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Abstract

Several authors have proposed nonparametric semivariogram estimators. Shapiro & Botha
(1991) did so by application of Bochner’s theorem and Cherry, Banfield & Quimby (1996)
further investigated this technique where it performed favorably against parametric estima-
tors even when data were generated under the parametric model. While the former made
allowances for a prescribed nugget and the later outlined a possible approach, neither of
these demonstrate nugget estimation in practice, which is essential to spatial modeling and
proper statistical inference. We propose a modified form of this method, which admits
practical nugget estimation and broadens the basis. This is achieved by a simple change
to the basis and an appropriate restriction of the node space as dictated by the first root
of the Bessel function of the first kind of order v. The efficacy of this new unsupervised
semiparametric method is demonstrated via application and simulation, where it is shown
to be comparable with correctly specified parametric models while outperforming misspec-
ified ones. We conclude with remarks about selecting the appropriate basis and node space
definition.

Key Words: unsupervised brain imaging, nonparametric, Bessel basis, isotropic, node
space, regular lattice, negative definiteness

1 Introduction

Let
rz{r(si):lgign,sieDCRk}

be a sample from a k-dimensional spatial process with

r(si) = p(si) + 0 (si)

where p(-) is the mean function and §(-) is the spatial error process. Provided that
E[§(s)] =0, Var[§ (s)] = 02 < oo, and Cov [§ (s;),0 (s;)] = C (hy;), where C (-) is a pos-
itive definite covariance function (i.e., 331, 377 a;a;C (hi;) > 0, ¥ ai, hyj, and n), and
hij = ||s; — s;j||, the spatial error process is said to be istropic. That is, the variance of the
process is finite, and the covariance between any two spatial locations only depends on the
distance between them.

Commonly, spatial modeling uses semivariance,

Y (sirsj) = Var [0 (SZ; — 0 (sj)] 7




between spatial locations instead of covariance, since this represents a richer class of models.
A more rigorous treatment of spatial modeling can be found in Journel & Huijbregts (1978),
Isaaks & Srivastava (1989), and Cressie (1993). When the spatial error process is isotropic,
semivariance can be expressed in terms of covariance simply as v (h) = C (0) — C (h). Un-
der these conditions, the nugget can be defined as limj,_,o+ v (h) = limy,_,o+ C (0) — C (h).
Hence, the nugget represents the semivariance between locations close in space. If C(-)
is right continuous at the origin, the nugget will be identically zero, meaning the spatial
error process is smooth. On the other hand, a non-zero limit implies a rough spatial error
process, possibly from multiple sources of variation. This could be due to a combination
of measurement error and small scale variation. In practice, the attribution to these two
sources is generally unknown, so the nugget is usually attributed to measurement error. At
large distances, the semivariance between locations usually becomes constant and is known
as the sill.

Typically, a parametric function, which ensures conditional negative definiteness, is fit
to the empirical semivariogram using a non-linear algorithm. A function is said to be
conditionally negative definite if )", Z?Zl a;a;y (hij) < 0, Va;, hij, and n such that
Yo a; = 0. It can be shown that for any positive definite function C (-), v (h) = C (0) —
C'(h) is necessarily conditionally negative definite. Several nonparametric semivariogram
fitting procedures guaranteeing this property have been put forth in Shapiro & Botha
(1991), Sampson & Guttorp (1992), Lele (1995), and Genton & Gorsich (2002). We shall
focus our efforts on presenting and improving upon Shapiro and Botha’s approach, which
was generalized by Ferndndez-Casal, Gonzalez-Manteiga & Febrero-Bande (2003). Invoking
Bochner’s Theorem, C'(-) can be represented as a spectral integral

C (h) :/OOOQH (ht)dF (t),

x
Bessel function of the first kind of order v = (k —2) /2, and F (-) is a non-decreasing

bounded function for ¢t > 0. It is worth noting that Q (z) = cos (x), Qs () = Jy (x), and
Q3 (x) = sin (z) /x, which appear as interpolators with certain optimal properties in vari-
ous fields and applications. Also, k may take on non-integer values and, if set to any value
higher than the dimension of the spatial process (i.e., k > k), will still yield a valid covari-
ance function for the dimension in question. Finally, as k — 00, (\/ﬂh) — exp (—hQ),
which corresponds to a Gaussian spatial error process and will be of importance in modi-
fying the method. Some plots of 1 — Q, () for selected values of k are shown in Figure 1.

