ON CORNISH-FISHER EXPANSIONS WITH UNKNOWN CUMULANTS

Ъy

E. D. McCune and H. L. Gray

Technical Report No. 123
Department of Statistics ONR Contract

May 30, 1975

Research sponsored by the Office of Naval Research Contract N00014-75-C-0439

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

DEPARTMENT OF STATISTICS Southern Methodist University Dallas, Texas 75275

ON CORNISH-FISHER EXPANSIONS WITH UNKNOWN CUMULANTS

E. D. McCune

Stephen F. Austin State University

H. L. Gray

Southern Methodist University

Key Words & Phrases: Edgeworth, Cornish-Fisher; expansions; cumulants; quantiles.

ABSTR/CT

In this paper a new method of approximating the quantiles of one distribution by the quantiles of another is introduced. The method is essentially a modification of the Cornish-Fisher technique which eliminates the necessity of knowing the cumulants of the distribution involved.

1. INTRODUCTION

Let F(; λ) and Ψ be probability distribution functions with cumulants k_1 and α_1 , respectively, such that

$$\lim_{\lambda \to \infty} F(x; \lambda) = \Psi(x) \tag{1}$$

for all x in the support of $F(;\lambda)$ and let

$$\beta_{i} = k_{i} - \alpha_{i} \tag{2}$$

where we assume for convenience that $\beta_1 = \beta_2 = 0$. In addition, we

assume that

$$\beta_{i} = O(\lambda^{1-(i/2)}), \quad i = 3, 4, \dots$$
 (3)

Let x and u be corresponding quantiles of F(; λ) and Ψ respectively, such that

$$F(x;\lambda) = \Psi(u) . (4)$$

By inverting the Edgeworth expansion of F(; λ) in terms of Ψ [See Cornish & Fisher (1937), Draper & Tierney (1973), Fisher & Cornish (1960), Hill & Davis (1968) or Riordan (1949).], one can solve (4), obtaining the Cornish-Fisher expansion of u in terms of x given by

$$u = u_{cn} + O(\lambda^{-(n+1)/2})$$
 (5)

where

$$u_{cn} = x + \sum_{\ell=1}^{s} \delta_{\ell}(\lambda) W_{\ell}(x)$$
 (6)

and the inverse Cornish-Fisher expansion of \mathbf{x} in terms of \mathbf{u} given by

$$x = x_{cn} + o(\lambda^{-(n+1)/2})$$
 (7)

where

$$x_{cn} = u + \sum_{\ell=1}^{S} \delta_{\ell}(\lambda) Y_{\ell}(u) . \qquad (8)$$

In (6) and (8) the δ_{ℓ} is a function of the cumulants of F(; λ) and Ψ and hence a function of λ whereas W_{ℓ} and Y_{ℓ} are independent of λ . In this paper, expansions similar to (6) and (8) will be obtained which do not require evaluation of cumulants and therefore do not require evaluation of the δ_{ℓ} .

2. PRELIMINARIES

In many instances we can write [See Coberly (1972) or Hill & Davis (1968).]

$$F(x;\lambda) - F_n(x;\lambda) = O(\lambda^{-(n+1)/2})$$
(9)

where

$$F_{n}(x;\lambda) = \Psi(x) + \sum_{i=1}^{k} g_{i}(\lambda) \Psi^{(m_{i})}(x)$$
(10)

is the Edgeworth approximation of $F(x;\lambda)$ with the terms arranged such that the m, are distinct, $g_i(\lambda) \neq 0$ are the resulting

coefficients, and k is the number of distinct m_i . We now consider the following approximation of $F(x;\lambda)$:

$$\hat{F}_{n}(x;\lambda) = H_{k}[\Psi(x), V_{i}(x;\lambda); \Psi^{(m_{i})}(x)] / H_{k}[1,0; \Psi^{(m_{i})}(x)]$$
(11)

where

$$H_{k}[A,B_{1};\Psi^{(m_{1})}(x)] = \begin{bmatrix} A & B_{1} & \cdots & B_{k} \\ (m_{1})_{(x)} & \Psi^{(m_{1}+1)}_{(x)} & \cdots & \Psi^{(m_{1}+k)}_{(x)} \\ \vdots & \vdots & & \vdots \\ (m_{k})_{(m_{k}+1)} & (m_{k}+k) \\ \Psi^{(m_{k})}(x) & \Psi^{(m_{k}+1)}(x) & \cdots & \Psi^{(m_{k}+k)}(x) \end{bmatrix}$$

for all x such that the denominator is nonzero, where

$$V_{i}(x;\lambda) = \Psi^{(i)}(x) - F^{(i)}(x;\lambda), \quad i = 1,...,k$$
, (12)

and k and n are defined by (10).

