ON CORNISH-FISHER EXPANSIONS WITH UNKNOWN CUMULANTS

by

EBE. D. McCune and H. L. Gray

Technical Report No. 123
. Department of Statistics ONR Contract

May 30, 1975

Research sponsored by the Office of Naval Research
Contract NOOOLL-T5-C-0439

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

This document has been approved for public release
and sale; its distribution is unlimited.

DEPARTMENT OF STATISTICS
Southern Methodist University
Dallas, Texas 75275



CR CORNISH-FISHER EXPANSIONS WITH UNKNOWN CUMULANTS

E. D. McCune
Stephen F. Austin State University
H. L. Gray
Southern Methodist University
Key Words & Phrases: Edgeworth, Cornish-Fisher; expansions;
cumulants; quantiles.
- ABSTR/ U &

In this paper a new method of approximating the quantiles of
cne distribution ¥:- the quantiles of another is introduced. The
method is essentially a modification of the Cornish-Fisher tech-
hique which eliminates the necessity of knowing the cumulants of

the distribution involved.

1. INTRCDUCTION

Let F( ;X)) and ¥ be probahility distribution functions with

cunulants ki and ai, respectively, such that

1im Fx3;A) = ¥(x) (1)
A0
for all x in the support of F( ;X)) and let
= k -
By R -y (2)
where we assume for convenience that 81 = 82 = 0. In addition, we



assume that

g = O(Al—(i/2))

“

, i=23,b,... .- (3)

Let x and u be corresponding quantiles of F( ;)A) and ¥ respec-
tively, such that
) F(x;A) = ¥(u) . (L)
By inverting the Edgeworth expansion of F( ;X) in terms of ¥ [See
Cornish & Fisher (1927), Draper & Tierney (1973), Fisher & Cornish
(1960), Hill & Davis (1968) or Riordan (1949).], one can solve (L),
obtaining the Cornish-Fisher expansion of u in terms of x given by

w=u oM/ (5)

where
]
u,, T Xt y GE(A)Wi(x) \ (6)
2=1 .
and the inverse Cornish-Fisher expansion of x in terms of u given
by ‘
~-(n+1)/2

(- (1) /2

X = X + 0
cn

(7)

where

S

X, =ut Iz'_E_::L(S,L()\)Y,L(u) . (8)

In (6) and (8) ine Gg is a function of the cumulants of F( ;A) and
Y and hence a function of A whereas WR and YR are ind?pendent of A.
In this paper, expansions similar to (6) and (8) will be obtained
which do not require evaluation of cumulants and therefore do not

require evaluation of the 62.

2. PRELIMINARIES

In many instances we can write [See Coberly (1972) or Hill &
Davis (1968).]

"(n+l)/2)

F(x;\) - Fn(x;x) = 0(A (9)

where

k (m.) .
F (x;A) = ¥(x) + J g . (M¥ & (x) (10)
n 1=l 1

is the Edgeworth approximation of F(x;A) with the terms arranged

such that the m, are distinct, gi(k) # 0 are the'resulting



coefficients, and k is the numitzr of distinct m.. We now consider
i

the following approximation of F{xj;A):

- (mi) (m, )
F (x353) = [ {x), 7, ()5 (x)1/1, {1,0;¥ T (x)] (11)
where -
A Bl .. Bk
(m,) (m +1) (m_+k)
) vy V) ov Y ) ey b ()
HK[A’Bi;% ()} = . . N
(m, ) (m, +1) (m +k)
v Gy v Gy e
for a1l x such that the denominator 1s nonzero, where
Vi(x;k) = W(i)(x) - F(i)(x;k), i=1,...,k , (12)

and k and n are defined by (10:.

The approximalion Fn was inrtraoduced in a paper by Gray, Coberly
and Lewis (1975) a1l was shown under certain conditions to have the
asymptotic property

’

F (z3)2) = F(x32) = 0(a

"(n+1)/2)
L .

