DIVISION OF MATHEMATICAL SCIENG

Southern Methodist Umverslty e
~Rallas, Texas 75275 .~

et e Rl

THEMIS SIGNAL ANALYSIS STATISTICS RESEARCH PROGRAM

APPROXIMATE DISTRIBUTIONS FOR LARGEST AND FOR SMALLEST OF A SET
OF INDEPENDENT OBSERVATIONS

by
John E, Walsh

Technical Report No. 10
Department of Statistics THEMIS Contract

Department of Statistics

Southern Methodist University
Dallas, Texas 75222



THEMIS SIGNAL ANALYSIS STATISTICS RESEARCH PROGRAM

APPROXIMATE DISTRIBUTIONS FOR LARGEST AND FOR SMALLEST OF A SET
OF INDEPENDENT OBSERVATIONS
by
John E., Walsh

Technical Report No. 10
Department of Statistics THEMIS Contract

September 18, 1968

Research sponsored by the Office of Naval Research
Contract NOOO14-68-A-0515
Project NR 042-260

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

DEPARTMENT OF STATISTICS
Southern Methodist University



APPROXIMATE DISTRIBUTIONS FOR LARGEST AND FOR SMALLEST OF A SET
OF INDEPENDENT OBSERVATIONS
John E, Walsh

Southern Methodist University*
ABSTRACT

Consider n independent univariate observations with possibly
different distributions. Let Xn and X1 denote the largest and
smallest observations, respectively, while F(x;n) is the arithmetic
average of the cumulative distribution functions for the individual
observations. Approximate expressions, also sharp upper and lower
bounds, are developed for P(X < x) and P(X1 < x) in terms of n and
F(x;n). These results are applicable for P(Xn < x) when x is such
that n[1 - F(x;n)] < 1, and for P(X; s x) when nfF(x:n) < 1. The
approximate expressions are reasonably near the bounds if n[1 - F(x;n)]
< .25 and nF(x;n) < .25, Relative error is less than one percent if
n[1 - F(x;n)] < .17 and nF(x;n) < .17; then, P(Xn < x) > .83 and
P(Xl < x) < ,17. All possible distributions and all n=> 1 are allowable.
Suitable estimation of F(x:n) provides estimates of P(Xn < x) and
P(Xl < x). In particular, for continuity in pertinent tail of F(x;n),
asymptotic distributions are often obtained and the problem is
simplified to estimating at most three parameters. Approximate
confidence regions and tests are obtained for sufficiently extreme upper
and lower percentage points of F(x;n). Also, for continuity in the
pertinent tail, approximate tolerance intervals using Xn or X1 are
developed for F(x;n). In addition, tests of F(x;n) = Fo(x),completely

specified, are developed for x in the pertinent tail,

* Research partially supported by NASA Grant NGR 44-007-028.
Also associated with ONR Contract NOOO14-68-A-0515.



INTRODUCTION AND DISCUSSION

There is often interest in whether the largest observation of
a set of n independent observations is unusually large, or the smallest
observation is unusually small., Quite accurate approximate probability
expressions can be developed for relations of this kind, even though
the distributions for the individual observations can be arbitrarily
different and all n > 1 are considered.

More specifically, let Xn and Xl denote the largest and smallest
observations, respectively. Approximate expressions are developed for
P(Xn < X) and P(X1 < X) that are very accurate if 1 - P(Xn < X) =.,15
and P(X1 < x) < .15. The expression for P(Xn < x) is a function of
n[1 - F(x;n)], where F(x;n) is the arithmetic average of the
cumulative distribution functions (cdf's) for the individual observations.
The expression for P(X; < x) is a function of nF(x;n).

Generally, sharp upper and lower bounds are developed for P(Xn < x)
in terms of n and F(x;n). The lower bound depends only on n[1 - F(x;n)]
and, for the situations of principal interest, this is approximately
the case for the upper bound. The approximate expression is about
halfway between these bounds for the situatiohs of principal interest.
These results are applicable only for x such that n[1 - F(x;n)] < 1.

The bounds are quite far apart for n[1 - F(x;n)] = .75 but only
moderately far apart if n[1 - F(x;n)] < .5. They are very close
together when n[1 - F(x:n)] < .15.

Similarly, upper and lower bounds are developed for P(X1 < x) in
terms of nF(x;n), the approximate expression is about halfway between
the bounds for cases of principal interest, and these results are
usable only if nF(x;n) < 1. The properties of the bounds are quite

similar to those for Xn.



