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CHAPTER I
INTRODUCTION

The one and two-way classification models with a covariate have been
treated from many points of view. However the question of the covariate
regression parameter changing from block to block has not been treated so
extensively. That such changes might occur is certainly logical. Granting
that "yield" might increase linearly with, say, temperature, it would not
be at all surprising to find certain blocks, perhaps materials, to be more
responsive to temperature than other blocks.

In the aﬂalysis of variance a single regression effect "costs" a
single degree of freedom. If the regression effects change from blgck to
block it will be necessary to estimate, or adjust for, as many regression
effects as there are blocks, say r. Thus the additional "cost" of block
regression effect differences is r-1 degrees of freedom.

As a tool in evaluating the adequacy of a one-way classification model
with a covariate, Robson and Atkinson [7] propose an individual degree of

freedom test for the homogeniety of regression coefficients. The same thing
can be done in the two-way model. And in a two way model with individual
regression coefficients in the blocks a single degree of freedom test can
be constructed to test for regression coefficient differences among the
treatments. An easy way to construct these tests is to mimic Scheffe's
motivation [8] of Tukey's single degree of freedom for non-additivity ([9].

If the model under consideration is Yij =y + ei + vj + wxij + Eij and



one is concerned that the coefficient P might be changing from block to
block, the procedure is to insert a non-linear term of the sort ¢vjxij into
the model. Then this expanded model is approximated by the linear model
L= U+ O, vy, F UK, .+ 6V
Yi5 =M 6 vy bx, ¢v

squares estimate of vj under the original model. It is then the sum of

j jxij + eij where Gj is the standard least
squares for the dummy coefficient ¢ adjusted for u, 6, v, and ¢ which is
used to test the adequacy of the original model. The fact that the test
is neither exact nor powerful does not keep it from being very useful in
the field of model building.

Granting that one has adopted a model with individual regression co-
efficients for the blocks and fixed effects for the treatments, one then
finds tﬂe literature preoccupied with eliminating the effects of blocks
and covariates in order to focus attention on the treatments. Much of this
work has been done by C. P. Cox [1l]. Noteworthy also is Zelen's adaptation
of this problem to incomplete block designs [10].

Traditionally a covariate has beeﬁ considered to be a nuisance factor
to be eliminated. Perhaps the covariate has been the victim of an unfriendly
press. If the covariate takes on a limited number of discrete values as in
Cox's first, second, and third units of time [1l] the covariate model is
actually a shortcut to a factorial analysis in which all effects of the
covariate factor other than linear effects‘are confounded. These effects
may be of great interest. Even when the covariate is uncontrollable, it is
quite possible that it is known. Of course if all experimental units show
the same response to the covariate, that is if Yij =u + ei + vj + wxij + Eij
then if high yields can be considered to be good, it takes no great mathemat-
ical caiculations to say "the higher the X the better" or "the lower the X

the better," and likewise, "the higher (or lower) the vj the better." But



when the regression coefficient depends on the block, the value of the
covariate can beéome quite important.

Consider three blocks with fixed effects (taken to sum to 0) of -1,
0, and +1. If their corresponding block regression effects (also taken to

sum to 0) are +1, 0, and -1 (that is, b, = -1 + X, b, =0 + 0X = 0,

1 2

b3 = 1 - X), then the question "Which block gives the highest yield?" can
be answered only if we know the value of X. Clearly, if the covariate is
less than 1, the third block will be preferred and if the covariate is more
than 1, the first block will be preferable. By taking the block regression
effects to sum to O the possibility of a large general regression effect
with the covariate has not been eliminated. That is, in the model

L. = + 0, + v, + x.. + ¢.x, .
YlJ H 1 J v 1] ¢J 1]

+ Eij the value of Y may be very much
larger than the values of the ¢j's. Then we would say "the higher the X
the better--but if X happens to be less than 1, try to use block three and
if X happens to be greater than 1, try to use block one." It is not diffi-
cult to see the usefulness of this sort of information which is based here
on some insight into the "true" parameters of the model. 1In our real world,
of course, we will have to estimate these parameters and we shall be interested,
not only in which estimated block effect is larger at any X, but in whether
these block effects are significantly different at any particular value of
X in light of the normality assumption made for the‘sij's.

Our interest in a significance level arises from an assumption of a
loss function associated with the choice of block. If blocks represent the
type of material it is logical to assume that some types are more expensive
than others. Even if they are all of the same price, keeping the materials

separated might be expensive and should not be undertaken unless we are

reasonably sure that the blocks are really different at some, if not all,



values of the covariate X (perhaps the temperature or humidity). This
thesis does not direct itself to any specific loss function; hence, it is
left to the practitioner to bridge the gap between the loss function in-
herent in the application and the significance level of the test.

Returning to the previous example, consider the block and regression
effects given above to be estimates rather than known parameters. That is,

A

let b1 = -1 + X, b2 = 0, and b3 =1-X.

N\

Mow the guestion to be answered is "for what values of X are blocks
sionificantly different?" Surely the point X = +1 will not be one of these
points, for at that point the block estimates are exactly equal. We shall
expect, intuitively, that the answer to the above question will be the real
line with an interval about the point X = 1 deleted. And if that interval
included the whole real line the answer would be that the blocks are nowhere
significantly different. The higher the significance level, implying that
there is a greater penalty for wfongly reporting block differences, the
Jarger we shall expect that interval to be.

The fact that the most conventionally constructed test for block differ-
ences is very capable of answering the above question, not with one interval,
but with two disjoint intervals (by saying that blocks are different every-
where along the real line except within those two disjoint intervals) is per-

haps the most interesting aspect of this thesis.



Knowing the values for X at which blocks are significantly different
enables one to know when it is worthwhile to be particular about blocks.
The estimates of the block effects tell which block to favor at any given
value ofIX. No consideration is given in this work to the problem of which
blocks cause the différence when difference results.

A test is sought, then, for a null hypothesis of "no difference

between blocks when X < xo" under the assumption of the model

=y + + + +
T T A R T

i=1, 2, *° , t; j=11 2, *** , x; Eij'\’NID(or 02) -

The yu, ei, vj, ¥, and ¢j are unknown constants. | represents a fixed mean
effect, ei represents a fixed treatment effect, vj a fixed block effect,

P a mean regression coefficient, and ¢j a block regression coefficient.

In the manner of other two-way models these effects are not completely
estimable and we will need to place three conditions on them. The usual
condition z ei = 0 is made to make the estimates of the ei unique. But
two more co:ditions must be taken to discern the vj + ¢jx effects from the
fixed mean effect yu and the regression mean effect YX. As usual we have

a great deal of choice regarding theée conditions. The criterion is generally
mathematical neatness, but in this problem the conditioné which result in
mathematical neatness complicate the parametric statement of the null hypo-
thesis. The conditions we shall use are 2 (x0 - x.j)q)j = 0 and

J
1
(v. + ¢.x . + ¥x .) = O where x , = =) X,. . Note that when x . = x .,
z 3¢ 0%y w'J) . tzi ij *J =l

5=
J
for all j and j' the first of these conditions simplifies to z ¢j = 0 and

J

consequently the second simplifies to Z (vj + x| = 0 . By defining

.)
3 J
Kj = vj + wx_j the second condition further simplifies to 2 Kj =0 .
3



This special case, X'j = X, for ail j and 3j’, shall be.presented
fully, not with the thought that this case will occur frequently in practice,
but rather to illuminate various theoretical aspects of the problem. After
full consideratiocn of this special case it will be shown.that the general
case follows by appropriate introduction of matrix multipliers.

It should not cause concern that in the general case the conditions

used to solve the normal equations depend on x

) The null hypothesis to

be tested also depends on % i.e., H v, + x. ¢, = 0 for all j wversus

0’ ot 3 073

Hy: vj + x0¢j‘# 0 .

When a statistic is found to test the hypothesis at ¥ = Xy that test
will be inverted to yield the set of X's for which the test would be rejected.
This test inversion will not vield a confidence set because the inversion
.does not extend to all aliternate hyvpotheses. For example, it finds prob-
.able values of X if vj + XBj = 0 but not if vj “+ XBj = J . A confidence
- set is of value when a parameter is wknown. In this problem the covariate,
X, is known and we are interested inétead in which X's will caﬁse differences
in the blocks. Hence, if xp is in the set, then we have reason to believe

that assignment of block will affect vield when X = %, -



CHAPTER II

THE SPECIAL CASE OF EQUAL

COVARIATE BLOCK MEANS

The least squares estimates of the block parameters are sought as
a basis for a test of their difference. The experimental model under con-

sideration can be written

L. = + 06, +, + B.r.a,., + .a, . . .
v U Gl K B.r.a Lprjal + e

ij J J73713 J ij
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where xij is the value of the covariate X in its original units and assuming,

for this chapter, the condition

for all j, j'

]
il
]

In referring to Chapter I, Kj = Uj + wx.j

of this reparameterization is to make Qj and éj independent. The purpose

and'Bj = ¢j . The purpose

of factoring (xij - x.j) into rj and aij is only to aid in analyzing sources
of variation after a test is derived.

7



Let

A= [a,.] = (a

i txr aq4r 22' §3r *ct ., Er) .

That is, the vector Ej has elements aij . Then let

a
1 o
2,
A = g
¢ .
a
L g‘rtXr
Let
B, N ®,
B, K2 %
Rexp = 429 F5) - By T a7 | fwa T
B ¥ x
) Z ¥i5 = reu + ) ] €ij
ij ij
23. Yig = mwor e 4 § BiaigTy v ¥ g 5% * § €13
g yij = tu + tmj + ; eij

2 2
X a,.y.. r, a,.0, +rp. +ry+ r, a
3 g ELER I Z 3% 7 T3Py T EY

i.Ei.
i 13 J 1]

Note that the conditions z ei = 0 and 2 Kj = 0 were used in forming the

above relationships, but the third condition ) Bj = 0 has not yet been used.



A A A ~ ~

Let B, 6, Kk, ¥, and p be the unbiased estimates of the parameters of
the model retaining the conditions restricting the parameters. That is

1'8 =0, 1'9 = 0, 1'« = 0. Then the normal equations become

1 ~
rtJZ—ul'
1 T SN |
21, ® 1)y =ul+ 8+ ZAR3 + ¢ ~ARL
lair e 1)y =ql +«
t =t r= = -
(1) RAd¥=RA§_+R§+Rw;|_.=RAQ+R[§+1pl_]
Solving:
(2) ra' (21, ® 1')- = Jly = ra'd + L rarar[s + ¥l .
r t -r rt = - r = -

Subtracting (2) from (1)

S R P TR I
RAly - RA'[Z(1! ® I )- =-Jly = [R" - ZRA'ARI(B + ¥1) .

Assuming the matrix [R? - %-RA'AR] to be nonsingular¥*

~ ~ -1 1 ,.,-1-1 o~ - .y .
B+ ¥l=[R(I-TA'A "R IRAY - RA'Z(I, 8 1)y]
and
1 ~ o o _1 -1 P A N § . _ 1
(I - ;‘J)[ﬁ +yll =8 = (I T J)[R (I T A'A) "R ](RAd[Irt r(It ® Jr)]) .

This is the first time the condition z Bj = 0 or 2 éj = 0 has been utilized,

and it is used here to eliminate Y.

~ 1., _d
k=g @ I)- & TpmptlY

*See Appendix.
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Joke that RA'IT -
Nete tnat RAd‘Trt

SR

- -~ - _]_'_ 1]
(Lt ® Jr)]AdR = R[I ” A'AJR . We assume

_ 5 ]
€41 v NIR(0, o). Hence,

8 n NI, 0°(T - 1

R

...]_ l - _l 1
J T - —A! - .
YR °( rAA) R (I rJ)]
Likewise,
K " Nk, 62 l{I - %-J)] .