The approximation \hat{F}_n was introduced in a paper by Gray, Coberly and Lewis (1975) and was shown under certain conditions to have the asymptotic property

$$\hat{F}_{n}(x;\lambda) - F(x;\lambda) = O(\lambda^{-(n+1)/2}). \tag{13}$$

For convenience we let $\hat{D}_n(x;\lambda) = \hat{F}_n(x;\lambda) - \Psi(x)$ which by properties of determinants reduces to

$$\hat{D}_{n}(x;\lambda) = H_{k}[0,V_{i}(x;\lambda);\Psi^{(m)}(x)]/H_{k}[1,0;\Psi^{(m)}(x)]$$
(14)

where $V_{,}(x;\lambda)$ is defined in (12).

3. THE NEW APPROXIMATION

In (4) let us consider the problem of approximating u with an expansion in terms of x. Under certain conditions [See Bol'shev (1959), (1963); Draper & Tierney (1973); Hill & Davis (1968), (1973).] we can use Taylor's formula to obtain

$$u = u_L + O(\lambda^{-(L+1)/2})$$
 (15)

where

$$u_{L} = x + \sum_{r=1}^{L} C_{r}(x) \{ [F(x;\lambda) - \Psi(x)] / \Psi^{(1)}(x) \}^{r} / r!$$
 (16)

and where $C_1(x) = 1$ and

$$C_{r+1}(x) = \{ [-r(\Psi^{(2)}(x))/\Psi^{(1)}(x)] + D_x \} C_r(x), r = 1,2,...$$

Equation (16) metivates the following definition.

Definition 1. Let b a Natural Numbers, L ≥ n. Then

$$\hat{u}_{n,L} = x + \sum_{r=1}^{L} c_{r}(x) [\hat{D}_{n}(x;\lambda)/\Psi^{(1)}(x)]^{r}/r! . \qquad (17)$$

The following theorem establishes the asymptotic equivalence of u and \hat{u} .

Theorem 1. If (9), (13) and (15) are valid then

$$u - \hat{u}_{n,L} = o(\lambda^{-(n+1)/2})$$
 (18)

as $\lambda \to \infty$.

Proof: Consider

$$\sum_{r=1}^{L} C_{r}(x) \{ [F(x;\lambda) - \Psi(x)] / \Psi^{(1)}(x) \}^{r} / r! \\
= \sum_{r=1}^{L} C_{r}(x) \{ r! [\Psi^{(1)}(x)]^{r} \}^{-1} [F(x;\lambda) - \hat{F}_{n}(x;\lambda) + \hat{F}_{n}(x;\lambda) - \Psi(x)]^{r} \\
= \sum_{r=1}^{L} C_{r}(x) \{ [\hat{F}_{n}(x;\lambda) - \Psi(x)] / \Psi^{(1)}(x) \}^{r} / \hat{r}! + T_{L}$$
(19)

where

$$T_{L} = \sum_{r=1}^{L} \sum_{k=1}^{r} C_{r}(x) \{r! [\Psi^{(1)}(x)]^{r}\}^{-1} {r \choose k} [F(x;\lambda) - \hat{F}_{n}(x;\lambda)]^{k} [\hat{F}_{n}(x;\lambda) - \Psi(x)]^{r-k}$$
(20)

and where $r \ge k \ge 1$. It follows from (9) and (13) that

$$[F(x;\lambda) - \hat{F}_{n}(x;\lambda)]^{k} [\hat{F}_{n}(x;\lambda) - f(y)]^{r-k} = O(\lambda^{-(nk+r)/2}) .$$
 (21)

Now observing that the maximum of -(nk+r)/2 occurs when r=k=1, it follows from (20) and (21) that

$$T_{1} = O(\lambda^{-(n+1)/2})$$
 (22)

Now from (15) and (19) we can write $u - \hat{u}_{n,L} = T_L + O(\lambda^{-(L+1)/2})$ and and since $L \ge n$ by definition of $\hat{u}_{n,L}$, we have $u - \hat{u}_{n,L} = O(\lambda^{-(n+1)/2})$. Q.E.D.