If F(x;n) could be suitably estimated for x such that, say,

n[1 - F(x;n)] < .2, then BX < x) could be estimated in this range,
Likewise, if F(x;n) could be estimated for x such that nF(x:n) < .2,

then P(X1 < x) could be estimated in ;his range. Unfortunately,

estimation of F(x;n) by the empirical cumulative distribution function of a
usable set of observations (average of their cdfs approximately

equals F(x;n) in the pertinent tail) provides a discontinuous

estimate of a step-function nature., Moreover the set size should

be very much larger than n if this kind of estimation is to be meaningful,

Estimates of a continuous nature can often be obtained when n
is quite large and Fix;n) is continuous (or very nearly so) in the
pertinent tail, First, consider the case of X . Approximation of
loge[l - F(x;n)] by an expression of the form - ax + b, (a > 0), or one of
the other two forms occurring in an "asymptote" of X, for the sample
case (for example, see Gumbel, 1958), should often be possible., Use
of one of these three forms of approximatioﬁ reduces the problem
of estimating P(Xn < x) to estimation of two or three parameters.

A weighted type of least-squares procedure is developed for estimation
of these parameters,

Similar considerations apply to Xl when n is large and F(x;n) is
continuous in its lower tail. The three forms of approximation to
logeFTx;n) are those occurring in an "asymptote" of X1 for the
sample case, The parameters in the form of approximation used can
be estimated by a least-squares procedure similar to that developed for

X .
n

The cdf F(x;n) plays an important role for investigations
involving order statistics of sets of independent observations (also

see Walsh, 1959). Thus, investigation of its properties can be of



interest. Several kinds of procedures are given for investigating
F(x;n) in a specified tail,

Extreme upper percentage points of F(x;n), also extreme lower
percentage points, can be investigated by use of Xn or Xl, respectively.
One-sided confidence intervals and tests are easily developed when
Fix;n) is continuous (or very nearly so) at the percentile considered.
These intervals and tests have rather accurate probability levels
if the upper percentage points correspond to values of x such that
F(x;n) = 1 - ,2/n, and the lower percentage points to x such that
F(x;n) < .2/n. Even for percentiles this extreme, the probability
levels are only bounded, instead of rather accurately determined,
when F(x;n) is discontinuous at the percentile considered.

One-sided tolerance intervals for F(x;n) can be obtained
using Xn. or using Xl. Continuity of Fkx;n) in the pertinent tail
is assumed and the lower bound values are used for the probabilities
of the tolerance interval relations.

Finally, tests are easily developed for the two null hypotheses:
F(x;n)z F (x),completely specified, in the upper tail; F(x;n} = F_(x)
in the lower tail. Tests for the upper tail use Xn, and tests for
the lower tail are based on Xl.

It is to be noted that a distribution exists such that Xn is the
largest order statistic for a sample of size n from this distribution.
Also, a distribution occurs for which X1 is the smallest value in a
sample of size n, The cdf corresponding to X, is the geometric mean
of the cdfs for the separate observations. The cdf corresponding to
X, is unity minus the geometric mean of the probabilities of exceeding
x for the individual observations. However, their multiplicative

definitions result in obscure interpretation of the properties for



these distributions, except when they can be approximately expressed

in terms of F(x;n), Also, distributions that are not easily related
arise for different order statistics. An additional advantage of
expressing the results in terms of F(x;n) is that the distributions for

X Xl and, in fact, all of the order statistics can be expressed
(approximately) in terms of n and F(x;n) for most situations.
Moreover the probabilities in excess of .80 for Xn and less than
.20 for X1 are determined with good accuracy when F(x:n) is used.
The following section contains the bounds and approximate

expressions for EKXn < x) and P(X1 < x), along with some derivations,

Least-squares estimation of parameters for the asymptotic distributions
is considered in the next section., Then, there is a section devoted

to confidence intervals and tests for upper or lower percentage

points of F(x;n). The next to last section is concerned with tolerance
intervals for F(x;n), and the last section contains tests of whether

F(x;n) equals a completely specified cdf in a stated tail.

BOUNDS AND APPROXIMATE EXPRESSIONS

When n[1 - F(x;n)] < 1, sharp upper and lower bounds for

P(Xn < x) are given by

1 -n[1 - F(x;n)] < EKXn < x) < Fix;n)n.

Sharp upper and lower bounds for P(X1 < x) are provided by
1-[1- Fix;n)]" < EKXI < x) < nF(x;n)

when nF(x;n) < 1.

