarly,
minimization of a goodness-of-fit discrepancy, which is highly powerful
against location shifts, yields a MD~estimator with a g&od efficiency.
This motivation could in fact lead to the fully efficient MD-estimators

discussed in Section 2, which coincide with the optimal M-estimators.

2

There is, howaver, the added quirk that most goodness-of-fit tests are

not asymptotically normal, and thus the formal theory developed by
Hodges and Lehmann (1963) does not directly apply to the inversion of
typical goodness-of-fit tests. (But see Parr and DeWet (1979) and

Boos (1980) for development of optimum weighting schemes for MD-
estimation.) |

| As a method, adaptive estimation is somewhat difficult to charac-
terize. The spirit of the method as developed by Hogg (1974) and others
is, hgwever, strgigﬁtforward to describe. Consider for simplicity the
case of location estimation for symmetric populations. The statistician
examines a characteristic of the sample data which measures, perhaps,
tailweight (naively kurtosis, but more likely ome of the subsequent
tailweight measures discussed in Hogg (1974) which involve ratios of

’

scale estimators which are linear functions of order statistics). Based
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upon the value of this statistic, an estimator is chosen from a (possibly
infinite) set which is expected to perform well for distributions with
tailweight of the estimated order. 'Thus, adaptive estimation is a two-~
step process:
1) Based upon some characteristic of the data, select an.
estimator which is believed to work well for the apparent
class of parent pépulations {or, otherwise stated, select a
modél which appears to be an adequate approximation to the daﬁa)
and 2) Use thatlestimator (or, use an estimation procedure expected
to be competitive at or near the expectéd model) .
A procedure of this sort arises naturally in MD-estimation of a
location parameter. Instead of éonsidering I' = {a specific location/
scale family of distribuéion functions} and minimizing G(Gn,Fe)_ over

Fe e, we could as well let T = Pi U Pz U, ..., U PK, where each Pi

is a distinct location/scale family, generated perhaps by prototype

t-distributions with Vis Vs eoes VK degrees of freedom. Finding an

MD-estimator with respect to § and T is precisely equivalent to choosing

the sub-model ri such that inf G(Gn,F) is the smallest, and then

Feeri

using the MD-estimator with respect to § and‘ri. Thus, the MD—estimator

-adaptively selects the closest location/scale family (in the sense of §)

and then estimates based upoﬁ a projection into that family.
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4, Goodness-of-fit Tests

In this sectioﬁ we consider the goodness~of-fit problem both in the
simple null case and for composite nulls when the estimator of the un-
known parameters possessas an asymptotically linear structura. This will
enable us to examine simultaneous model-dependent MD-estimation and
goodness-of-fit tests. ‘

In the case of a simple null hypothesis, i.e. testing HO: G = Fe

o)
versus H,: G # F,' , we consider as test statistics

A 8
[o]
® 2
(21)  R(8_,r36) ={ | rjdnj<eo)}
=1
and
ey e T oo 42 .
(22) L(eo,s,Gn)‘— Z sjdnj(eo) , sj >0 for all j .

=]

Schoenfeld (1977) examines K(eo,r;Gn) in detail for Z r? < @ both
) j=1 4
under Ho and under comtiguous alternative densities of the form

(23) P.(x) = £. (x) + 2% nfF + 1
n 8, * T (eo(x)) n n(Feo(x)> ?

1
2 1
with [h“(u)du < ® and [kn(u)(< m(u) for all n with fmz(u)du <w,
o
o

“(Actually he studies the signed square root of K(eo,r;G ).)
a
He derives an asymptotically optimal choice of the rj to be of the form

opt .
24) . rj = fh(U)‘Cj(u)du, j=12, ..., . Under H ,nkK(8 ,r:;G ) is
- 0 [o] o

of course asymptotically distributed as a chi-square with one degree of

- -
freedom, when divided by Z r? .
‘s o J
j=1
Under the uniform boundedness condition on the t.(*) , we obtain
d
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the null distribution of nL(eo,s;Gn) as

o n . 31
j=1
where the Zj are iid unit normal random wvariables. Under alternatives

of the form (23),
® 1
d 2
nL(eo’s’Gn) —)jzl sj{Zj + £ h(u)t’;:.l (u)dul} .