At this point a few commerts are in order concerning (18). From (18) we see that the order of $u - \hat{u}_{n,L}$ depends only explicitly on n. However, for finite λ , the value of $\hat{u}_{n,L}$ will depend on L and some values of L may be better than others. No attempt to establish an optimal value of L will be made here and only those values of L; i.e., n and n + 1, given by the following definition, will be considered.

<u>Definition 2</u>. The approximation \hat{u}_n , which is the subject of this paper, we now define by

$$\hat{\mathbf{u}}_{n} = \mathbf{x} + \sum_{r=1}^{2W(n)} c_{r}(\mathbf{x}) [\hat{\mathbf{D}}_{n}(\mathbf{x}; \lambda) / \Psi^{(1)}(\mathbf{x})]^{r} / r!$$
 (23)

where $W(n) = \text{greatest integer} \leq (n+1)/2$.

Note that the approximation of u given by (23) does not depend on the cumulants but instead makes use of the derivatives of $F(\ ;\lambda)$ and Ψ . This is in contrast to the Cornish-Fisher expansion which utilizes the derivatives of Ψ and the cumulants of $F(\ ;\lambda)$. Thus we have traded the problem of integration for one of differentiation which is in general easier. In fact if the Taylor expansion of $F(\ ;\lambda)$ about x is known the derivatives required in (23) can be obtained by inspection of that series. Of course if $F(\ ;\lambda)$ is unknown there is no advantage to \hat{u}_n and we are not advocating it for that situation.

We have immediately from Definition 1, Theorem 1 and Definition 2 that

$$u - \hat{u}_n = O(\lambda^{-(n+1)/2})$$
 (24)

as $\lambda \rightarrow \infty$.

Since u_{cn} and \hat{u}_n are approximations of u in (4), an obvious application is to use them to approximate $F(x;\lambda)$ when the limiting distribution is easy to evaluate. We are therefore interested in the comparison of $|F(x;\lambda) - \Psi(u_{cn})|$ with $|F(x;\lambda) - \Psi(\hat{u}_n)|$. For the following examples $\Psi(x)$ is N(0,1) and for n=4, the expansion in (6) is therefore

$$u_{c4} = x - \beta_3(x^2 - 1)/6 - \beta_4(x^3 - 3x)/24 + \beta_3^2(4x^3 - 7x)/36$$

$$- \beta_5(x^4 - 6x^2 + 3)/120 + \beta_3\beta_4(11x^4 - 42x^2 + 15)/144$$

$$- \beta_3^3(69x^4 - 187x^2 + 52)/648 - \beta_6(x^5 - 10x^3 + 15x)/720$$

$$+ \beta_4^2(5x^5 - 32x^3 + 35x)/384 - \beta_3\beta_5(7x^5 - 48x^3 + 51x)/360$$

$$- \beta_3^2\beta_4(111x^5 - 547x^3 + 456x)/864$$

$$+ \beta_3^4(948x^5 - 3628x^3 + 2473x)/7776 . \tag{25}$$

Example 1. Let

$$F(x;\lambda) = \int_{-\infty}^{x} \lambda^{(1/2)} g(t\lambda^{(1/2)} + \lambda) dt$$
 (26)

where

$$g(z) = \begin{cases} (\Gamma(z))^{-1} z^{\lambda - 1} e^{-z}, & z > 0 \\ 0, & z \le 0 \end{cases}$$
 (27)

and

$$\beta_{i} = \begin{cases} 0, & i = 1,2 \\ \lambda^{1-(i/2)}(i-1)!, & i = 3,4,... \end{cases}$$
 (28)

Hence F is the standardized Gamma c.d.f. Now

$$F^{(m)}(x;\lambda) = \left[\lambda^{m/2}/\Gamma(\lambda)\right] e^{-(x\lambda^{1/2} + \lambda)}$$

$$\times \sum_{i=0}^{m-1} (-1)^{m-1-i} {m-1 \choose i} D_{u}^{i} u^{\lambda-1} \Big|_{u=x\lambda^{1/2} + \lambda}$$
(29)

where D denotes differentiation with respect to u. Thus \hat{u}_n and u can easily be calculated. The results are compared in Table I.