4
L9

We shall be interested in block effects at x., so we seek the distri-

0
bution of Kj + 6-’(XO - x.j), and since x.j = x.j, r for all j and j', the
£ block effects at x_ is k + (x. - x, )8 . i =x -x,
vector of block effects at Xy is K (x0 x_J)g Ietting z) = X, x.j,
we seek the distribution of k + zog .

~ A

If the independence of k and B is not apparent from the manner in
which they have been ccnstructed, it can be easily verified by matrix

nmultiplication.

1 1
{ = - = .
(. ® 3 )17, ® 1) J 1=0

Aat - rt rtxr

ks
4 " rt

5|

Hence,

~

A 2 1 1 2
K‘+Z§'\JN(E+ZO§10(I';J)['EI+Z

0

-1 R -1.-1 -1 )
<+ zg R(I-=a% R NI -$9)
1
r

The matrix (I - %-J)Rfl(l - A'A)-lRfl(I - %-J) will, of course,
figure heavily in the solution of any problem involving block differences.

Some properties of this matrix are explored in the appendix.



CHAPTER III

AN EXACT TEST FOR THE HYPOTHESIS

IN THE SPECIAL CASE

In terms of the parameters of Chapter I where yij =y + ei + v, +
wxij + ¢jxij + eij' a statistic is desired to test the hypothesis that
vj + x0¢j = 0 for all j . In terms of the parameters of Chapter II, this
hypothesis becomes k., + (x. - x .) = 0.
yp j o .5 Bj

In the special case of equal covariate block means where X, - X . =

0] o |
xb - x.j, = zo + the null hypothesis of no difference between blocks can

be expressed parametrically as

Hg:

15
+
N

™
I

10

vS. Ha:

1A
+
N
™
S
10

From the work of Chapter II we see that

~ . 2 1 1 2 1
K+ 20§ v N[O, o (I - T J)(t I+ zoM)(I = I 1]

under under H, where M = R-l(I - %-A'A)_]'R_l . Thus under the null hypothesis

- o 2 1 1 2 1
K+ zog v N[O, o (I -7 J)(E-I + zOM)(I - ;-J)] .

To test the null hypothesis, then, we seek a statistic with a well
known (i.e., tabled) distribution under the null hypothesis and with
expectation under the alternate hypothesis dependent on (k + zog)'(g + zoﬁ)

or on (k + z,B) "Alk + z,8) where A is a positive definite matrix.

11
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Such a statistic is available since

—02 T(z,) = ——02 (g +2g8) ' [E T+ 25(T = Z M -~ 2] “(g + zyB) ™ Xr—l,x(zo)
where
= L vl 2.1 15,1
Mz, = 2 ( + 2gB) 'IZ T + 2g(I - ZIHMI - 291 (g + z,8) -

The matrix of this quadratic form is a nonsingular generalized inverse of
the variance matrix of the random vector g + zog .

To verify this distribution note that

R S S 2 N 141 2. _1 -1 21
(x rJ)[tI+z0M](I rJ)—(I rJ)[tI+zo(I rJ)M(I rJ)](I rJ)

and recall that when a vector

w*=(I—%ﬂy&N@,C{—%mvu-%J”

then

1 -1 1 2
k! * = —— W' (T -

5 W'V W | 5 ¥ (I
o 0]

K=

avta - %;J)Vg vy -1 .
r—lr‘E(H‘v "l;l)

ag

This statistic is independent of the mean square error so a true
F-statistic can be formed which will eliminate the necessity to know the
error variance ¢ or to estimate it from other information. The independence
follows from the fact that the sum of squares for error is constructed
orthogonal to those for x and those for § . Hence, MSE is independent of
any function of the ; and é vectors.

Having produéed a statistic which will test the hypothesis, we would
be satisfied if we were interested in only one value of X(or Z). But,
of course, we wish to produce a set of x's for which the null hypothesis

can be rejected. It is in this regard that the statistic T(zo) becomes

unwieldy.
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Note that if C
r—-1

of freedom, then we would be interested in solving the equation T(z) = 02C

for the z points at which T(z) equals the critical point. With those values

of Z we could deduce the set of points for which T(z) > czcr—l from the

continuity of T(z).

1 1 . .
Decompose (I ~- ;-J)M(I - ;'J) into eigenroots and vectors by letting

Bl =0
1 1 1 :
- - — = ' v = o sy
(T -Z9M1I -2 J) '2 YU Hg Hid, o =1 i=14
i=1
L] = L]
Bius, =0 144

Note that there is one zero eigenroot which corresponds to the vector

L.
Vr
Then T(z) can be expanded in terms of these same eigenvectors.
a ~ r-1 -1 . ~
T(z) = (¢ + zB)'(l.I + z2 2 Y_u_u!) (¢ + zB)
- = t jo1 17171 - -

A

r-1 -1
° 1 2 11 9 -
t 1 } T fo—_— 1] $
(k zg) iZl (t z 'i)EiEi t r 11 ) (g zB)

A ~ fr-1  y.u:
 +z8)'f ) —

l=lZ'Yi+—t-

(é + zé) since (é + zé)'(}}')(; + zé) =0

A e A "~ - - A 2/\ e e A
roloe'popik + 220ty piB + 2 By g8
2 1 :

i=1 ZYi+-'t-:-

Each of the r-1 terms is a ratio of two quadratic functions in z.
Hence, if r=2 there would be only one term and we could solve the equation

T(z) = czcr—l getting at most two solutions z . and Zgr 2 < 2 . We

cl cl c2

would need to check the magnitude of T(z) and any one point, probably T(O).

Without loss of generality assume that T(0) < ozcr . Then if O s(zcl, z

-1

c2

is a critical point for xz statistic with r-1 degrees

r-1

)
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Then

The discriminant

]
P )
10>
o1
1>
1
<
15>
1R3>
——
N
+
<
B
)
™
N
v
o

and

= i A'A=
zc 0 if K g o .

Hence, if @'é # 0, T(z) has two extreme points z < 0 < zc and the

cl 2

single extreme point 0 if é'é =0 .
If r=2, one of the extreme points yield a minimum of T(z) =0 . If
r > 2 it is doubtful that T(z) will actually attain O .

Then, if k'B > 0, T(2) has two real extreme points and we can sketch

the illustrative curves of Figure a.

Figure a.



And if lg'é < 0, T(z) will yield curves such as those of Figure b.

0
zZ >
Figure b.
. B'e .
And if k'8 = 0, the shape is determined by whether ¥ < tk'k or
g'8
tk'k < 5 See Figure c.

Figure c.
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In all of these figures a critical point for the statistic at any

. . 2
z. is the point (ZO' o C,

o _1). Thus a critical curve for the function T(z)

. . 2 . . .
would be a straight line ¢ C, .y units above the origin. Any horizontal
line which intersects any of the curves intersects it twice giving rise to
end points of a critical interval (z

8'8 cl
generality would be a line :;:-units above the origin in Figures a. and b.

+ 2 .). [The only exception to this

c2

which would produce a critical interval of the form (-, zc) or (zc,+m).]

Let QT be the set of z's such that T(z) > czcr . That is, if

-1

z, € QT r block effects are significantly different when 2 = =z Let U

0"
be the totality of points on the real line.

Then when Y; = Yy for all i, i', the set QT = (z ) or

cl’ Ze2

QT = | - (zcl' z . ). The synbolism U - (z

2 ’ Zc2) is used as shorthand

cl
notation for (=«, zcl)\J(zcz, +»), the union of two open-ended intervals.
No distinction will be made here between open and closed intervals which
shall be justified only by saying that T(z) = 02Cr_1 only on a set of z's
of measure zero.

The above reference to infinite values of the covariate occur only
for completeness in consideration of the function T(z). As in any regression
type problem, we are not justified in extrapolating our results beyond the
range of the covariate éctually covered in the experiment. We are even more
restricted in this particular model, and should not place much weight on
covariate values beyond the range covered in each and every block. Hence,
our interest in T(~) is as an unattainable limit point rather than an
asymptote.

Thus far we have considered only the situation when all the eigenroots

are identical. When the roots are different the situation is much more

complex. Let r=3 so that (I - %-J)M(I --% J), the covariance matrix of 8,
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has two roots Y. and Y2 such that Yl # Y2 . Then

1
Sy 2 Sy (R 2
(c'py)” + 2z2(c"y,) (B'y,) + 2 (8 El)
T(z) = 21
Y12 T
)+ 2z(l< 1) (B + 22 (@2
Yy = F2 by) (B'n)) £y
2 1
Y22 t ¥

If T(z) is set equal to a critical value the resulting equation is

of 4th degree in z. That is, we could have four values z

y 2., and z

1’ %2

such that QT = (zl, zz)L)(z3, z4) or U - [(zl, zz)LJ(z3, z4)l-

3 4

When there are three different eigenroots equating T(z) to a critical
value produces as many as 6 critical z's. Then the set QT could have the
form (zl, Z )L)(z ' z4 LJ(z ’ 26) or U - [(zl, zz)LJ(z3, z4)L}(25, z6)].
Likewise, when there are r-1 different eigenroots, there can be as many as

2(r-1) different critical z's.

Consider the following example.

Examgle 1. Let

2 1
g =1;r=3;t=5; Yy FRARD 1;
ui=—=-(1, -1, 0) ; ¥y = =—(1, 1, -2) ;
V2 V6
X .,.=%x,, , for all j, j' .

That is, this is an example of the special case of equal covariate block

means.

15>
|

,_(2/5—3/2_ 2/6 + 3/2 _/6_)
12 ! 12 ! 3

1T >
I
-

6+ 32 /6-3/2 _@_)
6 ' 6 3
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Let
A 2 A A " ) 2 2
L] 1 1 1
('p) + 22("y) B'yy) + (B'yy) 2 22 - 54 .25
Tl(z) = > = 5
2z + .2 220 + .2
and let
a2 + 226w ) (B'u) + B 2
= 2 = B 'R By = b z~ + 2z + 1
T,(2) = 2 = 2
z + .2 z + .2
Then

_ (L2 2
T(z) = T, (2) + T,(2) m(xz!x)g

where A = 0 when % + z8 = 0 since o2 =1.
The functions Tl and T2 each have the shape of a T(z) function with
idehtical roots as previously discussed; but their sum does not (see
Figure I). (The illustrations with Roman numerals appear in Appendix II.)
With a significance level of .10, i.e., o = .10; QT =U - (-.53, -.31)

- (.61, 2.4). The o = .10 critical line for Xi is shown on Figure I also.

The Tl(z) and T2(z) cruves can be individually compared with that line.



CHAPTER IV
INTERPRETATION OF EXACT TEST RESULTS

Not only is it difficult to solve.a problem for QT in this special
case of equal covariate block means when the eigenroots of the covariance
matrix are different, it is also difficult to interpret the solution.
(Such a solution is even more difficult to find in the general case, as
will be seen later.)

In an attempt to interpret QT , visualize r lines with intercepts Kj
and’ slopes Bj . Unless a set of r straight lines have exactly the same
slope they will become "infinitely" far apart as |z] approaches «®. So in
deciding how to answer the question "Are block effects different when
Z = zo?“ or "Are these straight lines different at Z = zo?", one must use
the magnitude of z, as part of the judgment criteria. The larger |z| becones,
the more difference between the lines it takes to be "surprising."

T(0) = té'é will be recognized as a test statistic for "block mean
effects." Likewise T(») = E'[R(I - %-A'A)R]é is the usual test for block
regression effects. It is essentially this test to which Cox [1l] refers.
In this problem T(~) is the value of the test statistic when Izl is so
large that the fixed effects, or intercept effects, Kj, are completely
"washed out." Of course, in practice, this point (2 = ) never occurs
because the upper and lower values of z at which T(z) is meaningful is
limited by the range of the covariate within each block in the experiment.

If T(») > 02Cr_1, i.e., © ¢ QT, then the r lines in gquestion have
"different" or "slighificantly di fferent" slopes. The r lines are

20
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restricted in the sense that the sum of their slopes is 0 and the sum of

their intercepts is 0. For examples with 4 lines, see Figures d. and e.