(13)

For convenience we let ﬁn(x;x) = %n(x;k) - ¥(x) which by properties

oi determinants reduces to
(m, ) (m,)

D_(xsh) = B [0V, (esA)sy b (0)]/K [1,05% ()] (14)

where Vi(x;x) is defined in (12).

5. THE NEW APPROXIMATION

In (4) let us consider the vroilem of approximating u with an
expansion in terms of x. Under ccrtazin conditions [See Bol'shev
(1959), (1963); Draper & Tierney (1¢73); Hill & Davis (1968), (1973).]
we can use Taylor's formula to ott:iin

u = u,. *+ O(X—VL+1)/2)

. (15)

where

¥ (1)
up = x o+ Y Cr(x){[F(x;A)—-W(x)]/W ()} /r1 (16)
r=1
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ey, (1)
{x) = {{-o(¥ "))/ ’(x)]*—DK}CM(X), r=1,2,.
x 3

41
Fauation (1¢) rotivaves the following definition.
Definition 1. Lev I » Hatural Durbers, L 2z n Then

{757 ang {15) are valid then

~ (A—(n+l)/2)

uo- un,L =0 (18)
28 A o o
Proc?f: Comzider
L" ~ ! Ay PN /-(l\’
S Vo /\[ VI Ay — T )},\t’ (}:)r /rl
r=1 "
= Z C”(ﬂ}{r‘{r L)(x)]r}~l[F(x;X)-Fn(x;x)+-%q(x;A)——?(x)]r
r=1 )
I) (l)
: cL o . T, " :
= e E G- v G e g (19)
1’.:17 id il N
where . . . -
E 1 r -1 .
=)L Crkx){r![W( )(x)] } [ J[P(x;x)
- r=1 k=1 K

(20)

and where r > k > 1. It foliows 7 =1 (9) and {(13) that

r-k nk+r ) /2 )

(Flxi2) -5 Can) PR () - 00178 = o

Now observing that the maximum o. —-{(nk+r)/2 occurs wvhenr = k = 1,

it folleows from (20) and (21) that

. —=(n+
To= (A (n l)/2)

5 (22)

. . ~ -(L+1
Now from (15) and (19) we can write u-u o= TLﬁ-O(X ( )/2) and
. > ~ —-(n+l)/2
and since L2n by definition of U s we have u-u o= 0(A ( ) ).

Q.E.D.



At this point a few commerts are in order concerning (18).
From (18) we see that the order of u - an,L depends only explicitly
on n. However, for finite A, the value of un,L will depend on L
and some values of L may be better than others. No attempt to
establish an optimal value of L will be made here and only those
values of L; i;e., n and n + 1, given by the following definition,

will be ccnsidered.

Definition 2. The approximation &n’ which is the subject of this
paper, we rnow define by -

2W{(n)
L= 1«21 cr(x)[ﬁn(x;x)/w(l)(x)]r/rz ;23)

where W(n) = greatest integer < (n+l1)/2. _

Note that the approximation of u giver by (23) does not depend
on the cumulants but instead makes use of the derivatives of F( ;\)
and Y. This iz in contrast to the Cornish-Fisher expansion which
utilizes the derivatives of ¥ and the cumulants of F{ ;A). Thus we
have traded the problem of integration for one of differentiation
which is in general easier. In fact if the Taylor expansion of
F( 3A) about x is known the derivatives required in (23) can be ob-
tained by inspection of that series. Of course if F( ;X) is unknown
there is no advantage to ﬁn and we are not advocating it for that
situation.