Example 2. Let

$$F(x;\lambda) = G(x\sigma;\lambda) \tag{30}$$

where

$$\sigma = \left[\lambda/(\lambda - 2)\right]^{1/2} \tag{31}$$

and

$$G(t;\lambda) = \int_{-\infty}^{t} (\lambda \pi)^{-1/2} \{ \Gamma[(\lambda+1)/2] / \Gamma(\lambda/2) \} [1 + (w^2/\lambda)]^{-(\lambda+1)/2} dw.$$
 (32)

Hence F(; λ) is the standardized Student-t c.d.f. with $\beta_1 = \beta_3 = \beta_5 = \dots = 0$ and $\beta_2 = 0$, $\beta_4 = 6/(\lambda-4)$, $\beta_6 = 240/(\lambda-4)(\lambda-6)$, Also F^(m)(x; λ) is easily calculated by utilizing the relationship

	,				TOTAL				
正 X 正	=F(x;λ) . F	$ F-\Psi(\hat{\mathbf{u}}_1) = F-\Psi(\mathbf{u}_{c1}) $	[F-Ψ(u _{c1})]	F-Ψ(û ₂)	$ F-\Psi(u_{c2}) $ $ F-\Psi(\hat{u}_3) $	F-\(\hat{u}_3)	$ F-\Psi(u_{c3}) $ $ F-\Psi(\hat{u}_{\mu}) $	F-Y(û ₄)	F-\(\u00e4(\u00e4c_4))
~	= \frac{1}{2}		, 000		180081	10703(20)		13732(-2)	ı
н с	474	.61308(-2) (r-)91261	(2-)L9261 (1-)L9261	.65096(-2)		.18682(-2)	.71665(-2)	$\widetilde{\alpha}$	366(-
V M	.99069	0768(38(-	.93090(-2)	.70594(-2)		.21499(-1)	ı	.72143(-2)
	981	88	.36991(-1)	.18809(-2)	.18693(-2)	.18809(-2)	.12354(0)	.18809(-2)	. 18809 (-R)
~	ις .	0	0 0	C	20085/2)	(8-)88110	88814(-4)	. 19152(-3)	.85482(-4)
	436	2738(-	7 30 7				(8-)02502	(K -) OOLOO	- 1
	.96528	<u>-</u>	.60537(-2)	75	(2-)0596T.	(0-)COTOS.	(01)01/01.	(0))06/32.	(8-)101(8)
	446	.41810(-2)	8199(-	<u> </u>	1.16289(-2)	(7-)07077	() () () () () () () () () ()	(71)00000	1
≠	.99930	.69867(-3)	S	-3)	.49185(-3)	.69867(-3)	.95200(-3)		!
Ä	=25							701.17	(1) / (1000
	.84276	.14132(-2)	132(-	.18425(-3)	.19453(-3)	.86663(-4)	1	(+-) + 00 .	
N	.96763	.36940(-2)	.35562(-2)	.12387(-2)	.93135(-3)	.15276(-3)	(8-)60/00/00	0.1040(-4)	(T) (T)
m	.99552	1	3362(-	.31369(-2)	.72758(-3)	.44021(-2)	į	()) ()	. TO24014
7	995	.44925(-3)	.90065(-3)	.44925(-3)	.21073(-3)	.44925(-3)	(S-)00/6T.	・キャンパン(トル)	/ tl / TtOtA・
Ä	- 16				() () () () () () () () () ()	/ 1 / 60 80 1	(3)38010	1	- 1
Н	.84172	<u> </u>	344(-	.33594(-4)	.19503(-4)	. L3(03(-4)	(C-)CONTA-	(\\t\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
(1)	.97214	<u></u>	.85277(-3)	.21194(-3)	.11754(-3)	12((0(-4)	(t-)0t6JT.	.4 LSOU()	(_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
m	972	.49156(-3)	441(-	.45278(-3)	7042(1		ーソカケー	(01)10101.
ℷ	98666	.15653(-3)	.71556(-4)	.16044(-3)	.15658(-4)	.16107(-3)	.49828(-)	.16107(-3)	(<-) +<) <t td="" •<=""></t>

$$G^{(k+1)}(t;\lambda) = -\{(\lambda+2k-1)tG^{(k)}(t;\lambda) + (k-1)(\lambda+k-1)G^{(k-1)}(t;\lambda)\}/(\lambda+t^2).$$
 (33)

Both approximations are again easily obtained and are compared in Table II.