_— _

—

s

Figure 4. Figure e.

In Figure d, although the lines do not meet at a single point it

would not be surprising to find an interval about z, in which block

k

differences are uncertain. Whether or not that interval would include the

point z = 0 would depend on whether or not T(0) < czcr . T(0) will be

-1

recognized as the usual test for the k effects. Figures d and e have been

drawn with the same Kj values so that if T(0) < 02Cr in Figure 4, T(0)

-1
is also less than Gzcr-l in Figure e, and it would be logical to assume an
interval about 0 in which the lines would not be considered significantly

different.

Similarly if T(®) < czcr

-1 then the r lines will have approximately
the same slopes; and since the slopes are restricted to add to zero, the

lines will all have slopes very close to zero. See Figures f and g for

examples with 4 lines.

——
__—______.__--—-/ —_— +8
-8
\ . )
\

Figure f. Figure g.
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These cases are more difficult to evaluate subjectively because the
effect of Kj "washes out" as lzi increases.

If T(O) > 02Cr_l (perhaps Figure £) then there would probably be an
interval about 0 in which T(z) > 02Cr_1 . However if T(») < ozcr_l and
T(Q) < 02Cr_l (Figure g) it may be difficult to understand that there could
still be an interval (in Figure g in the region z < 0) in which the lines
could be considered significantly different. If this is so it is because
the lines spread apart faster than we would expect with regard to Iz[. Note
that the lines are farther apart at -§ than at +§ in Figure g.

Scale has intentionally been omitted from these figures to force
subjective thinking rather than mathematical manipulation. Certainly any
decisions must take scale into account. The purpose here is to suggest
that the logical systems for evaluating whether a set of lines are appreciably
different at 2 = 2z, relative to [zol give rise to single intervals of
difference (as in Figures f and g) and to complements of single intervals
of difference (as in Figures 4 and e).

Stated differently, let Qk be the set of z;s for which a set of lines
is considered to be different by some criterion k. If « ¢ Qk, z' ¢ Qk'

and z" ¢ Qk' then we would want Z ¢ Qk if z' <z < 2" . (Figures 4 and e.)

And if o ¢ Qk' z' € Qk, and z" ¢ Q then we would want z € Qk if

k'

z' <z < 2" . (Figures f and g.)
This desire for Qk to be of the form (zl, z2) or U - (zl, z2) arises

from placing equal weight on each of the lines, or on each contrast of

the lines since they are restricted to add to 0. And, indeed, QT is of this

form when Yi T Yge for all i and i'.

However, T(z) does not place equal weight on each contrast of the

Bj's unless Yy T Vi for all i and i'. Thus QT is not necessarily of the



form (z,, z,) or U - (z,, z,). Through the matrix
1 -1 1 -1 -1 1

(I =7 3R (T - ZA'R) "R (I - =J) the statistic places more weight

on the contrasts about which there is the most information. For clarifi-

cation, consider again Example 1 (page 18).

2/6 - 3/2 +‘/%'+ 3/2

In Figure II (Appendix II), the lines v, = B 3 Z,
2/6 + 32 5 - 6 6
v2 = 3 ]?3‘2 + 3 63%5 z, and V= ié—-— Z%-z are plotted. The

shaded area represents U - Qp+ the z values at which we cannot be certain
of block differences testing with a .10 significance level. Because of
the 2 Bj = 0 and Z Kj = 0 restrictions, the 3 lines of Figure I are redun-

A

In Figure TII, the two unrestricted lines W, = K'vl + B’ulz =

n
i
3

1A >

and w, =

o v, * E'Ezz = 1 + z are plotted. The region of U - -~ is again

L

jae)

shaded.

In Figure III, where the two lines are perfectly parallel, the
multiple QT—zone is particularly enigmatic as an answer to the gquestion
"For what values of z, considering ]zl » can wo and v, be considered
estimates of zero?"

It is understandable that when 0 is in QT points on either side of

0 might not be, due to the "washing out" of « with increasing [z

. But
that even larger values of |z! should indicate block differences is
difficult to accept.

The result is due, of course, to the difference in roots causing

more emphasis on w. as |z| increases.

1

The unequal weighting reflects the fact that we have more information

about E'E and é'gl than E'y and é'u- . Certainly this ability to

2 -2

concentrate on the gqualities about which we have the most information can

1

be a desirable property for a testing statistic. But when there is equal
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interest in each of the contrasts between effects this property may not be
so desirable.

In terms of power, T(z) would have highér power against alternatives
which make (E'El + z§'g1)2 large than against alternatives which make
(E'EZ + z@'gz)z large, whereas equal power against both of these types of
alternative hypotheses would be desirable.

If we could control the covariate Z we would have equal information
about each of the contrasts. When we don't have equal information, i.e.,
equal roots, we must consider whether we prefer a more exact answer to a
question we are only approximately asking or a more approximate answer to
the exact question we are asking.

Recall that when we first sought a statistic to evaluate block diff-
erences (page 11) the first choice was one with expectation dependent on
(k + zog)'(E + zog), and T(z) with expectation dependent on
(k + Z§)'[%'I + 22(1 - %’J)M(I - %’J)]_l(g + zB) was selected only because
the exact distribution of T(z) is tabled.

Let us look at a statistic with expectation dependent on

(E + z@)'(E + zg).



CHAPTER V

AN APPROXIMATE TEST OF THE HYPOTHESIS

IN THE SPECIAL CASE

As in Chapter III, a test is sought for the hypothesis which is
expressed parametrically as

Ho: K + z R = 9

vVs. Ha-

1=
+
N
o)
RN

~ . 2 1 1 2 1
|_<_+20§'\:N[|S+zoﬁ_3,c (I—rJ)(tI+z0M)(I-rJ)]

where

M=rTI@1 - %-A'A)'lafl
and

C oz = zgny
where

-l S

Hr><rt'_[t-]-'®lr rtlthr]
and
L= (I -=0)MRA'(I. - (I, ® =J1) .

r d rt t r r

Let

S*(zy) = (E + zoé)'(é +z8) = y'lH + zL]'[H + z Lly .

. 2
T(zo) is a central x2 under the null hypothesis. S*(z) is not a x ,
but it is "central" in the sense that yu'([H+z L]'[H+ z Llp= (k + zo8) 'k +2,8) =0

only when k + z 8 = 0, where u = E()_r) .

0

25
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Although S*(zo) is not recognizable as any single distribution, it

can be decomposed as a sum of independent x2 statistics. Let

r-1

[H+zL] [H+ 2z L] = 2 €.2.2;
0 J_==11.J.:.
 where
0. = 1
-1l=1 .
_&;&i.so i,

2,. being a vector with rt elements. Note that the rank of H + zoL is -1

- s0 only r-1 of the rt elgenroots are non-zero.

We knaw that the non-zero roots of (H + z L) (H + z, L) are ident;cal

to ‘the non-zero roots of (H + z L) (H + z L) '. And (H_‘+ zOL) (H + _zoL)' =

' ‘ 2 ‘ N : _1 s . 1 _
, _(I "r J.) [t I+ -ZO(I. er).M(I T J)I(x z J) . wh;,gh we recall from

T(zy). 1In the cgh_.éideraﬁion of T"(z_(} we let (H + z L) (H »+‘z°_L) ' =

r-1 o . o | »

z (-l- + zgy )u ' . Hence the set of (l + zgy )'s is identical to the

=1 ° '
2

set of g s and we shall use the notation -];- + zoy since it shows the

dependency of the roots on z, . -

Therefore,

r-1 2 ‘ r-1
S*(zy) = ¢’ g (g +,oni)&i&:§.]Ye = 1.2.1 (-— + ZOY )y' —i-1¥ :
where '
' 1 2 :
-E-X -1-12 y xl,l °
o i

That is, each -vof these r-1 terms is proportional teo a x2 statistic with
one degree of freedom and all are independent, That Ai = 0 under ﬁo' the

hypothesis that k + z8

That iS: U [2 5 2 2 ]u =0 => p'zl&i’ - 0‘ .

B = 0,' follows from the "centrality" of S* (zo) .
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. 2 .
Being a weighted sum of independent X statistics under H,, the

distribution of S*(zo), under H,, can be approximated by fitting the first

. 2 . s .
two moments to a multiple of a X statistic. Since

r-1
2 1 2
E[S*(ZO)] =0 g (E'+ zoyi)
S*(z In(z )
0 0
: 022(1'+ 22) ) n(ZO)
t " Yi%

where n(zo) is the number of degrees of freedom of the x2 statistic which

is being approximated. Then we wish

*
S (zo)n(zo)
Var = 2n(z.) ,
r-1 0
2y &y,
o L T T Y%
i=1
or

2

[n(ZO)]

* =
4[§(l.+ zz) 5 Var S (zo) 2n(zo) .
1LY T Yi%o
Now
r-1 . r-1
2 1 2 1.2_ 4
* = el Ty = =
Var S (zO) § Var(yiz0 + t)z &i&iz E (yiz0 + t) 20

r-1 r-1

4] 4 2 2 2 r-1

_ZG[ZOZYi+tZO Vit T2

i i

r-1

2 2
L 7+ P
i

= -1 2 -
2 1
[z (v 2 ¥ E{l
1



Hence
2 ?l +rﬂ.2 ;231 r-1
0 it 0 Yi T Tk
n(z.) =
0 rEl , 22 . 132 z4 er 5 . ) Eﬁ.er . -1
L W% T 0 Vi t L Y3 2
1 1 1
r~ =
22 rzl . -1 2
0 ; Yl t
= (-1 -1 2 -1 -1 2]
22 2 + r-l + 24 r—l z 2 _ 2
I o L Yi T ¢ 0 LYy LYy |
1 1 R
or
2- 1.2
(ZOY + =)
n(z) = r-1 t
0 o2+ 52, A= 2 '
ZoY T % ZotY 7Y
where
- 1
Y= (2 Yi)
and
= 1 2
Yo (z Yi)
Let
= -2
§=v -x

and since there are r-1 yi's all greater than O

2
(Zrﬁ)__ <142 < 1 Yi)z
2 2
2 (Zrii) <7< !z;;%)—-= (r-1)72

0<8§ < (x-2)Y .

28



29

Hence,

n(zo) < r-1

- ()2
n(z ) > r-1 =1
0 y2 + (r—2)\(2

n(zo) = r-1 when zy = O or when § = 0 . § = 0 corresponds to the case of

equal eigenroots. Let

S*(z )
S(z.) = 0
o~ 2- .1
of T &
Then
QL-S( ) n(zo) P2
2 0 r-1 Xn(z )
a 0
and
S(zo) = T(ZO)
when y, = vy,, = vy for all i and i' .

When the roots are equal both S(zo) and T(zo) give the same result.
When the roots are different, T(zo) becomes very cumbersome and can yield
results which are difficult to interpret. When the roots are different
S(zo) compensates by varying the critical point, the amount of compensation

2 . : .
dependent on 2 1\ and 2 Y which are, respectively the traces of the

matrices (I - % HR (T - %A'A)_lR_l(I - %:-J) and
(x-2orta-2an Ria-L01?.
h oy h oy Y

In order to discover the nature and extent of the S(z) statistic's

compensation for different roots, it will be necessary to examine the

r-1 2

X
n(zo) n(.zo)

function



CHAPTER VI
ANALYSIS OF APPROXIMATE TEST

The function S(z) has exactly the same shape characteristics as the
function T(z) when the roots are identical. That function is discussed
fully in Chapter III. However, the critical function for T(z) with

: . : . . . . 2 .
identical roots is a straight line with ordinate o C where o gives

r-1,a

the significance level of the test, whereas the critical function for S(z)

. . 2 - . ey

is the function ¢ K = 02 E.--l—-c . To analyze this critical
n(z) n(z) n(z)o

funétion let us consider the variation of C with n . The functional

n,o

notation showing that n is dependent on z will not be used here. From

the previous chapter it should be clear that n is dependent not only on
z but on r, t, and the values of the covariate X used in the experiment.
At this point attention should be focused only on the variation of Cn,a
with n regardless of how or why n might be varying. The notation "n(z)"

will be resumed later.

c is defined by
n,o

r

Cn [0
' 2.2
j g(xn) dxy = 1l-a .