where Q, () = (2)(H_2)/2F (5) J(x—2)/2 (), T () is the gamma function, J, (-) is the

Solving for the unknown F (-) involves a Fredholm equation of the first kind, which can
be found in linear integral equation texts such as Kythe & Puri (2002). Solutions to such
equations are generally unstable, but assuming that F'(-) is a step function transforms the



integral into a finite sum for which nonnegative least squares(Lawson & Hanson, 1974) can
be employed to obtain a nonparametric semivariogram estimate by solving

v(h) = C0)=C(n)

" [0 (0) — Q4 ()] dF (1)

Il
— Q

|

=1

for jumps p; > 0 by minimizing

[ (hy) = 7 (b))

l
=1

J

2
with respect to p¥ = [p1,...,pm], where 7 (h) = ZHSZ__SJ_”:h w is the usual em-

pirical semivariogram estimate at distance h with N (h) pairs satisfying ||s; —s;|| = h,
and ¢ is the number of unique distances in the empirical semivariogram. The nodes, t;,
and their number, m, are user defined. This formulation readily yields a sill estimate as

limh_mo ’3’ (h) = Z:’;l Di.

As pointed out by others, 1 — €, (-) results in a rich semivariogram basis that compares
favorably with parametric semivariogram estimators. In their article, Cherry et al. (1996)
outlined a potential iterative nugget estimation method. As will be shown, this problem
is intimately connected with the selection of the nodes; however, even careful node se-
lection fails to completely address nugget estimation. We propose key modifications to
the approach, which will admit nugget estimates and broaden this class of nonparametric
semivariogram estimators.

2 Theoretical Motivation

A certain class of parametric isotropic semivariogram models can be represented as:

Yo (h) = 61 + 0 {1—exp [_ <HZ>2&] }

where 7, () is the semivariance function, h is the Euclidean distance between two points
in space, ¢ is the nugget, 0 is the partial sill, 03 is the range parameter, and « € [0, 1].
When « = 0, this results in a white noise spatial error process, & = 1/2 is an exponential



spatial error process, and o = 1 corresponds to a Gaussian spatial error process.

Recalling that € (\/2/ﬁ}h) — exp (—h2), one can generalize this to (\/2mh0‘) —
exp (—hQO‘) as Kk — oo. Thus, this class of parametric semivariograms is the limiting case
of a more general class of semivariograms given by:

va(h):91+92{1—9,£ [ﬁ(é)a”

In the spectral integral representation, this would correspond to dF' (-) being defined as
dF (\/2/{ / 93‘3‘) = 0o, dF (00) = 01, and zero otherwise. Returning to the more general step
function definition for F' (-) in the spectral integral,

o (h) = /0 " [0 (0) — Q. (hD)] dF (1
= Z[l—fzﬁ(h“m]pi.

=1

We have dispensed with the v/2k since that can be absorbed into the nodes, t;. Thus,
the only modification that has been introduced is substituting A% for A in the original
formulation. This would seem unimportant given the original basis does an excellent job
fitting semivariograms from a variety of nugget-free parametrically generated data, includ-
ing non-Gaussian spatial error processes; however, it is a key ingredient when considering
nugget estimation. This subtle change controls how the basis behaves between the origin
and the first observable empirical semivariogram value as shown in Figure 1.

3 Methodology

3.1 Node Space Definition

Cherry et al. (1996) used an arbitrary node space spanning from 0.04 to 16.16 with 0.04
spacing for the nodes between 0.04 and 4.00 and then 0.16 spacing for nodes above 4.00
to 16.16 resulting in a total of 200 nodes. They further noted that saturating this space
only increased computation time and had little impact on the final fit. We propose that in
addition to the change in the argument to € (-), the definition of the node space is crucial
for obtaining nugget estimates and stable sill estimates.