We have immediately from Definition 1, Theorem 1 and Definition
2 that '

A-(n+l)/2) (24)

u -0 =.O(
as A > o,

Since u and ﬁn are approximétions of u in (4), an obvious
application is to use them to approximate F(x;A) when the limiting
distribution is easy to evaluate. We‘gre therefore interested in
the comparison of ]F(x;k)— W(ucn)| witﬂ [F(x;k)— ?(ﬁn)l. For the
following examples Y(x) is N(0,1) and for n = L, the expansion in

(6) is therefore



U, T X - 63(x2-1>/6 - Sh(x3—3x)/2h + Bg(hx3_7x)/36

- Br(xu—6x2+3)/l20 + Bth(llxh—h2x2+15)/lhu

/

_ 83(69x"-187x%+52) /648 - B (x”~10x7+15x)/720
PREII 5 3
+ :u(bx +5> <)/ 38h - B 8 (7Tx”-48x~+51x)/360
2 503 .
- 5§Bp<1llx -5LTx7+h56x ) /864
Lo 5
+ 87(9h8x -3628x +?Ll3k)/7776 . (25)
Fxemple 1. Let
Flxi\) = £i>k<l/2)g(tk(l/2)+X)dt (26)
wnare
‘e -1 A1 -z
(z) - (T(2)) 7o Te Tz > 0 (27)
3 z < 2
and {:; . i=1,2
B, = W .y (28)
. a7 <l"2)(i-1)1, i=3,h, ...
Hence T' is the standardized Gamma c.d.f. Now
, 1/2
:;\
PO ) = 20 1em AT T
m-1. m-~1
- i A=
(i [ [ NP (29)
i=0 i u=x1~" T4

where D denctes differentiaticn with respect to u. Thus un and
u

u,, cen easily be calculated. The results are compared in Table I.

Example 2. Let

Flx3;A) = Glxo3A; - (30)
where
o = [A/(r-2)]/? (31)
and
C(t;A) = ft (An)—l/Q{F[(A+1)/2]/F(>/2)}[l+(w2/x)]_(x+l)/2dw (32)

Hence F( ;A) is the standardized Student-t c.d.f. with Bl =R
=R. = ... =0 and 82 = 0, 8h = 6/(x-L), 86 = 2Lho/(A-k)(X-6),

{x;A) is easily calculated by utilizing the relationship
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i) =

(-1
[t

)
G -{(X+2k-l}tG(k’(t;A)

<k'1)(t;x)}/(x+t2) . (33)

are agaln easily obtained and are compared in

+ (k-1)(2+k-1)G
Both approximations

Table IT.

TABLE II

F=F(x3;A)

x ¥ ()| [E-vlu )] [F-v@) ] R-vag) |
A=8

1 .85023 Rb ~3)  .10b7h(-1) - .10775(~2) .2705L4(-2)

2 .97513 “”0’ ”) .55286(-2) .35956(~3) .18162(-1)
3 .0957h 2258[ -1) .26138(-1) .23719(-2) .L18L9(-2)

L 2001y 857*¢( 3 .22577(0) .85731(-3) .1L138(0)
)\:A:

1 .f501h L21b27(<3) .19545(-2) .13003(-3) .13038(-3)
2 .a7579 .L1616(-3) .11051(-2) .S56756(=L) .11922(-2)
3 .09719 .62148(-3) .19386(-2) .370L6(-3) .88182(-3)
Lo .6eg68  .31776(-3) .20971(-2) .31776(-3) .24880(-3)
A=28

1 L8LANL T17hh(=k) .59943(-3) .25L0o5(-hL) 18419(-3)
2 .97620 14734 (=3) .35461(-3) .12537(-=3) 17872(-3)
3 .90779  .207L8(-3) .45913(-3) .L43588(-k4) .1L3U8(-3)
L .o998L  .15087(-3) .20138(-3) .15980(-3) .u48919(-L)
A=100

1 .8hk2s7  .41168(+5) .31827(-L) .30888(-6) .193L9o(-5)
2 .97699 .90bGL(-5) .19673(-k) .20117(-6) ..19630(-5)
3 .9984s  .11062(-k) .18600(-k) .11585(-k) .15303(-5)
L .59995 3869L(-5) .32512(-5) .30888(-5) L3TU(-6)