The null distribution can be approximated using the results of Solomon
and Stephens (1977) or, most simply, Gregory (1980, p. 121).

Results on the asymptotic power of tests based upon statistics
of the form of nL(Go,s;Gn) can also be easily obtained using the
results of Gregory (1980). Let two discrepancies based dn different

sequences of positive weights be denoted by

(25)  nL(8_,s;G)) = jzlsj{/a d (8} " and
% L % 2
(26) nL(8_,s ;G,) = jzlsj{/ﬁ ds (D% .

Also let j(i) denote the index of the ith largest sj, i.e.

' * *
sj(l) > Sj(Z) > ... >0 and similarly define j (i). Let*ni(ni) be the
multiplicity of the ith largest distinct value in-{sj}({SjB- If we
~denote the limiting power of a size @ test against the sequence in

'(23) using. nL(eo,s;Gn) (nL(eo,s§Cn))_by . p(q) (p*(a)), then by

Theorem 2.5 of Gregory (1980), with a,6 = flh(u)é (u)du, AZ = a? U
h I i j=1 1@



Several observations can be

1im p(a)
a+o

/p" (@)

efficiency of these tests.

i)

ii)

Ifny=mn

2 2

35%(1) 7 %35(1)°

Thus, if distinct weights s;

%
n, =

%
1, then the condition A

20

=0, if A4 > A or
* %
A = A and oy < oy
*
= o iftA> A or
* < *
A = A and Anl nl
1 ¢ 22
exp{s ) / (s, - S, 080
2 kem +1 2537 V351 j (k)
1 ¢ *
€xpls Z 2, % /( j* S: (k)
RLRNLS (%3’ ) = a0
if A = and ny = nl .

made from this result concerning the relative

1 2
i.e., {£ h(u)cjtly(u)du}

> A is just

1 .
> {£ h(u)Ej(l)(u)du}

are to be used, the largest weight

should be given to the cj with the largest coefficient in the

expansion

h(u) ~

L

i=1

tjCj(u) ’

0 <u

<

1

for the direction of the alternatives in (23).

We see furthermore from this that the ideal basis

Cl(u) = h(u)

almost everywhere with respect to Lsbesque measurs.

{ (u),
3
test of the form n Z s, d
ESEERS
of the form Z h(F (Xi)
o

i=1, ...} would have h(u) as a member.

Hence, no

(eo} will be as efficient as a test

)}2, unless sj =0 for j > 2 and

2
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iii) Thus, in general tests of the type nL(Go,s;Gn) are a poor
choice if there is much knowledge concerming the likely alterna-

tives to be encountered, although they do possess (if sj >0

for all j) the desirable omnibus property of being consistent
against alternatives of the form of (23), and are hence appro-

priate for poorly specified altermatives.

Seldom, however, are null goodness—of-fit hypotheses simple. Most
involve the estimatiom of o;e or more parameters. Schoenfeld (1979)
discusses the behavior of tests of the form of nK(én,r;Gh)' when the
estimation is asymptotically first-order-efficient. He shows that if
the constants {r,, j = 1,25...} .are chosen to be orthogbnal to a
specified suﬁspaca of dimension equal to that of 8, the null distribution
of nK(én,r;Gn) is, under some regularity conditions, the same as that
of nK(eo,r;Gh)~,

Similarly, let 8 be, for the sake of simplicity, one-dimensioﬁal,

and let.en be sufficiently regular that, when sampling from Fe R
: : ' o

/fmle -9 -LE (X,38 p——op O
n ‘n o n .=1_w 1’7o -

Here, w(-;eo) is usually termed the influence curve (see Hampel (1974))

of en . If ¢(‘;e°) is such that fﬁz(f{L(u);eq)du < @ ; it then possesses
. o _

a Fourier expansion of the form
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-}

-1
(27) w(Feo<u>;eo) - Lo

If the rj are such that ajrj = 0, then /h(én - eo) and nL(én,r;Gn)

are asymptotically independent and h{L(éu,r;Gn) - L(eo,r;Gn)}-—gé'O ,
permitting use of the critical points of nL(eo,r;Gn) in conducting the
composite hypothesis tests. This also makes it possible to estimate

the unknown parameter and conduct an asymptotically independent and
parameter-free test of the fit of the proposed model. An estimator with
an odd influence curve would thus, under the appropriate smoothness condi-
tions, be asymptotically independent of a test which put nonzero weight
only on the even components (looking for tailweight or kurtosis departufas

from a conjectured symmetric model).