Our initial interest in nonparametric semivariogram estimation was to have a method
that could operate in unsupervised brain-imaging applications. In our experience imple-
menting the method, non-degenerate nugget estimates were not possible, as acknowledged



in their paper with some possible approaches outlined in their closing remarks. Another
difficulty using this method are the instances where the sill estimate, > " p;, far exceeds
the maximum value in the empirical semivariogram, as addressed in Cherry (1997). Our
investigations found these always corresponded to very low spatial frequency nodes which
caused the sill of the nonparametric semivariogram estimate to occur well beyond the max-
imum distance included in the fitting process.

An inspection of the 1 — €, (-) basis reveals why both phenomena occur. The first
root of Q () corresponds to the distance at which 1 — €, (-) will first cross 1, after which
that basis element will proceed to oscillate about 1. Thus, very high frequency nodes start
oscillating about 1 before the first lag in the empirical semivariogram and become highly
aliased with the nugget. With this insight, the nugget can be thought of as the jump
associated with the node at infinity. Similarly, extremely low frequency nodes will not
start oscillating about 1 until well beyond the hull of the empirical semivariogram. The
locations of these crossings coincide with the roots of the Bessel function of the first kind

of order v = %‘2, for which numeric approximations are given in Ball (2000).

Using the first root of the Bessel function of order v, ., define the node space as follows:

where h; is the " ordered distance in the empirical semivariogram (i.e., h; < h; for
i < j). t1 is defined to be the node at infinity (i.e., t; = limy,_,o+ t,./h® = 00;limy, 00 1 —
O (h*t1) = 1,Yh > 0) with its respective jump, pj, being the nugget estimate. This
definition of the node space has several advantages over the previous approach. With the
exception of t1, none of the basis elements obtain and start oscillating about 1 before
the second unique distance in the empirical semivariogram since ht; < t.., which implies
1 —Q (ht;) # 1 for h < hg. This eliminates high frequency nodes that are highly aliased
with the nugget. If the first unique distance were included, the corresponding basis ele-
ment would essentially be a constant within the hull of the data and confounded with any
nugget estimate. Second, all of the nodes achieve at least one crossing within the hull of the
data since 1 — Q, (h{'t;) =1, ¢ = 2,...,/, eliminating extremely low frequency nodes and
potentially unstable sill estimates. This definition is also independent of the scale of the
particular distances being employed. Finally, the placement and number of the nodes are
dictated by the unique distances in the empirical semivariogram, generally reducing com-
putational overhead since most practical applications have fewer than 200 unique distances.



3.2 Selecting

As Cherry et al. (1996) noted, as k increases, so does the smoothness of the basis elements.
From an informal point-of-view, this makes sense given that satisfying conditionally nega-
tive definiteness imposes more and more constraints as the dimension of the spatial process
increases (see Schoenberg (1938) for a more formal argument). Thus, they favored using
k = 3, or the sinc function, over k = 1 (cosine) or k = 2 (Jp), even for lower dimension
problems. We take their argument further and suggest that even higher values of x desir-
able on the same smoothness grounds (Figure 1).

The Bessel function of the first kind has an infinite number of roots whose spacing
converges to m as h — oo (Watson, 1958). This means that while each basis element passes
through 1 within the hull of the data using the node space defined above, it may do so
several times, which could result in fits with wiggly behavior between the empirical semi-
variogram data points. This phenomenon is plainly evident for x = 1, which is a form of
cosine interpolation. Even the sinc function exhibits this behavior given its slowly decaying
cyclic nature. For values of k > 11, Q,, (-) dampens rapidly beyond its first root (Figure 1),
which greatly reduces this behavior. One might wonder if this argument should be taken
to its extreme and let k — oo, which would result in using members of the exponential
family as basis elements. The problem here is that as kK — oo, ¢, — oo. Thus, we would
forfeit our ability to precisely control where a given basis element passes through 1. In
addition, € (\/ﬁha) converges fairly rapidly to exp (—h2a). Thus, we use k = 11 for the
purpose of simulation and application, even though other values of x are certainly valid for
the proposed method.