0

The curves %-Cn versus n are plotted in Figure IV for seven different
significance levels. When o is small %-Cn decreases with n . When o is
very large %‘Cn‘increases with n . When o = .25 the function %-Cn is very
nearly a straight line. (Actually it is concave downward with its maximum

atn=2.) Nowif %-Cn could be well approximated by a constant, as is

30
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true for o = .25 and for other significance levels in certain ranges of n,

finding critical points for S(z) would be very easy. Note that the critical

function for S(z) becomes 02K = 02 -1 = 02C because if l-C is
n n n-1 r-1 n n
constant for all n we may use n = (r-1) and it is equal to ;%I Cr .

Hence if the desired significance level for the test is .25, as might

-1

be the case if the more serious testing error is to fail to recognize that
the blocks are different, that is, Type I errors are tolerated to decrease
the probability of Type II errors, then S(z) can be evaluated against the

. 2 2 . X
straight line ¢ Cr-l . Where S(zo) > g cr—l , the point z_ can be considered

to belong to the set QS , and where S(zo) < 02Cr

¢]

, the point z_ can be

-1 0

considered to belong to the complementary set U - QS .
Unfortunately the function %-Cn is not so well approximated by a

constant for small values of o, and when n is small the wvariation can be

. . . 1
considerable. To evaluate the amount of error introduced by using —— Cr

r-1 -1

rather than the correct %-Cn . Note that

2 1 2 1 2 1 1
o (r—l)H-Cn =0 (r-l)gzyC._q *to (r—l)[H C, - ;:I.Cr-l] .

For small values of o the quantity in brackets is always positive
since n < r-1, and it increases as n decreases. To find any bound on this
error it is necessary to find out how small n can become.

From a theoretical standpoint it should be pointed out that o values
of .50 or .75 will make the quantity in brackets negative, but the curves
are still monotonic and the maximum error would occur when n is at its
minimum value. From a practical point of view, it is difficult to imagine
any situation with such a large o where one would not be satisfied to

. r-1
approximate Y Cn by cr-l .
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In Chapter V it was shown that n(z) is bounded below by 1 . This
lower bound is not dependent upon the r, t, and xij's of the experiment.
When those factors are incorporated, a much higher lower-bound for n(z)
can be obtained. Ignoring the practical limitation which the xij's place
on z, a lower limit for n can be achieved by letting z approach infinity

since n(z) is a monotonic decreasing function of |z! . Note that

(z°y + 7 -2 -2
Limi ..
imit ooy o Limit o t = r-1 =Y = (-1
lz] » lz| > 2- 12 4 -2 =
(z'y+g) + z ¢ Yy +8 Y
That is
(1)
] i
n(=) = 5
Vi
where
r-1
- Sl et ol 2L
o y; str(f-ZIHR (X -TARA R (I-TI)
i
and
r-1
) Y?=tr[(I—lJ)R la - Iam™ R -0 .
S 1 X X Y
i
Hence,

1 <n(=) < n(zp) <n(z) <r-1 ,

where zp is a practical upper bound on |z| imposed by the values of X, .
used in the experiment.

Referring again to Figure IV, with small o the function Cn is a

(2)
monotonic decreasing function of n(z). So since n(z) is a monotonic

decreasing function of |z|, the critical function for S(z) will be a

monotonic increasing function of Iz‘ .
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The S(z) curve will be shaped as in the equal eigenroot case of T(z),

however, the critical curve for S(z) which shall be called 02Kn is not

(z)

. . . 2 . .
a straight line, as is ¢ Cr_1 . The curve o Kn(z) is symmetric and when

o is not large, it is concave upward being asymptotic to the horizontal

line represented by 02Cn(M) . See Figure i.

Figure i.

It should be pointed out that the critical curve is always symmetric,
bounded and asymptotic to the line corresponding to n(«), but its shape
need not be that of Figure i. The only exception to its being concave

upward (small o) or concave downward (very large o) is the case of a = .25

.

In that case, the curve will be bounded above by Cb where b is the maximum
of 2 and n(»). 1In other words, when using o = .25 if n(x) < 2 find an
upper bound for the critical function with 2 rather than n(®).

Since the critical curve based on a x2 statistic is virtually a
straight line when o = .25, the point may seem trivial. However, when 02
is not known and use is made of a F-statistic, the shapes show a little
more variation as the degrees of freedom for error change. The x2 statistic
discussed here is equivalent to the F-statistic situation with infinite
degrees of freedom for error. Obviously, unless the degrees of freedom

for error are very small, the situation will be similar to that illustrated
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in Figure i. The situation is discussed in Chapter VIII and is only brought
up at this time to warn the reader that the critical function for an 5(z)
statistic, though bounded, may not always have the same shape.

Solving for the points za'and Zy in Figure i, the intexsections of
S(z) and oan(z) can be done iteratively, since the intersections of S{z)
with any horizontal line are found easily. That there might be more than
two intersections is discussed in Example 3 below.

Consider a few example problems. Reconsider Example 1, previously

discussed in Chapters III and IV.

Example 1, Figure V.

2 . 1 - 3
o =.1,a=..10,r-*—h%,t=5,yl=§,y2=l,y=-5—,

vo.2.26 =_13 6_.@.3.,(_3.}2__4.
Vi T2 YT 0 TR TG 25 '
A ” g A~ g A, 2 /- ~ 2 2
(k + 28)"'(k + 28) = (ﬁ'Y] + z8 yl) + (E’YZ + z@'vz) =2z + 2z + 1.25 .
Let
”~ f\' ': A
(+28)'vy vy +28) .2 _ 54 .25
8,(2) = 5o 1 = 5
Zy + Y .6z + .2
and let
~ A" 'A A
(€ +28)'vpvple +28) ;24 5541
8p(2) = 7= 1 = 2 y
ZY+~ 062 +02
t
So that

(E + zé)'(é + zé)

222 + z + 1.25
=

S(z) = - = 8.(2) + s,(2)
zzy +%— .6z2 + .2 1 2
2= 1
n@ __BY*E 6zt + .2)?
r-1 2= 1,2 4 2

(%7 + 2%+ 2% (ea® 4 2% + L162*
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n(0) _
-1l 1
2
(.6)° + .16 -
n(1) _ 64 _ g
r-1 .64 + .16 °
n(:.5) _ L1215 _
r-1 ~ .1215 + .01 -925
C, .=cC =c n 3.4 K =l . N 4.9
n () 2(.693) 1. 386 n () n{®) n(x)
c = C =cC. _n 3.8 k  .o=-f1 o % 4.75
n(+1) 2(.8) 1.6 n(+1l) n{(xl) n(1l)
c =c =c % 4.3 K =1 . N 4.65
n(+.5) 2(.925) 1.85 n(+.5) n(*.5) n(*.5)
Catoy = €2 = 4.60 Ki0) = Cpe1 = 4.60

The component functions Sl(z) and Sz(z) are graphed along with S(z)
in Figure V only to allow comparison with Tl(z) and Tz(z). It is never
necessary to break S(z) into r-1 parts.

Although Kh(z)' the critical function for S(z), is not a horizontal
line through the point (O, Cr-l)' the error incurred in such an assumption

is small in this example. Let

12 '
s(z') = 02K o - 4.6 = 2z'4 + z' + 1.25
n .62'2 + .2
.
z' = L —l 250032 = 1.59, ~-.27
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") = = 4.9
5(z") =o Ko (o) 4 .,
gn oo L2015 Lo,
’ 1.88 e :

With only two calculations we determine that
(-.22, 1.29) C QS C (-.27, 1.59)

where the symbol Qs is used to represent the set of z's such that
S{z) > ¢ Kn(z) . Whether or not more precision is justifiable considering

the approximate nature of the distribution of S(z) may be subject to debate.

If more precision is desired in the upper end point of the interwval, cne

might solve for Kn(,l.ll) and S(1.4).
néii4) = 1.8;.39.615 = 753
“n(1.4y = C1.506 = 267 ‘ni.e T %?%%'= 4.88
s{l.4) = 2(1.9§31;6l;4.; =2 - .78 < Xn(1.9 = 488
and
S$(1.29) > Kn(l.29)
Hence,

(-.22, 1.29) C QS C (-.27, 1.4y .

In 2 similar manner any desired degree of precision can be attained

with regard to either end point of the interval of the z's which constitutes

Q. .
S
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Examgle la.

Assume now that vy, = %—and Y, = g-, maintaining the y = g-of
Example 1, but having a ratio of 1:2 rather than the more extreme 1:5
ratio of Example 1.

Then letting

2
$(z) =0 Cro1 = Cpm1

yields the same interval (-.27, 1.59). But

sl _ 9 1
25 25 25 '
so that
n(») .36 _ _ 2 _ 4.226 _
-1 - .40 = .9, C1.8 = 4.226, ¢ Kn(w) =—35 = 4.7 .
Setting
S(z') = 4.7, z' = -.256, 1.47 .

. 2 . . . .
And if z < 1 from theoretical or practical considerations, we

would look, not to n(») for an inner limit, but to n(*l).

02K = 4.66

n(xl) = s(z")
W 1% /1 ¥ 1.0125
z" = 1552 = -.262, 1.52 .

And due to 22 < 1, we would state only that z values greater than
-.26 or -.27 result in significant block differences. Greater precision

can be achieved, of course, from iteration.



Example 2. Figure VI.

2 1 1 3
0=l'r=5't_4'Yl Z'Y2=§-'Y3=Z'Y4=ll
= -2 =30 _ 25
Y =g § = 6a 6a = .078
ge -6 -1 E8=-3 .

Then if a = .25,

62'2 - 3z' + 1 _ 2

L = =
s(z") 5.1 0°C, ;5 = 5-385
8 4
z' = -.10, +1.24
"2 1))
6z 32" + 1 _ 2 1 4.534
s n — — — = = .
(z") 5 5 1 O Kie) = 7833 C3.33~ TLg33 - >4
8 4
z" = -.11, +1.26
U -(-.10, +1.24) ¢ 9, C U -(-.11, +1.26) .
And if a = .05,
s(z') = 6z'2 - 3z’ + 1 = o%c = 9.488
5 2,1 r-1,.05 ~ °°
8 4

z' = (-.50, 47.5)
s(z") = (-10.1, -.53)

(-10.1, -.53) €, € U -(-.50, 47.5)

Then if -zp <z < zp where zp is a theoretical or practical limit

on z and -10.1< -z < z < 47.5
P p

(-zs =.53) C 8 C (-z, -.50) .

38
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It has been assumed, thus far, that Kh(z) and s(z) intersect at only
two pointe. It should be clear that this will be the case unless the two
curves closely parallel each other where Kh(z) has the most slope. The

following counter example is given.

Example 3. Pigure VII.

B'8 =10, k'c = 4, €'8 = 0,

\ lOz2 + 4

S(z) v 2
22 4 1
2

5(0) = 12 ; = 12.
5{0) 2 Kn(O) 12.6
S{.5) = 14.2 > Kn(t{S) = 13.5

S(») = 20 < X

L = 20.2
n (=)

This is a valid mathematical counter example to a contention that
QS ﬁust be of single interval form, however, two practical points should
be made. First, the § value for this example is very, very high. This
means that the roots are very unequal, possibly 5 roots equal to .0925 and
one root equal to 2.54 . With this much difference in the roots it is
doubtful that the approximation of the distribution is wvery good. And,
secbhdly, little real error would be introduced in this problem by reporting

any %C?.q whatsoever.