TABLE II

$F=F(x;\lambda)$								
х	F	F-\(\hat{u}_2\)	F-Y(u _{c2})	$ F-\Psi(\hat{u}_{l_{\downarrow}}) $	F-Ψ(u _{c4})			
λ:	=8							
1	.85923	.88435(-3)	.10474(-1)	.10775(-2)	.27054(-2)			
2	.97513	.15229(-3)	.55286(-2)	.35956(-3)	.18162(-1)			
3	.99574	.22587(-1)	.26138(-1)	.23719(-2)	.41849(-2)			
4	99914	.85731(-3)	.22577(0)	.85731(-3)	.14138(0)			
	=15	07/07/0/	105)5(0)	7,0000(2)	10000/ 2)			
1	.85014	.21427(-3)	.19545(-2)	.13003(-3)	.13038(-3)			
2	.97579	.41616(-3)	.11051(-2)	.56756(-4)	.11922(-2)			
3	.99719	.62148(-3)	.19386(-2)	.37046(-3)	.88182(-3)			
4	.99968 -05	.31776(-3)	.20971(-2)	.31776(-3)	.24880(-3)			
	=25 .84644	.71744(-4)	.59943(-3)	.25405(-4)	.18419(-3)			
1 2	.97629	.14734(-3)	.35461(-3)	.12537(-3)	.17872(-3)			
3	.97029	.20748(-3)	.45913(-3)	.43588(-4)	.14348(-3)			
.5 4	.99984	.15087(-3)	.20138(-3)	.15980(-3)	.48919(-4)			
	=1.00	.17001(-37	.20130(-3)	•17900(-37	• 40313(-4)			
1	.84257	.41168(-5)	.31827(-4)	.30888(-6)	.19349(-5)			
2	.97699	.90464(-5)	.19873(-4)	.20117(-6)	:.19630(-5)			
3	.99845	.11062(-4)	.18600(-4)	.11585(-4)	.15303(-5)			
4	.99995	.38694(-5)	.32512(-5)	.30888(-5)	.34374(-6)			
	- /////	- 3007 1 77	- 3-7 7 7 7	- 300000 / //				

1. THE NEW INVERSE APPROXIMATION

Now in (4) let us consider the inverse problem of approximating x with an expansion in terms of u. Under certain conditions [See Whittaker & Watson (1963), Hill & Davis (1968), Bol'shev (1959) & (1963), McCune (1974) or Nagao (1973).] we can use Lagrange's inversion formula to obtain

$$x = x_n + o(\lambda^{-(n+1)/2})$$
 (34)

where

$$x_{n} = u + \sum_{r=1}^{n} (-1)^{r} (\Psi^{(1)}(u))^{1-r} (D_{u}^{r-1} \{ [F(u; \lambda) - \Psi(u)]^{r} / \Psi^{(1)}(u) \}) / r!$$
(35)

Equation (35) motivates the following definition.

<u>Definition 3</u>. Let \hat{x}_n be defined by

$$\hat{x}_n = u + \sum_{r=1}^n A_r(u) E_{r,n}(u;\lambda)$$
 (36)

where $A_r(u) = (-1)^r (\Psi^{(1)}(u))^{1-r}/r!$ and where $E_{r,n}(u;\lambda)$ is obtained by expanding $D_u^{r-1} \{ [F(u;\lambda) - \Psi(u)]^r/\Psi^{(1)}(u) \}$ and then substituting $\hat{D}_n(u;\lambda)$ for $F(u;\lambda) - \Psi(u)$.

The following theorem establishes the asymptotic equivalence of x and \hat{x}_n .

Theorem 2. If (9), (13) and (34) are valid, then

$$x - \hat{x}_n = O(\lambda^{-(n+1)/2})$$
 (37)

as $\lambda \rightarrow \infty$.

Proof: Expression (34) can be written as

$$x = u + \sum_{r=1}^{n} A_r(u) B_r(u; \lambda) + O(\lambda^{-(n+1)/2})$$
 (38)

where

$$B_{\mathbf{r}}(u;\lambda) = \sum_{i=1}^{k_{\mathbf{r}}} h_{i}(u) [F(u;\lambda) - \Psi(u)]^{P_{i}(1)} (z^{(1)})^{P_{i}(2)} \dots (z^{(r-1)})^{P_{i}(r)}$$
(39)

and where $z^{(t)} = F^{(t)}(u;\lambda) - \Psi^{(t)}(u)$, t = 1,...,r-1, $h_i(u)$ is a function of u independent of λ , and $\sum_{\ell=1}^{r} P_{i(\ell)} = r$. Now consider

$$F(u;\lambda) - \Psi(u) = F(u;\lambda) - \hat{F}_n(u;\lambda) + \hat{D}_n(u;\lambda) . \qquad (40)$$

Substituting (40) into (39) and simplifying yields

$$B_{r}(u;\lambda) = E_{r,n}(u;\lambda) + O(\lambda^{-(n+1)/2})$$
 (41)

Now (38) and (41) yield

$$x = \hat{x}_n + o(\lambda^{-(n+1)/2})$$
.
Q.E.D.