3.3 Estimating o

As Figure 1 shows, k primarily affects the behavior of the basis elements after they pass
through 1, while « primarily impacts their behavior between the first lag and the origin.
Given the new basis and node space definitions, a natural question arises concerning how
to choose the tuning parameter a. Model selection criteria, such as Akaike’s information
criterion (Akaike, 1973), Bayesian information criterion (Schwarz, 1978), or generalized
cross validation (Craven & Wahba, 1979) can be used to estimate . Unfortunately, we
found all three methods tended to underestimate a;, which may be due to the heavy correla-
tion inherent in the empirical semivariogram. Thus, we propose the following optimization
criterion:

where df (§,) is the degrees of freedom of the fit, 4, (), obtained using nonnegative least



squares (NNLS) whose solution is:
p () = argmin {Aqp — ' {Aap - 7},
p>

where (Aq);; =1-Qx (A{'t)),i=1,...,4,j=1,...,¢ and AT =7 (h1),...,7 (he)] is the
vector of empirical semivariogram values.

NNLS is similar to shrinkage methods such as ridge regression (Hoerl & Kennard, 1988)
and Lasso. Zou, Hastie & Tibshirani (2004) showed that the expected number of nonzero
parameters in Lasso is the degrees of freedom in the framework of Stein’s unbiased risk
estimation (SURE). Hence, Zou et al. (2004) used the number of nonzero parameters for
a particular sample as the degrees of freedom for Lasso. While this is an unbiased esti-
mate, the degrees of freedom are now a stochastic integer quantity. In the present context,
taking the number of positive parameters as the degrees of freedom for the NNLS fits is
unsatisfactory since it is not a smooth function of a with jumps back and forth between
consecutive integers a common occurrence. This phenomenon makes reliably minimizing
the o2 (-) curve extremely difficult (Figure 2).

Hence, we approximate the degrees of freedom of the NNLS fit using the degrees of
freedom of the closest ridge regression fit. That is,

where

Aa = argmin {A (ATA £ 1) ATy - Ap}T {A (ATA + A1) ATy - Ap} ,
A>0
and

1

S = A (ATA +).I) AT

is the ridge regression smoother matrix.
This approximation of degrees of freedom for the NNLS fit is a smooth function of «,

making minimization of the o2 (-) curve numerically stable (Figure 2). Thus, « is estimated
as

=5 (M) fAa ()
¢ —tr(Sy,) ’

& = argmin
0<a<1 i

(1)

1

yielding the final fit given by



3a () = 3 [1 - (n6) | p (@),

=1
4 Simulations

This section will demonstrate the efficacy of the new method via simulation. Three com-
monly used parametric semivariograms — the exponential, spherical, and Gaussian — are
chosen using various parameter combinations of @1 = [01,02,05] to generate 20 x 20 two-
dimensional realizations. The fields are generated using the root covariance matrix method
where the eigen decomposition of ¥ = VDV, (2);; = 61 + 02 — v (hy;), is used to obtain

LR VD%VT, which is then applied to a random vector of appropriate length drawn
from a N (0, 1) to generate a realization with the desired semivariance structure.

Our ultimate goal is to compare the performance of the new technique and these tra-
ditional parametric models in terms of nugget estimation and weighted integrated squared
error (WISE). WISE is defined in the spirit of weighted least squares (Cressie, 1985) so
that lower lags receive more weight than later ones,

1

hy hy A 2
wisE () = [ =30 an = [ -] an @)

7 (h)

where v (+) is the true semivariogram and 4 (-) is the estimated semivariogram using either
the new method or one of the parametric models. This measure is also known as integrated
squared relative error. Extensive simulation has shown that fixing o = 0.00,0.575,0.750,
and 1.000 for white noise, exponential, spherical, and Gaussian spatial error processes, re-
spectively, to be nearly optimal at estimating the true parametric semivariogram in terms
of WISE for a wide variety of choices for ©.