For n[1 - Fkx;n)] < .25, the value of Fix;n)" approximately equals



1 - 01 - Fegm ]+ (1/2){n[1 - Fxgn) ]y
and is exceeded by this value. Thus, in that range for x, this
expression can be used, without much loss of sharpness, as the

upper bound for P(Xn < x). The arithmetic average of the lower bound

and this upper bound is

1 -n[1-Fx;n]+ (1/){n[1 - F'(x;n)]}Q = {1 - (1/2)n[1 - F(x;n)]}2.
which is the approximate expression for P(Xn < x). Similarly, for
nF(x:n) < .25,
nF(x;n) - (1/2)[_-n"l‘-‘(x;n)]2

is a lower bound that approximately equals the sharp lower bound and
nk(x:n) - (l/4)[n§(x;n)]2

is the approximate expression for KX, < x).

The sharp upper and lower bounds are derived for M(X =<x). A
similar derivation would yield sharp upper and lower bounds for
KX, > x) =1~ P(X; < x), and thus for P(X1 < x).

Let F,(x) denote the cdf for the i-th of the n independent
observations. Then, KX < x) equals

n
n Fi(x)
i=1

ex;(%lloge{l - [1 - Fi(x)]}>

n -] .
=exp{ -z 1z [1-F,&)P/i)
i=1l j=1

[F(x;n) - Fi(x‘) ]k}

© .] _ ‘s n
exp{ - = j 1s i1 - Fx;mP kg
j=1  k=0\k i=1

For n[1 - 'I?(x;n)] <1 and k 2 2,

: k
= [F(x:n) - Fi(x)]
i=1



5 is maximum when all but one of the Fi(x) are unity and remaining
§ one is chosen so their arithmetic average is F(x;n). This implies

§ that the remaining Fi(x) equals 1 - n[1 - F(x;n)] and that

5 [Fxim) - F 018 = (n - DXL - Py I¥
i=1

+ (-DX-D[1 - Fx;m K,

Thus, P(Xn < x) is at least equal to (equality possible)

j=1 k=0\k

4

exp {'?j-l (ﬂ[l - F(x;n)])jl
j=1 ’

exp {loge(l - n[1 - F(x{n)])}: 1 - n[1 - Fx;n)],

© _ A
exp {- s i1 - Faam] % (F)[(n - ¥4 0¥ - 1)]}

since

% j\(n - ¥+ (- ¥ - 1)]=[(n-1)+ 1]j +(n - 1) - 1)j,
k=0\ k

which equals .

The sharp upper bound for P(Xn < x) is obtained by noticing that,
since the geometric mean at most equals the arithmetic mean,‘the probability
| is maximized when all the Fi(x) equal F(x;n). Thus, this upper bound is
Fx;m",
Alternative proofs for both bounds, also requiring some effort,
could be developed from the results of (Hoeffding, 1956)

ESTIMATION OF ASYMPTOTIC PARAMETERS

The other two forms of parametric asymptotic distributions can

be transformed into that where loge[l - F(x;n)] is approximated



§ by - ax + b for the case of Xn' and where the approximation is of
the form ax + b for the case of Xl. with a > 0. These transformations
are accomplished by suitable changes of variable (for éxample. see
Walsh, 1965). The change of variable involves an additional parameter
for the third asymptote but a modification allows a, b, and this
parameter to all be estimated by the weighted least-squares procedure.
Estimates are explicitly developed only for the case of Xn' but a
similar procedure yields estimates for the case of Xl.

Let n' denote the smallest number of observations (with cdfs
that average to F(x;n) in the upper tail) such that - ax + b is an
acceptable approximation to loge[l - F(x;n)]. Often, the value
of n' is unknown but a value that should exceed n' is available.
Then, this larger value is used for n'.

Suppose that previous data for use in estimating a and b consist
of several sets of observationé (whose cdfs average, approximately,
to F(x;n) in the upper tail for each set). Pool these observations
into one set whose size is denoted by m (ordinarily much larger than
the value used for n')., Let Gm(x) be the empirical cdf of these
observations while Xp is the smallest x such that n'[1 - Gm(x)]s 1
and xy is the smallest x such that n[1 - Gm(x)] < .1, Finally, for

any observation y_ of the total set Yyr « - « + ¥, such that y < x,

a weight w(xM - yc) is specified. Ordinarily, the value of
wixy - yc) decreases as the value of x - Y. becomes more distant
from zero, since the x in the vicinity of Xy are of principal interest.

The estimates of a and b are the values which minimize



| 2
ey ychL wixy - ¥ {log [1 - 6 (y )] + ay_ - b}2.

They are easily determined by setting the partial derivatives
with respect to a and to b equal to zero and simultaneously
solving these two equations for a and b.