Summary of the Special Case of Equal Covariate Block Means.

letting x.j = x‘ﬁ, for all blocks, 3',3 =1, 2, **+ , r, to simplify

the mathematics, we have found two tests, or criteria, for generating sets,
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Qk' of z values for which blocks are significantly different. By adding

x.j to all z values we form the sets of all x values for which blocks are

significantly different. That is, if .67 ¢ QT, then (.67 + x_j) € FT

And if .67 ¢ Q_, then (.67 + x ,) € T
: S 3 S

The sets FT and QT are found using the statistic T(z), a sum of r-1

fractions whose numerators would add neatly but whose denominators contain

the number \ which may differ from term to term; and T(z) ozxi_l

The sets I‘S and QS are found with the statistic S(z) which averages

the yi's, substitutes ; for each Yi and adds the terms. S(z) is approximately

2 r-1 2

distributed as o HT;T-Xn(Z)

, where n(z) is a correction factor based on

Izl, the differences between roots, and t.

Let us speak now of a third statistic, R(z), which equals S(z), but
R(2z) R czxi_l . Naturally this approximation is rougher than the one for
S(z) since we know that the first two moments do not exactly fit, unless
n(z) = r-1 . Then the sets QR and FR will be generated by R(z). The use
of the R(z) approximation derives as a simplification of T(z) by the
"unconscious" mathematical manipulation of averaging denominators to add
numerators. Likewise R(z) derives as a simplification of S(z) by letting
n(z) = r-1 . How good an approximation FR will be of PT when the roots
of (I - %-J)R—l(I - %-A'A)_IR—l(I - %-J) differ cannot be determined with-
out a great deal of calculation. But limits can be placed on the approxi-
mation of FR to PS by solving z' when S(z') = Ganm where n_ is the value
of n(z) which results in the maximum (or possibly minimum) value of Kn over

the range of z. [In general, the limit on the approximation is found by

letting S(z') = cth(w)

%
The sets PT' FS, and FR are obtainable from QT' QS' and QR only when
x.j = x.j, for all blocks. Finding FT, FS, and PR in the general case

requires some additional calculation.



CHAPTER VII

THE GENERAL CASE

1. Development of a Parametric Statement of the Null Hypothesis

As in the special case, the experimental model can be written as

(%, = %) (%, = %)
V.. =u + 0. + . +B.r. =) J + Yr, J J + e, .
1] 1 J J 3 ‘/ > J N ) 1]
(x.. - x.) ‘[x..-x.
z 1] *J k( 1] 'J)
2
'=l 2 e o0 . 7 = e o0 . = - - _
i=1, 2, P t; 3 1, 2, ' T; rj -‘/z(xij x.j) z 6i 0 § Kj

however, the Kj used here may appear to be different from the Kj of
Chapter II in terms of the paraﬁeters of Chapter I. That is, here
Kj = vj + ¢jx°j + w(x.j), whereas in the special case Kj = v, + P(x

However, since the special case uses the additional inestimable equation

iy

z ¢j = 0 to solve the normal equations, it should be evident that the
;revious Kj is, indeed, a "special case" of the Kj defined here.
When X = Xy the variation in E(y) from block to block is contained
in the expression Kj + (xO - x‘j)Bj + (x0 - x.j)w . From this expression
we can eliminate xow, since it is the same in all blocks, and for mathematical

convenience we add x_ ¥ . Then the expression incorporating all block

di fferences becomes

Ky ¥ (%, - x_j)Bj - (x_j -x, )0 .

41
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Let

Pj(xo) = (x5 - x.j)Bj - (x.j -x, )0 .

The notation Pj(xo) is intended to imply that Pj is a function of x

0’ not

a product.

r
By taking the inestimable condition E (x0 - x_j)Bj = 0 to distinguish

, J
block regression effects from the mean regression effect, we see that

r

E Pj(xo).= 0 . It should again be evident that the special case condition
j

) Bj = 0 is included in the condition ) Pj(xo) = 0 when L for all
] ]

[}

j and j°' .
2

As before éj =y -v.. and E N N[E' %?%I - %-J)]. Just as in the

*j
special case, we find that

i
r

1

a iy -1 YAy tat ___:!'_
B +9l=R(I - AA) "ALI-(I _®J)y .

Then
1 - o . T eas -
E(xo) = (I - ;-J)[xOI-dlag(x.j)](§4-lw)-[on-dlag(x.j)]g [(diag x_j) x,, I11¢
and
~ l . -~ .
B(xy) = (I - 2 3)[xT - diagx, )1} + 1)
from which we see that
PN A . 1
K+ Bx5) v N{E" R(x,), o (1 - % 7) (% T [on'diag(x'j)]M[xol_dlag(x'j”)(I-? J)}
where

M=RT(I - -i_—A'A)_lR_l .
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Let

on = (xOI - D)M(xOI - D)

or

2
WXO = xoM xO[DM + MD] + DMD ,

where D = diag(x.j). (Note that WX reduces to (x0 - x.j)zM in the special

0
case.) Then

A A : 2 1 1 1
+ + - = = - = .
K+ Bxy) v NIk + B(x)), 0 (I - Z 0TI+ on) (T - 79I
The hypothesis of no block difference when X = X, becomes
Hy: g + E(xo) =0
. : +
vs. H_: k +PB(x)) #0

2. An Exact Test

. 2 s . .
Again, an exact y statistic can be found to test this hypothesis.

1

-1~ 2 2
TI1 Tk Bx)T v ox

r-1,A

) Lt s pix1rit _1
;'Z"L‘Y(xo) = ;'2"[15 FRIIE T+ (T - T J)WXO(I
where

A= Sl ROIE T+ (T - 2o (1 -
20 0

|-

N1 e+ Blx)]

and A

0 under the hypothesis Hj .

Unfortunately when (I - % J)(Wx Y(z - %-J) is expanded in eigenvectors
0
the vectors are not independent of X, as in the special case. To emphasize
this point the subscript x will be used for the roots and vectors. The

functional notation \_ri(>_<) becomes cumbersome as does the retention of the

notation X, which has been used to emphasize'the fact that the test is



>
(=Y

made at a specific point and then the inquiries are made as to which X
values would cause the test statistic to be higher than some critical
function. Hopefully this point has been made well enough to allow the
terminology Vi and Y i to adequately communicate the idea that these
roots and vectors are dependent on a specific value of X at which the test
is to be made. Since

1 1 r-1
T-=HW(I-=0 =Y y_.v.v,
X X X i=1 X1-X1-X1

then

r-1 |v .v'

k +P(x)]' § l’il—-'—x—l—l [k + P01 .
i=1 yxi+—

L
42
t

»
It should be apparent that it is possible for Vi = Ygir for all i and i'
and for all x values only in the special case previously considered.
2
. ' .
Hence, solving for FT, the set of x's for which T(x) > ¢ cr—l,a

becomes a trial and error task which generally involves the inversion of

the matrix

1

S+ -%J)[XZM—X(DM+MD) + DMD] (I —-ifJ)

at each trial.

Recall that we cannot asspme that FT is of the interval or interval
complement form so that finding two end points of intervals in FT does not
mean we have found all of FT .

Obviously the Tystatistic has the theoretical disadvantages (resulting
from the uneven weighting of contrasts) that the T statistic was found to
have. But in addition, the detexmination of FT will be tedious and expensive.
If there was reason to seek a second test in the special case, there is even

more reason in the general case.
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3. An Approximate Test

Again an approximate test for the hypothesis

m
It
+
o]
e
M
N
H
o

o
jas)
y

A

<+ E(xo) # 0

can be formulated, which depends on [k + E(xo)}'{E + E(xo)].

Let

SP(x,) = [g + Blx)1'[c + Blx)] = y'[H + L(x )] 8 + Lixy)ly

where
1l 1
H = o 1@ (Ir - J)
and
L(x.) = (I - l-J)(x I - D)MRA'(T -~ [T @-5 J1 .
0 r 0 Td Tt t r r

E;(xo) is a central x2 under the null hypothesis. S;(xo) is not a

x2 but it is "central” in the sense that u'[H + L(xo)]'[H + L(XO)]E =

[k + E(xo)]'[E + g(xo)] = 0 only when k + E(xo) = 0 and again | = E(y).
.Like S*(z) the statistic S;(x) can be decomposed as a sum of indepen-

dent x2 statistics. Iet

r-1
[E + Lixy)1"[H + L(x))] = izl Sxitnitxi

where

o, =1 i=i
=X1-X1 '



As in the special case we note that the r-1 non-zero &

1
tical to the non-zero (E-+ yxi)'s, thus

r-1

P _1 1l
H+Lx) IH+Lx) 1" =T@-S )+ (I-ZDW_(I-23 =] (

0 i=1

WxO = (on - D)M(XOI - D) .

Hence,
r-1 1
%* = ' 4+ = '
Sy =y g Oai ¥ Vit |Y
and
1 oy o 2
TR AL S ST
03 1

where}ki = 0 under the null hypothesis.

46

. 's are iden-
xi

1
+ — ]
xi T YxiVai

As before the distribution of S;(x) under the null hypothesis can

2
be approximated as a factor times a ¥ with m degrees of freedom. Now

2 ri'l 1
E[s*(x)] =0 (v, + )
! =1 =t
and
Var[sy(x)] = 20 Y (Ypi + %)2 .
So
B i?(g)m(x)l = m(x)
o E‘Y“‘xi + D
and we wish to choose m(x) such that
Var| S (x)n(x) = 2m(x)

2¢- 1
o E(Yxi + D

’



or

m? () 202 N O

+
= 2m(x) .
o [ ]

L2
=

Thus
-1 1 2
. = - 1.2 - 1.2
z (Yx1 t) vy +3 ] y_ + 2
i X t X t
m(x) = - ) = r-1|— ) — = = r-1{— 15
+ = - + 397 +
Yoty +l)2 (y 2 Ty )J vy, + O 8
: X1 t
i
where
_ =_l___r§1
Yx r-1 £ YXl
i
- =__l__r§1 5
Yx r-1 & Yxi
i
= -2
S = Yx T Vx
0 <8 < (r—-2)—2
- X% Y *
hence
l<m(x) <rl .
ILet
S" ) = 'Sq_(—g—)—i' ’
+ -
Yx t
then

A N r-1 2
02 Y m(x) Xm(x)

recalling that
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[c + P(x)1'[k + P(x)]

1y , S_y(x) = - - L
Yx t
= ' i =
S'(x) ‘T_r(x) only for those x's, if any, such that Vi = Vi for

all i and i' . Now

4 - 1 1
= - = - = >
_(r.-v!-l)yx trace of (I - = J)WX(I -9 70
1 2 1
= tr(I -;J)[xM-x(MD+ DM) + DMD] (I -—r-J)
= xz tr(I -%J)M - 2x tr(x - %J)MD + tr(I --i—'J)DMD .
let
T o= A% FAx+ A
x 2 RS R s
where
1 1
Az =23 tr(I - ” JyM
2 1
A= - e(@- M
1 1
)‘o =9 tr(I - J)DMD ;
and
~ . 1
P(x) = (I - -;J) (xI - D)Gy
where
I ¢ _i ' ' ._.!'_
G=R (I p” A A)Ad[I = (It ® Jr)]
P(x) = x(I —-J=J)G - (1 -—1-J)DG
< X) = X o X = Z .
Let

1
I, = (I -<3)6y
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and
Eo = -(I - = J)DGy
thus
E(x) =Elx +_I£0 .
Then
2,\'/\ A' ~ A ~ ~ ~ ~
XM, + 2x (M + ) + (L) + )" (L + «)
(2) S}x) = .

2 1
XN, + XA +_(>\o + D

When S#x) is expressed in the first form (1), it is difficult to see
how values of x affect the value of S#x). However, in the second form (2),
it'is apparent that SJx) is again a ratio of two quadratic functions in x.