TABLE IV

	λ	.7500	.9500	.9750	.9975	•9995
t	10	.700	1.812	2.228	3.581	4.587
t _{c2}		.699	1.797	2.197	3.430	4.264
\hat{t}_2		.715	1.823	2.248	3.395	4.131
t_{c4}		.700	1.811	2.225	3.559	4.525
î ₄		.700	1.813	2.232	3.510	4.718
t	20	.687	1.725	2.086	3.153	3.850
t _{c2}		.687	1.721	2.079	3.119	3.777
\hat{t}_2		.690	1.727	2.090	3.109	3.744
t _{c4}		.687	1.725	2.086	3.151	3.842
î ₄		.687	1.725	2.086	3.144	3.861
t	40	.681	1.684	2.021	2.971	3.551
t _{c2}		.681	1.683	2.019	2.963	3.534
î ₂		.681	1.684	2.022	2.960	3.526
t _{c4}		.681	1.684	2.021	2.971	3.550
î ₄		.681	1.684	2.021	2.970	3.553
t	60	.679	1.671	2.000	2.915	3.460
tc2		.679	1.670	2.000	2.912	3.453
ŧ2		.679	1.671	2.000	2.910	3.449
t,		.679	1.671	2.000	2.914	3,460
£4		.679	1.671	2.000	2.914	3.461

5. CONCLUSIONS

Evaluation of the expansions u_{cn} or x_{cn} requires explicit knowledge of the first n+2 cumulants of $F(\ ;\lambda)$, when evaluating up to terms of order $O(\lambda^{-(n+1)/2})$. On the other hand, evaluation of \hat{u}_n or \hat{x}_n requires knowledge of the first k derivatives (see (11)) of $F(\ ;\lambda)$. From the results of Tables I - IV, we can conclude that \hat{u}_n , \hat{x}_n , u_{cn} , and x_n are very comparable in the sense of being good approximations. Hence, \hat{u}_n and \hat{x}_n may be valuable alternatives when the cumulants are difficult to evaluate as compared with obtaining the k derivatives of $F(\ ;\lambda)$.

ACKNOWLEDGMENT

Research for this paper has been partially supported by a contract with the Office of Naval Research, No. NOOO14-75-C-0439. Reproduction in whole or in part is permitted for any purpose of the United States Government.

BIBLIOGRAPHY

- Bol'shev, L. N. (1959). On transformations of random variables. Theory Prob. Appl. 4, 129-41.
- Bol'shev, L. N. (1963). Asymptotically Pearson transformations. Theory Prob. Appl. 8, 121-46.
- Coberly, W. A. (1972). On Edgeworth expansions with unknown cumulants. Ph.D. dissertation, Texas Tech. Univ., Lubbock.
- Cornish, E. A. & Fisher, R. A. (1937). Moments and cumulants in the specification of distributions. *Rev. Int. Statist. Inst.* 4, 1-14.
- Draper, N. R. & Tierney, D. E. (1973). Exact formulas for additional terms in some important series expansions. *Commun. Statist.* 1, 495-524.
- Fisher, R. A. & Cornish, E. A. (1960). The percentile points of distributions having known cumulants. *Technometrics* 2, 209-26.
- Gray, H. L., Coberly, W. A. & Lewis, T. O. (1975). On Edgeworth expansions with unknown cumulants. *Ann. Statist.* 3, 741-6.
- Hill, G. W. & Davis, A. W. (1968). Generalized asymptotic expansions of Cornish-Fisher type. Ann. Math. Statist. 39, 1264-73.
- Hill, G. W. & Davis, A. W. (1973). Algorithm 442, normal deviate S14. *Commun. ACM* <u>16</u>, 51-2.
- McCune, E. D. (1974). On Cornish-Fisher expansion with unknown cumulants. Ph.D. dissertation, Texas Tech. Univ., Lubbock.
- Nagao, H. (1973). On some test criteria for covariance matrix. Ann. Math. Statist. 1, 700-9.
- Riordan, J. (1949). Inversion formulas in normal variable mapping.

 Ann. Math. Statist. 20, 417-25.
- Whittaker, E. T. & Watson, G. N. (1963). A Course of Modern Analysis (4th ed.). Cambridge: Cambridge University Press, 132-3.