Additional effort is required when the third asymptote was
transformed. Then, the estimates for a and b provide estimates for
two parameters of the third asymptote but a third parameter is also
involved (occurs explicitly in the change of variable). This parameter
is estimated iteratively, with its value being that which minimizes
the value of (1) that is first minimized with respect to a and b.
That is, starting with an initial guess, values are considered for
this third parameter and the corresponding minimum values of (1)
with respect to a and b are determined. Ultimately, perhaps using
interpolation among the cases already considered, avclose approximation
to the minimizing value of the third parameter is determined. This
approach is also usable when the second asymptote is considered to
have three parameters rather than the usual two. Of course, the estimates
for a and b are those corresponding to the minimizing valwe of the third

parameter.

INVESTIGATION OF EXTREME PERCENTILES

Let % denote the 100p percent point of F(x;n). The principal
interest is in the case where p > 1 - .2/n and the case where
p < .2/n,

First, consider cases where F(x;n) is continuous (or very nearly

so) at Op- For p > 1 - .2/n,

P(X < ep) £ [1 - n(1 - p)/2]2.



Thus, the interval (Xn,w) is a one-sided confidence interval for

0. with confidence coefficient approximately equal to (1 - n1 - p)/2]2.

For p < .2/n,
2
P(X; < g,) = np - (1/4)Cnp)

and provides an approximate one-sided confidence interval for ep.

Other ranges of p such that p>1 - 1/n or p < 1/n could be
considered in obtaining one-sided confidence intervals. Even for
continuity at ep. however, the bounds on the confidence coefficient
are only moderately close together for 1 - .5/n<p <1 - .2/n
using X , or for .2/n < p < .5/n using X;. They are rather far
apart in other cases.

If F(x;n) is not continuous at Opr the values of P(X < ep)

and P(X1 < ep) are at least equal to the values for continuity at

ep. The values of P(Xn < ep) and P(X1 < ep) are at most equal to

the values of P(Xn < gp) and P(Xl < ep), respectively, for continuity

t .
aep

One-sided tests of the form ep = By with 6, @ stated number,

can be obtained in the usual straightforward manner. Also, Xn is

H

an approximate median estimate of o when p = 1 - .586/n, and X, is

.586/n.

an approximate median estimate of ep when p

ONE-SIDED TOLERANCE INTERVALS

The one-sided tolerance intervals developed for F(x;n) have
nonfixed endpoint Xn or Xl' Only cases where F(x;n) is continuous

(or very nearly so) in the pertinent tail are considered.
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The probability included in the random interval (- =, Xn)

| equals F(Xn;n), and the probability in the interval (Xl. ®) equals

1 - Fixl;n). Thus, the probability that (- «, Xn) covers at least
100p percent of the probability for F(x;n) is
P[F(Xn;n) >pl= PX, > ep)

and hence is at least equal to 1 - p". and at most equal n(1l - p),

for p > 1 - 1/n. Likewise, the probability that (Xl. ©) contains at

least 100p percent of the probability for F(x;n) is

1l

P(1 - F(Xl;n) > pl P[Fixl;n) <1-p]

P(X; = 8 _ p)'
and this is at least equal to 1 - p", and at most n(1 - p),
for p>1-1/n,
For given p and a minimum value y for the brobability that the
coverage exceeds p, the smallest value for n is determined from
1 - pn 2 vy, so that n 2 [1og(1 - y)]/logp, which is the value for

the case of a random sample of size n from a continuous population,

HYPOTHESIS OF SPECIFIED DISTRIBUTION

Let F(x;n) be completely specified as Fo(x) in the upper tail,
or the lower tail, by the null hypothesis. Here, the upper tail
is for x such that Fo(x) > 1 - 1/n, and the lower tail is for x

such that Fo(x) < 1/n.

Suppose that the principal interest is in disagreement between
F(x;n) and Fo(x) for the interval of x values in the upper tail such
that p; < F (x) = p,. Here, p, and p, are attainable values for
Fy(x) and, under the null hypothesis, 1 - P[p, < F (X ) = p,] has a

small value that is suitable for significance level. Theﬁ, the test

11



that rejects F(x:n) = Fo(x) in the upper tail if and only if

i 1d has significance level equal to
p; < Fo(Xn) < p, does not hold g q

the null value of

1 - PF (X)) < pol + P[FO(Xn) <p 1,

Upper and lower bounds are available for this significance level.
These bounds are quite close together if p; =2 1 -.2/n. Then, the

approximate expression for the null value of P[Fo(xn) < p ] can be

used.

A similar kind of test is easily developed for the lower tail

and Xl used. Also, the critical region could be based on two

. or more disjoint intervals rather than just one interval. In

addition, Py could be unity for the upper tail and P; could be

zero for the lower tail (one-sided cases).
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