Again S#x) is continuous and has at most two extreme points, although
those two points can no longer be expected to lie on either side of 0 as
with s(z).

Looking at §%£§L it can be seen that s¢x) takes its "shape" from the

~

sign of Q =_A1Eigl - ZAZﬁi(ﬁo + é) rather than simply from - E'é as in the

9S8.(x)

special case. If Q > 0, then . > 0 for very large values of Ix] which

implies that S(x) has a maximum to the left of its minimum.
{x) 1 D)

AZ -1-1

Likewise, if Q < O,

) ‘ gt
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; - R 1 - Y <) =
And if Q = O, an§A2I£1I£1>A N @, + k) (ILO+5)—S_’;0)

1
0"t

S‘v( x)

A R
LM+ k)
X, = "<
1)
St

Similarly, if Q = 0 and S%w) <,S¢O), S#x) is again symmetric about X

but concave downward. It will be noted that
v'G' (I - %~J)Gy

lim lim
S'Y(oo)=x—)-cos\r‘x)=z—)-oosy(z)=s‘y(°°)= )\2 ’

again the test for regression effects to which Cox [l] refers.

However, S%O) is not the test statistic for fixed effects. 1If
x.j = x.j, for all j and j', then S;X,j) would be equal to S(0). Thus
s¢x) is shaped much as S(x), and can be easily solved for its two inter-

sections (if any) with any horizontal line. The general critical function

2 r-1 2

X is not, however, shaped as the critical function for the
m(x) “m(x)

special case. In the special case, n(z) decreased monotonically with Izl
1 . . s . .
so that when H-Cn was monotonic with n, the critical function was monotonic
1 . .
with |z| . Here the functions o G, are the same, but m(x) is not unimodal.

Recall that

2
1 1 1 2 1
(;IzYxi+€ +Fi2Yxi‘(r_—T2Yxi)

where Z Yyi and X Yii are the sum of roots and sum of squares of roots of
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the matrix (I - % J)[sz - x(MD + DM) + DMD) (I - %-J). These roots will
vary with X and certain X values will produce more unbalanced roots than
others. In order to evaluate the variation of m(x) with X it will be
necessary to rewrite m(x) in a form which incorporates the functional
dependence of the roots on X. This can be done by noting that the sum of
the roots is the trace of the matrix and the sum of the squares of the
roots is the trace of the square of the matrix.

1 - 2
r-1 Z Yxi B Yx = XZX + >llx + AO

where the AO' Al' and kz are defined for establishing the second form (2)

of S%x). Now

1 2 = 1 1 1
r-1 2 Yi = Yx T =1 tr(1 r J)Wx(I T r J)Wx
2
Wx =X M - x(MD + DM) + DMD
= 1 1 2 1 2
y. = ——tr(I-=J)[x"M-x(MD+ DM) + DMD] (I == J) [x"M - x(MD + DM) + DMD]
x r-l r ‘ r
Let
(1 - —l-J) =T
X

= 1, 4 3 2
Y, = ;l{x tr TMIM - 4x~ tr TMIMD + 2x" [tr TMTDMD + tr TMDT (MD+ DM) ]

- 4x tr TMDTDMD + tr TDMDTDMD} . .
Thus

== 4 3 2
Y =X ¢4 + x w3 + x wz + x¢l + ¢0 R
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where

1 1 1 .
¥, = =3 trl(T-Z DM -= D] Vs

4 1 1
r-1 - '——tr[(I-—r- J)M(I—;J)MD]

r-1

- 2 1 _1 21 L1
b, = poa ) {trl(z - JYM(I - J)DMD] + tx[ (T = JYMD (T ” J) (MD+ DM) 1}

<=
=
It

4 1 1 - _1 _1
1 tr[(I—I_- J)MD(I--r-J)DMD] Yo = o7 trl rJ)DMD(I ~ J) DMD]

Then

2 1,2 2, .4 3
[Azx +A1x+xo+ t] where g(x) = (¢4—A2)x +(¢3—2A1A2)x

2, 1.2
DA x4+ T Hg (%)

m(x) = r-1
+(P,=A A —)\2)x2+(1p A2 ) x+ (U +A2)

27270 "1 110 00
We note that m(x) is the ratio of two expressions which are 4th degree in X.
As such it can have four distinct critical, or extreme, points. It is
bounded above by r-1 but it is difficult to establish a useful lower

1

r- r-1 2
. i > .
bound Since % Yxi < % Yxi) for any x, we know that m(x) 1 It

was shown in Chapter VI that o = .25, the critical function is insensitive

to changes in m(x) and the lower bound m(x) = 1 may be adequate to bound

r-1
m(x) Cm(x)

m(x) and hence bound and hence bound TS’ the set of x's for which
blocks are significantly different. But when o is small and there are a
large number of blocks, the m(x) = 1 bound may well be too low to be of
value. The m(x) = 1 result is equivalent to the extreme case of all roots
equal to 0 except one. That any value of X could cause this sort of dis-

tortion of the matrix Wx becomes more and more unlikely as r, the size of

the matrix, becomes larger.
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Although it is not in general a lower bound, it can be pointed out

that m(«) = n(x). That is

2
lim .AZ
x mo) = r-1 11'——
> 4

where

1 1
' Az = 73 tr(I " J)M
and

1
1P4 = -r—_-l-tr[(l - —J)M] .

This should not be surprising since as x becomes increasingly large any
x.j.subtracted from it would become immaterial.

Hence, m(x) is asymptotic to m(~») and the corresponding critical

2 r-1

n(e) ©

function is bounded by Gzcr—l and asymptotic to o () The function
m(x) can have a minimum lower than m(~), though it will be greater than 1.
A great deal of effort can be expended finding the intersection of the S#x)

function and the critical function. Consider an example.

Example 4.
5 1 501
r=3,t=6,0 =1, a = .05, ——274-060
105
0O 0 O
1 .1 Mo 2
X150 Xy =30 X355 diag(x,;) =0 3 ©
0 O -l'
2
Then
1 1 1 -1 L 5
'AZ = Etr(I-'S'J)M 5 trﬂ2_01 + = 33" .208

(1 0 -1) (1 -2 1)
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2 1 .
2 1 o _l_ - - ;L__ _
)‘l =-3 tr(I-3 J)MD = -tr 28 (_02) +(12) = a8 = .0208
(0 0 +1) (0 -2 -1)

- 000
=1 1 Lo, L p-1 .
Ao =3 tr(l - 3IDMD = S tr o= (I - 3 J)(g g g) = 355 = -0382

2
b, = -0452 b, = A, = -00174
= -.0174 - = -,
vy 017 by = 2N, 0087
v, = .0318 by = 2 A, + 2] = .0163
¥, = =.00232 ¥y = 2\ A, = -.00073
— _2—
¥, = -00163 Yy = Ag = -00017
. o= -2 4 3 2
8§ =y - ~°=.00174x - .00864x" + .0163x° - .00073x + .00017
X X X
2 2
2(.208x° - .0208x + .2049)
m(x) = 2 2 2 3 2
(.208x° - .0208x + .2049) “ + .00174x - .00864x" + .0163x" - .00073x + .00017

The function m(x) is plotted in Figure VIII (Appendix). We see that
m(0) is very close to r-1, that is, 2 . This is because the x.j's of the
example sum to 0 . The curve is asymptotic to 1.92 . However, the minimum
value of the curve occurs between -1 and -2 . This means that X values
between -1 and -2 cause the roots of the Wx matrix to be relatively
further apart than any other X values. Such a plot may be disconcerting

but its effect on the problem at hand, i.e., the finding of T can be

s/

very small.

. : -1
In Figure VIII, above the m(x) curve, are the z curves for

nx) m(x)

o= .05 and o = .10 . Since 02 is taken equal to 1 in this example, these

are the critical curves for evaluating §(x) at the .05 and .10 levels,
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respectively. When o = .10 the total range of the critical function is
.012 units, and clearly it would be much less for a = .25 . When o = .05,
the range is .24 units. Eveg‘if a = .05, this slightly undulating critical
mmdmmwnmcwwawmd&mtmwm.

Consider the following values for the estimates of the parameters

which comprise s#x). Let

i

Gy = MRAL(I_ - [I_® ZJ1y-= (+(i)

~ ) -1
i,=@-2ney=[0o] §,=-0-3a0ey=2|-1
-1 3°7°= =0 3 Y =8
+2
1/2
A— A'A =‘].:- A'A—--3— A'A___]:'
£ (1/2) Ig=5 Lik=-3 DLIk=-3 .
then
nglnl + x[2H (H + K)] + (H o+ K) (H + K)
S#x) = T
x>\2+x_)\1+>\0+€
and
22 - 2% + 2
S(x) = 3
o 4 2

.208x -~ .0208x + .2049

in Example 4 (see Figure IX).
2
As a first step in finding FS we find FR by equating S}x) to o Cr—l

for oo = .05 .

2%'2 - 2x' + .667
.208%'2 - .0280x' + .2049

' = =
S%x ) 5.992
(Recall that r-1 = 2 .)

x' = 2.76, -.27
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Noting that S#O) < 5.99 and .27 < 0 < 2.76 we state that

To = U -(-.27, 2.76) .

PR is an upper bound on FS in the sense that FS<: FR . Note that
use of PR means that the true a-level for the test is more than the stated

.05 level.

A second step toward finding PS would be to solve S%x") = (r—l)C1 .

Again, o = .05 .

2 n2 _ " .
sgx") = X 2x” + .667 = 7.68
.208x"2 - .0208x" + .2049
x" = 5.05, -.45
' Lower Boundm(x)=1 = U =(~-.45, 5.05) .

The fact that this lower bound is not close to FR means that it will
be necessary to find m(-.27) and m(2.76). Knowing that the interval found
by using m(x) = 1 is a very poor limiting value, we can expect the true
set, FS' to be close to PR .

Finding the values of m(-.27) and m(2.76) requires the determination of
ﬁuawo, wl, wz, wa, and ¢4 values. Had they not previously been determined

in order to plot Figure VIII, it would be necessary to find them at this

time.

m(-.27) = 1.94
m(2.76) = 1.97

) 2x2,- 2x + %i
S§¥) = 7757 C1.94 = 6-00 = 2

.208x° - .0208x + .2049

x = (-.27, 2.77)
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This result would be sufficient, in most cases, for us to state
that T = U -(-.27, 2.76) .

Figure IX shows the critical curve for Example 4 for o values of
.25, .10, .05, .025, and .01 . These are presented in order to show the
relatively small amount of difference in the a-level which would result
from using FR as an approximation to Fs . However, this is admittedly
only one example and a great deal of work can be done on the matter of
finding a realistic lower limit for the critical function. It must be
remenbered that if the eigenroots of the M matrix are all near zero except
for one, the critical function could rise very nearly to 02(r-1)Cl .
Hence, it would be very desirable to find a quick and easy lower limit for

the critical function in terms of the matrix M and the diagonal matrix D.

At this point it can be said only that the use of the critical

2 r-1
m(x) m(x)

. 2 . . .
function ¢ Cr seems to give very good approximations to ¢

-1

unless the M matrix has only one root appreciably different from zero.



CHAPTER VIII
UNKNOWN VARIANCE

When the error variance 02 must be estimated from the experimental
data, an F-statistic can be formed with iéx) and MSE, or an approximate
P-statistic can be formed with S}x) and MSE.

Both Qéx) and S#x) are independent of MSE, since the matrix of the
quadratic form of SSE is orthogonal to the @, @, and é functions of the
yij's from which TY(X) and ST(x) are formed.

T#x), being a true Xi—l , can be used to find a true F-statistic,

namely
_ TSx) /r-1
Fp(x) = use ™ Fr-1,rt-2r-t+1,)
where

=1 L -1 L1t
A=l F BT AT - W (T - 2] Ik + B0

Everything that was said about T#x) can be reiterated for FT(x) .
Unless conditions for the special case hold, the calculation of each point
of FT(x) will require inversion of an r X r matrix. The power of FT(x)
will be greater against some specific alternate hypotheses than others, as
determined by the eigenvectors and eigenroots of the matrix of the quadratic
form.