5. Summary

Minimum distance methods provide a large class of estimation pro-
cedures possessing interesting analogies to other estimation methods.
A frequency domain analysis can suggest which aspects of the efficient
score should and should not be copied to balance the competing criteria
of efficiency and robustness. MD estimation leads to a natural class of
.goodness-of—fit tests, and provides (once again via frequency domain
insight) a general method for asymptotically parameter-free goodness-of~

fit test construction in the composite goodness~of-fit problem.
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Appendix

We present a briéf sketch of the proof of Theorem 4. Define

L(t,b56) - L(8_,b3G)

h(t) = t -8
[o}

L(t,b3G)
= 2250537
e eo for t # 90 ,

= L(So,b;G) for t =06 .

Hence, we have
L(T [C 1,b56)

T.[G] -8
L'n h(TL(Gn))

Further define the function
L(Bo,b;G)
n h(TL(Gn))

and the differential

f Zb e, (8,02, (Fy <x))d<c - 6)(x)
DG -G) = — y=11 0 ,
n
z b.e, (6 )

"y 1

which is the "average" of IC; (x) over the data points, our prcposed

A
linear approximation for TL[Gn] - eo .



A2

Using the. above, we write

TL(Gn) - 60 - H(Gn)D(Gn - G)

=______i__ _ ™ =
h(TL[Gn]){:L<T[G 1,b3G) z_i Jzlbje (® )c (F (x))d(cn Gxxi}

hZT (G 3) Z b, {L.Cj (FTL[G ](x))dG(x) fC‘(FT {Gn] (x))FTL[Gn] (x)dG(x)

=]

- e (eo)_{fj(Feo(x))d(Gn - G) (X} .

This can be shown by lengthy algebra (utilizing repeatedly the fact that

L@L(Gn),b;Gn) ='L(e°,b;G) = Q) to be equal to

2 Zb [ [z . (F, x)) - C (F (x))}d(G_ - G)(x)f C'(F (X))% (x)dG (x)
BT e i1l L= 1% TplG,! . TG I T L]

+_£Cj(?3 (x))d(G - 6) (X)L{ﬁ:’i(Feo(x))E"eo(x) C (Fqp Ll ](X))FT e 1(x) }dG(x)] .

O

Consider the two terms inside the outer brackets separately. The

contribution of the second can be bounded in absolute value by

2 T bl suple () - @] [z E (D]
AL C0.4=1 1 x ® 379, v
[le2{F, (0)F, (x) - £.{F (x) }F (x) | dG (x)
= 17e 8, jrrle]] T, [, ]



Ad

.2 supl6_(x) - 6x)| =
"X I 1oyl gy O Ilg - 0 @
R(T, (G_)) j=1 o

by condition ii) and known properties ofAthe Kolmogorov-Smirnov
statistic. The contribution of the first term is disposed of similarly

(using condition iii)), giving
- - - = 'yZ
TL (Gn) eo H(Gn)D(Gn G) op (n )

since H(Gn) 3 1. Hence, by the Lindeberg-Levy central limit theorem
for iid summands, |

d
2
/E{TL(Gn) - eo} + N(0,¢ (eo)).



Table 1

Relative Efficiences of Location Estimators
Tk Based on Truncated Fourier Approximates

Order of Approximation Normal * Laplace
1 .90 .79
3 .96 ' .89
5 '98 '92
7 .99 .94

8

1.00 1.00



Figure 1: Plot of Fourier Approximations to Fisher Score

for Normal Density
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Figure 2: Plot of Fourier Approximations TO risner ocure

for Laplace Density
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