I,

THE NEW

INVERSE APPROXIMATION

Now in (4) let us consider the inverse problem of approximating
x with an expansion in terms of u. Under certain conditions [See

(1959) &

Liagao (1973).] we can use Lagrange's inver-

Whittaker & Watson (1963), Hill & Davis (1968), Bcl'shev
(1963), McCune (197L) oz
sion formula to obtain

X = Xn + O()\—(n+l)/2

) (34)

where



I

x = u + z —l)r(W

)T (0FH F (s )

r=1
r, (1)
- (W) /ey T (W) /ey (35)
Equation (25) motivates the following definition.
2

Definition

Let in be defined by

~

n
=u+ JA(E. (us)) (36)

n 5

where Ar(u) = (—l}r(w(l)(u))l-r

/r! and where E (u3;A) is obtained
1 r,n

3

{[F(u3A) - W(u)]r/W(l)(u)} and then substituting
ﬁn(u;k) for Ti{uzAr) - ¥(u).

by expanding Dz

The following theorem establishes the asymptotic equivalence

of x and X .
cn n

Thecrem 2. If (9), (13) and (34) are valid, then

x - &= o (/2 (37)
as A - o,
Proof: Fxpression (3h) can be written as
n
x =u+ 3 A (2)B (ws1) + o(a”(mF1)/2) (38)
r T
r=1
where
' kr .
B_(u3x) = } b (u) [F(u;2)
i=1
P, P, P,

_ W(u)] l(l)(z(l)) 1(2)...(Z(r_l)) l(r) (39)
and where z(t)_ F(t)( JA) - ( )( ) ,r-1, h (u) is a funec-
tion of u independent of A, and 2 -1 r. Now conslder

FluzA) - ¥(u) = F(uzr) - fv (u;X) + Dn(u;x) . (40)
Substituting {40) into (39) and simplifying yields
B (u3;x) = E (uyr) + O(X—(n+l)/2) (L1)
T r,n
Now (38) and (L1l) yield
x = x + O(A_(n+l)/2)
o Q.E.D

9



TABLL IV

A .7500 .9500 .9750 .9975 . 9995
t 10 . 700 1.812 2.228 3.581 L.587
tos .699 1.797 2.197 3.430 L .26k
£2 .715 1.823 2.248 3.395 L.131
b, .700 1.811 2.225 3.559 L.525
%u .700 1.813 2.222 3.510 L.718
t 20  .687 1.725 2.086 3.153 3.850
t, .687 1.721 2.079 3.119 3.TT7
%2 .690 1.727 2.090 3.109 3.7k
t.) .687 1.725 2.086 3.151 3.8k2
£h .687 1.725 2.086 3.1Lh 3.861
t Lo  .681 1.684 2.021 2.971 3.551
t o 681 1.683  2.019  2.963  3.53h
£2 .681 1.68L 2.022 2.960 3.526
tch .681 1.68k 2.021 2.971 3.550
£h .681 1.68) 2.021 2.970 3.553
t 60  .679 1.671 2.000 2.915 3.460
t s .679 1.670 2.000 2.912 3.453
%2 679 1.671  2.000 2.910  3.Lko9
t ), 679 - 1.671 2.000 2.91L 3.460
£h , 679 1.671  2.000 2.91L 3.461

5. COKCLUSIONS

. Evaluation of the expansions uCn or ch requires explicit

knowledge of the first n + 2 cumulants of F( ;)), when evaluating

(n+l)/2)

up to terms of order o(x~ On the other hand, evaluation

of ﬁn or ﬁn requires knowledge of the- first k derivatives (see (11))

of F{ 3A). From the results of Tables I - IV, we can conclude that

~

u X ,u ,and x are very comparable in the sense of being good.
n n cn cn -

approximations. Hence, ﬁn and X may be valuable alternatives when
the cumulants are difficult to evaluate as compared with obtaining

the k derivatives of F( ;X).
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