At the cost of knowing the exact distribution of the statistic, these
faults can be corrected by formulating, with S#x), an approximate central

58
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F-statistic under the null hypothesis, namely

m(x)
F (x) = S}X) r-1 / mix) - 5{x)/r-1 +
s - - ' MSE m(x) ,q
MSE
where
g=rt-2r -t +1 .

As in the consideration of SJx), the two values of x (if any) at
which Fs(x) equals any critical value of an F-statistic can readily be
found. However, the critical function for evaluating Fs(x) is not a
horizontal line although it may be nearly so in most cases. To consider
the variation of the critical function with x, it is necessary to consider

the variation of the critical points of a F-statistic with v,, the numera-

ll

tor degrees of freedom; and the variation of the numerator degrees of

freedom v, = m(x) with x .
Define f by S F = 0 . Note that C = £ . We have
Vllq f\)l'q V19 n - n,®
considered the variation of fv » With v in Chapter Vi. It was found
ll
that fv » Was a monotonic decreasing function function of \i for small o,
1I
and a monotonic increasing function of v for o larger than .25 . When
o = .25 the largest value of £ is found at v, = 2 .
V1,® 1

. . 1
In Figures X, XI and XII, values of fv a are plotted agalnst-;— .
1/ ' 1
It will be noted that the slopes of these curves are "quite constant," the

variation being in the same direction as before when v2 = g is not small.

When xb is 1 or 2, the critical function actually increases with V The

1
constant slopes of these curves indicated that linear interpolation should

be done with f%—rather than with U
1
Having established that the critical function for Fs(x) will be

generally monotonic with m(x), the only exception being a = .25 with a
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large number'of degrees of freedom for error, attention is again focused
on the variation of m(x) with x . In the special case of equal covariate
block means, m(x) is monotonic with lx - x.jl  so that limits can be
placed on the critical function by m(x) and r-1 . However, the same prob-
lem of finding a lower limit for m(x) in the general case that was dis-
cussed in Chapter VII occurs here. When o is small, the critical function
will reflect the shape of the m(x) curve. The closeness of FS to

fm(x),q

FR can be established only by solving, iteratively, for the intersections

of Fs(x) and fm(x),q . Consider an example.

Example 4. (Continued from Chapter VII).

r=3, t =6, 02 unknown, MSE = .60, a = .05

2x2 - 2x + .667

.208x2 - .0208x + .2049

s}x) =

Fy(x) = s(x)

20.6) oy Fx) ,rt-2r-t+1 nder Ho

fr—l,rt-2r--t+1 - f2,7 =4.74

To find FR solve Q}x) 1.2(4.74) = 5.69 for x; this yields

x = -.24, 2.57 . Hence, FR = U -(-.24, 2.57).

Next find m(-.24) and m(2.57) .

2[.208(-.24)2 - .0208(-.24) + .20491°
[.208(-.24)2% - .0208(-.24) + .20491% + &

m(-.24) =
-.24

S_ 04 = .00174(-.24)4 - .00864(-.24)3 + .0163(-.24)2 - .00073x + ,00017



Then

m(-.24)

1.94,7

s#x)

m(2.57)

1.97,7

s#x)

]

2(.2219)°

(.2219)2 + .0014

4.76

1.2(4.76)

2(1.524)2

= 1.94

(1.524)° + .0353

= 4,75

1

1.2(4.75) = 5.70

U -(-.24, 2,56)

solving, x = -.24
_ 2(2.32) _ .
= 536 - 1.97

solving, x = 2.55
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CHAPTER IX
EVALUATION OF THE TESTS

It is desired to find a test for block differences for an experimental
model which has block effects with a fixed portion added to a regression
portion.

. 2 2,

In looking for a test one turns naturally to a X test when ¢ is

2 . . .
known or an F-test when ¢~ is estimated. To study the variation of the
test statistic with the covariate, the matrix of the quadratic form is
expanded in eigenvectors.

. ~ ~ 2
-q LI E(x)]'\_rxi}

4 - L N X
5 TAx) = 02 z 1 r-1

+ —
o i=1 Yxi Tt

It is noted that the numerators of the fractions would add nicely to
[é + E(x)]‘[g + E(x)] , but with unequal Yxi's in the denominators of the
fractions such an operation is not permissible. Clearly an upper limit
on T{x) could be found using the minimum Yxi and a lower limit would
result using £he maximum of the Yxi's . This assumes, of course, that the
yxi's are known. The temptation to average the Yxi's would occur to an
applied person who had not been too thoroughly influenced by the mathe-
matical quest for exactness.

The applied mathematician might very well average the Yxi's to get
an approximation of T{x). Then if he were asked "Does your approximation

2 .
of B{x) have the same critical point (or function) ¢ Cr_l?" he might say
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"Only if the Yxi's are exactly alike, otherwise I hedge a little. That
is, where the Yxi's are very different it takes more to surprise me at the
same a-level. However, in all honesty, if I have no reason to believe the
roots are very different, I just go ahead and use Ozcr—l M

The statistic

r-1

2
n(x) ‘m(x)

sfx) = [ + B(x)1'[ + B(x)] 4

where

(E Yxi i Eil)

(2 Vi * 1_-_;_1_)2 + (-1 ] Yf{i B (z Yxi)2

does’ the averaging and hedging with the mathematical justification of
fitting a multiple of a central x2 with a certain number of degrees of
freedom. With this justification for what the applied mathematician might
do instinctively, the test is found to be insensitive to differences in
roots when o is large. When o is small, checks (finding the wo, wl' w2’
w3, ¢4, and hence m(x) values defined in Chapter VI) are tedious, but not
nearly so tedious as solving Tﬁx) = 02Cr_1 for x .

The expansion of T(x) has another result. It shows that the Tyx)
statistic is weighting the various contrasts of the block unevenly as we
have more or less information about them. Granting the general wisdom of
such a move, if we are equally interested in all of the blocks, T{x) is
not really telling us what we want to know. That is, T{x) gives an exact
answer to the approximate problem at hand. S%x), on the other hand, gives

an approximate answer to the exact problem at hand, which is more in 1line

with the desires of the statistician.
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The T{x) test is uniformly most powerfuliagainst a set of alternatives
which may not be of particular interest. Of interest in regard to this
point is work by Reisch and Webster [6], Scheffe [8] and Hsu [4]. The re-
direction of power offered by s#x) should more than compensate for the
errors incurred by the approximate nature of the test.

The B#x) test which is the Séx) statistic evaluated against the
critical function of T{x) is a further approximation. R}x) is a very good
approximation of S#x) for high a-levels and seems to also give good results
when o is low. R#x) has the further intuitively appealing characteristic
of always yielding a set of X values for which the test is significant
which is of the interval or interval-complement Fform.

The test Réx) and the resulting set of X values, FR' are simple
and practical tools which should find use in industry and in the social
sciences. They are well suited to the large o situations in which one is
particularly concerned (worried) about not recognizing block differences
when they occur. The usefulness of these tools in scientific research
would be increased immeasurably with a lower bound for m(x) when the co-
variate block means are not equal and with some study into the closeness
of the approximating distribution.

Although this work has been developed for a two-way classification
model with a covariate, it is equally valid when the treatment effects are
0. Theﬁ we are talking about comparing simple regressions based on t
replications from r different sources and the M matrix is diagonal in that
case.

Work is currently being done by the author to extend these results to
compare multiple regressions from different sources. 1In these cases, the

S-type statistic addresses itself more directly to the problem at hand than
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does a T-type statistic, and it will greatly simplify the problem of
finding sets of points for which the test is significant. However, there
may be a numbexr of other cases in which one would rather not accept the
unequally weighted contrasts of the conventional sum of squares for re-
gression test. Armed with some facts about the closeness of the approxi-
mations it is possible than one might wage war on many fronts against the

wide-spread use of é'(x'x)é to test the effects of § when y = xR + € .



APPENDIX I

THE MATRIX (I - = 3)(I - =a'a) Y - L 9
Y X b oy
The matrix (I - l-J)(I - l-A'A)_l(I - l-J) where A = [ ] and
r r r = L85 exy

3

X,,. — X ,
=21 ") here (qx)j ‘/L(xi. - x,.)2  occurs in this work as a
B A N

a, .
ij (ax) 3 ] °3J
special case of the matrix (I - %-J)M(I - %-J) where M = Rfl(I - -li_'--z-\'A)“lR_l

and R is a diagonal matrix with jth element (qx)j . If the covariate values
are controllable, the elements of R can be expected to be made very close

to the same values. In Cox's example [1l] the covariate values in each

block are the digits 1, 2, 3, *++ , t so that R would be the constant

times an identity matrix.

‘/t (t+1) (£-1)
12

. -1
The R matrix is clearly nonsingular so the nonsingularity of M
1 . . . .
depends on the matrix (I - ;-A'A). Singularity of this matrix could
result only from A'A being of rank one. This follows from the positive

semi-definite nature of A'A and that its trace equals r .

X X

lLet l'-A'A = 2 A.v.v! , then (I - —l-A'A) = E (L - A,)v,v! , where
r +o1=-1-1 r i=1 i =1-1

z_ki =1 and 0 < Ai < 1 for all i. Hence the only way to produce a O-root
i
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1
of (I - ;-A'A) is for one i to be equal to 1 and the others to be 0. 1In
t
Z ai.ai,.‘ =1
i 13 J

for all i and i' . In other words, each éj vector, with elements aij' is

2
that case l-A'A = lv,v! where v,. = 1/r for all k. That is,
r -i-1 ik

identical to all other Ej' vectors, or to their negative value. Symbolically,
A= (g, -a, -a, a, --; ’ §). If this were the case, one linear function

of gj's and y would be hopelessly confounded with one linear function of
treatments, thus accounting for the singularity.

If the covariate is uncontrollable, such an occurrence is most im-
probable, and if the covariate is controllable the situation will be
avoided.

One desirable case of singularity should be noted here. If A'A=J
th?n ¥ will be confounded with treatments leaving the Bj's estimable. Such
mathematical neatness is only possible if the covariate is controllable,
and only desirable if there is no interest in examining treatments or mean
regression. |

Under the above very rigid restrictions the A matrix could be written

as [diag(ai)]Jtx or A= (a, a, a, a, *** , a) where the elements of the

r

vector a are a; - Then equation (3) of Chapter II becomes

I~ =
L2y L3l Yi5
i i j
i 1 i j 1 "
w : -7 : =w (I - ;’J)(B + 1)
Y ay, la, LY.,
| 5 ifir i 13 {

where
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and
1, 1 .=~
Sfa' @ (I -3y =8
variance
2 2
~ - g 1 a 1
+ = —(I - — —(L - =
K+ 28 = (1 rJ)+c_2_(I = J)
Hence,
~ o 2,1 1. . 1
._<_+z§_mN[5+zg,o(t+a~;5-)(1-rJ)]

when A'A =J and R = I .

Assuming (I - %~A'A) to be nonsingular by design or happenstance,
one need be wary only of near singularity when the primary eigenvector of
the A'A matrix, that is, the.vector corresponding to the largest eigenroot
is not proportional to 1 or nearly so. To clarify this point consider

first a desirable A'A matrix of the following form.

(1 o p p o]
p 1 p p p
1
= 1
ol LI PP
pp p 1 p
p o p o 1
Then
1 1 1 1+ (r-1)p .7 e
SRR = (1T + ppd = = (211 + ] TR vy
b oy b e Y X - . by -1-1
i=1
where

v!l =0 for all i

Yi=

and
viv,, =1 ifi=1i"'
=-1-1
viv,, =0 if i # i’
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Then

(r=1) (1-p) 1
) r r -

IA=

—
1
H|=
]

and

Loyl —r 1 S
(T =72 " =hHam F il Zl r-(1-p) Yi¥%

1 1

Lya-1L 1
Y r

The full matrix (I - A'a) (x - %-J)then becomes
r-1

I ooy uy -
i=1 P

The matrix has r-1 identical eigenroots of magnitude ;:7§i57- .
These roots are between 1 and %EE-resulting in a trace between r-1 and
(r—l)2

r-2 '

That is, even a p value very near 1 does not destroy the balance of
the covariance matrix although it makes the I - % A'A matrix very nearly
singular.

However, this property is lost if the A'A matrix is of a form such as

(1 - - -p-]
1 - 1 p o
r|=-p o 1l o

- p P 1

Then

(-1111)
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And
-1
-1
N R r 1 g r '
(T -7AD "=y =\ 1 ¥ izl r-(1p) -i-i
V111
1
r rp 1 1
r-(1-p) (r-1) (1-p) [r-(1-p)] |xr\ 1
V1111
The (I - l-J)(I - l-A'A)—l(I - l-J) matrix becomes
r r r
r 1 r2 1 —i
'r"'_"'(_l_p)' (I - ;J) - (E_ ~ l)(l ~ l)[£ _(-]; B 1)] (1 - ;J) 1 (I—
o plp p \p 1 (-1 111)

The roots of this matrix are not balanced and the trace of this matrix is

(r-1)r r2 - (rf2)2

S EEAE ]

In this form, it is apparent that the trace of the covariance matrix can

be made as large as anyone chooses by making ¢ very close to 1 . If ¢ is
very close to 1, the primary eigenvector of the A'A matrix would be
L 111
r
These two illustrations of near singularity are presented to aid the
reader in understanding the types of A'A matrices which will yield un-
balanced eigenroots and large trace values for the covariance matrices of

block regression effects. It is these conditions which will cause the

tests for block effects to give poor results. By way of summary, these

R =

J)
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conditions are near singularity, caused by a nearly degenerate A'A matrix,
unless the primary vector of the A'A matrix is proportional to a vector

of +1's .

1

r

1

Furthermore, the r-1 eigenroots of the matrix (I - %J) (1 - =2a'n)"

x(I - %—J) are all greater than 1 . To prove this point let

N
s

r
1 -1
Q= (I-2AR) = | L

where 0 < )‘i < 1 and hence 0 < 1-xi <1 . That is, Q has r roots greater

than 1 . Then

Note that

1 .
I:l'ki - ]> 0 for all i .

Hence, Q-I is a positive definite matrix. It then follows that

(r - %—J) (0-1) (1 - %J) is a positive semi-definite matrix with r-1 posi-

tive roots and one zero root corresponding to the eigenvector L 1.
Vr
Therefore,
r-1 -
(I-29@DE@--3=0211"+ § npu
r r r - = . i-i-i
i=1
n, >0
i
r-1
1 1 1 1 . .
- = -= - - = =0 = + !
(I-2D@QET -2 -@-33=0-11 Tongugu!

i=1
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r-1 L
1 1 1 1
- = - = +=J = = ' '
(I-SD@@-23H+ZT=-11"+ .Zl (1+n)p.pt
and
r-1 .
(I—-];J)Q(I-—:LJ)=Z (L + n, )y, u) and 1+n,>1
r r =1 i'5i5i i *

Hence, (I - %J) (x ™ A'R) -l(_I - %J) has r-1 non-zero roots all
greater than 1 . 2And if R=wI, then (I - %J)M(I - % J) has r-1 roots
all greater than L .
w2
With this lower bound on the roots and the upper bound furnished by
the sum of the roots being equal to the trace of the matrix, we can often

be assured of a high degree of balance among the roots without actually

finding them.
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CHARTS AND GRAPHS

73



74

I RNDIA

% M)
i

£,

z- €- -
IIAIIII! -ﬂ
(2) N.H v
o 8
9oL *z=01 "= o
4
.“ﬂvs
mom.wnoH %0
4




75

FIGURE II.

o \ s
/ o
¥ L
Koo 4
R .
FANL ) ;"
4 S o
PR A A Y f
P, & S o
O AE i, Gt S \
A £y 4 A /
: 3 . P, & 3 yav.
I 4 ’ i Ry -~ 4
P A \ )
SN S S S
< ¢ R P y
N e,
. / ) . ;

[0 LLLLKLL L

FIGURE III.

N




76

1T

Al DNOII

=N L



77

A EaNOI1dg




78

oT+

6+

8+

L+ 9+

S+

P+

*z ordwexg

*IA FENOI1A

8-

—

6~

oT-

ot

¢t

vT



79

‘¢ ordwexx

TTIA HENDTIA

<« 2

(1

(A

¥l

9t

81

oc¢



80

TIIIA HINDTIA

g+ T+ 0

Hl_

Nl

(x)w

6°T

u
o ot G)w,y BT

T~

0T = (u_(x)u
4

<+ (X)u



81

°p mﬂmﬁmx.m

*XI JENO0Id
<~ X
OT+ 6+ 8+ L+ 9+ S+ P+ &+ ¢+ T+ 0 - <~ €= v- G- O-
+ + + 1 ¥ + +- 3 " + * + + ¥ " +
e (X)W (X)W
0 Z §¢T =1
(x) (x)u ,
X)u
Oz~ "ol =9 \
T ur I .
e ()8, K BT

[4

(x)u

(xX)w

2 Gg0" =0

[4

(xju_ (x)u

° 7z

0T



>

19

18

17

16

15

14

13

12

11

FIGURE X

o =

.05

82



>

70 4

60

50 ¢

40

30

v, =5
3 .4/ o = 10 ——

\’2 st

- = ® Lot e
2 .//Cvz
1 4
0 ' - e e
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

83

FIGURE XI



84

(]
(= ~
X 0 i B 1
N N
B . >
i 0 -
5 g
H 3
[ w 9
mff
1
!
o
~ —~
y
/ o 1
v IR BN
2
o I
= . |8
oN
RN |
.v2 o~
e
. X . N . /
+ g 4y 4 1 T v L
—~ o Q r~ uwn < ™ o —
— —
4y

1.0



[1]

[2]

[3]

(4]

(51

[6]

[71

(8l

[9}

(10}

LIST OF REFERENCES

Cox, C. P. (1958). "The analysis of latin square designs with
individual curvatures in one direction," J. R. Stat. Soc. B.,
20, 193.

. (1958). "Experiments with two. treatments per experimental
unit in the presence of an individual covariate," Biometrics, 14,

Fleiss, J. L. (1971). "Testing for equal slopes in a randomized
block design with covariances," Biometrics, 27, 225-228.

Hsu, P. L. (1941). "Analysis of variance from the power function
standpoint,"” Biometrika, 32, 62-69.

Johnson, P. O. and Neyman, J. "Test of certain linear hypotheses and
their application to some educational problems," Statistical
Research Memoirs, (University of London)l, 57-93.

Reisch, J. S. and Webster, J. T. (1969). "The power of a test in
covariance analysis," Biometrics, 25, 701-714.

Robson, D. and Atkinson, G. (1960). "Individual degrees of freedom
for testing homogeneity of regression coefficients in a one-way
analysis of covariance," Biometrics, 16, 593.

Scheffe, H. (1959). BAnalysis of Variance. New York: John Wiley and
Sons, 46-48, 130-134.

Tukey, J. W. (1949). "One degree of freedom for non-additivity,"
Biometrics, 5, 232-242.

Zelen, Marvin (1957). "Incomplete block designs," Biometrics, 13,
320.

- 85



UNCLASSIFIED

Securitv Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing annctation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) B N T TR T T
UNCLASSIFIED
SOUTHERN METHODIST UNIVERSITY 2b. GROUP
UNCLASSIFIED

3. REPORT TITLE

When the coefficient of a covariate changes from block to block.

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report
% AUTHOR(S) (First name, middle initial, last name)

Elinor S. Pape

6 REPORT DATE - 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
November 18, 1971 85 10
8a. CONTRACT OR GRANT NO. 98, ORIGINATOR'S REPORT NUMBER(S)

~N00014-68-A-0515

b, PROJECT NO.

042-260 108

c. : 9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report) .

d.

10. DISTRIBUYION STATEMENT .
This document has been approved for public release and sale; its distribution is
unlimited. Reproduction in whole or in part is permitted for any purpose of the
United States Government.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

13. ABSTRACT
When in a two-way classification model the block effects take the form
v, + ¢.xXx where v, and ¢, are unknown constants, j =1, 2, ..., ¥ where r is the
ntmber) of differént bloaks, and X is a known covariate (measured without error),
a test for block differences will be a function of X. Clearly, if X = 0 a test
for block differences would test differences in the v,. And if !Xl is infinitely
large, block differences would be caused only by diffdrences in the ¢j.
.t oL, + e,
J J 1] 1j
The u, Gi's, vj's, Y, and ¢j's 3=1,2, ..., x; i=1, 2, ..., t) are unknown

. The model in question might be written as yij = U + ei + vj + wxi

constants and constraints are placed on the ei's, vj's, and ¢j's. xij is the value
. . , .th .

of the covariate X corresponding to the ij outcome, yij' xij is assumed to be

measured without error. The ei.‘s are realizations of random variables assumed to

be distributed normally and Jindependently with mean 0 and variance o2,

Utilizing this normality assumption and standard least squares techniques, a
statistic can be constructed to test block effects which will have an exact x2 (ox
F when 02 is unknown) distribution. This statistic is a function of X and is termed
1
To(x). ——= T (x) vx2 . .
Y o2 Y r-1

Continued on additional sheet.

DD 5V..1473 (Pace 1)
INCLASSIELIED

S/N 0101-807.6801 Security Classification




UNCLASSIFIED

Securitv Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annctation must be entered when the overall report Is classitied)
1. ORIGINATING ACTIVITY (Corporate author)

2a8. REPORT SECURITY CLASSIFICATION

*Continuation Sheet UNCLASSIFIED

2b. GROU

P
SOUTHERN METHODIST UNIVERSITY UNCLASSIFIED

3. REPORT TITLE

When the coefficient of a covariate changes from block to block.

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report
5 AUTHORI(S) (First name, middle initial, last name)

Elinor S. Pape

6 REPORT DATE 78, TOTAL NO. OF PAGES 7b. NO. OF REFS
November 18, 1971 85 10

Ba. CONTRACT OR GRANT NO. fa. ORIGINATOR'S REPORT NUMBERI(S}
N0O0014-68~A-0515

b, PROJECT NO. 108

042-260

c 9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report)

d.

10. DISTRIBUTION STATEMENT
* see previous sheet

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

OFFICE OF NAVAL RESEARCH

13. ABSTRACT
(Continuation from previ us sheet.)

Efforts to solve TY(X) = C for X, i.e., efforts to find the X values for which
the hypothesis would not be rejected at any particular level of test significance,
reveal that T (x) places different weights on different contrasts of the blocks.

In an effort to weight all contrasts of the blocks equally, a second statistic,
S (x), is developed which has the same mean and variance as a multiple of a x2 stat-
istic with a certain number, m(x), degrees of freedom. That is
1 . =1 2
) —

;E'Sy(x) m(x) Xm(x)

The statistic Sy (x) appears to have higher power against general alternatives
of interest than does TY(x). The equation Sy(x) = C is more easily solved for the

values of X such that Sy(x) = ¢, always yielding a set of x's which is a single intert}
val or the complement of a single interval on the real line. The fact that
r-1 2

0 Xn(x) is a function of X and not a constant causes little practical difficulty

r-1

. = 2
since m(x) Xm(x)

is a close approximation of xi 1 in many cases.

Hence, S (x) is recommended as a test statistic for determining whether or not
blocks are significantly different at any particular value of the covariate X.

DD SV.1473 (Pace 1) UNCLASSIFIED