For each random realization, the proposed semiparametric method, using both the es-
timated « and the corresponding fixed value of a, and the three parametric models were
fit using weighted least squares. The parametric fits used the Nelder-Mead optimization
algorithm in the R function optim. In contrast to popular alternatives like the Broyden-
Fletcher-Goldfarb-Shannon (BFGS) optimization algorithm, we were able to obtain con-
vergence for every fit using the generally slower Nelder-Mead algorithm. The initial value
of ® for optimization was given as the minimizer of WISE between the model being fit
and the true model. The nugget estimate and WISE were recorded for each fit.

Nuggets (61) were set at either 10% or 30% of the sill, and range parameters (03) were
set to either medium or long. Medium range was defined as 1 for the exponential spatial
error process, v/3 for the Gaussian spatial error process, and 3 for the spherical spatial



error process, giving each the same approximate range of 3. The long range was set at 2
for the exponential spatial error process, 2v/3 for the Gaussian spatial error process, and 6
for the spherical spatial error process resulting in an approximate range of 6 for all three
parametric semivariograms. The partial sills were set at o = 1 — 6; to achieve a unit
sill. Each of the four combinations of nugget and range for each parametric semivariogram
was run 1,000 times each. The maximum lag included in the empirical semivariogram was
3v/5, which is approximately 1 /4 the maximum distance. We ran many more combina-
tions of nuggets, ranges, parametric functions such as the rational quadratic, and three
dimensional fields, but choose these particular ones to conserve space while still presenting
a wide variety of semivariograms.

Figures 3 - 5 show boxplots for the nugget estimates and WISE for the semiparametric
and parametric fits. An examination of the estimated nuggets using the fixed value of « as
indicated earlier shows this approach is generally competitive with, and sometimes better
than, the fits from the parametric form generating the field. This is not terribly surprising
since fixing « is tantamount to knowing the true form of the model. A similar pattern
emerges examining the WISE boxplots where using a fixed value of « is again competitive
with, or better than, the fits using the correct parametric function. The misspecified para-
metric models did not compare favorably to using a fixed « in terms of nugget estimation
with the same observation generally applying to WISE.

Turning to the results when estimating «, the nugget estimates do not perform as well
as using a fixed «, but they are better than the misspecified models and are arguably
competitive with the true parametric function. The degraded performance comes as no
surprise since the method is trying to determine how to approach the origin in a entirely
data driven way. Estimating « for the Gaussian spatial error process runs tends to under-
estimate the nugget, which makes sense given « has an upper bound of 1 and the fixed
a = 1 nugget estimates also exhibit negative bias. Also, the nugget estimates seem to
exhibit a negative bias when the range is medium and the nugget is high across all three
parametric forms. Overall, the nugget estimates perform better at the longer range where
the method has more lags with which to identify the underlying parametric form. In terms
of WISE, estimating « does not do as well as using a fixed value, but is again competitive
with or better than fitting the true and misspecified models, respectively.

5 Application

Our research team routinely employs spatial modeling (kriging) in brain imaging for the
purpose of statistical inference and data driven smoothing (Spence, Carmack, Gunst, Schu-
cany, Woodward & Haley, 2007), both of which depend heavily on nugget estimation. Even
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for a modestly sized study, it is impractical to manually inspect and adjust semivariogram
fits for every region of interest (ROI) on a subject-by-subject basis. Hence, we have a
motivation to use a nonparametric semivariogram estimator that could function in an un-
supervised fashion, while providing nugget estimates.

The example given here deals with functional magnetic resonance imaging (fMRI),
where the subject lies in a magnetic scanner while images are acquired during a perfor-
mance task. The magnet records changes in blood oxygen level dependent (BOLD) signals
at locations across the brain to see which areas are involved in performing the task. The
temporal signal-to-noise ratio in fMRI experiments tends to be very low, which makes
spatial modeling’s ability to borrow information in space to strengthen these inherently
weak signals a natural application. More information about fMRI methods can be found
in Jezzard, Matthews & Smith (2001).

In this specific experiment, which lasted 304 sec., the subject was shown nonsense words
at random times on an overhead view screen and asked to repeat them silently. The time
between scans, or time to repeat (TR), was 2 sec., which yielded a total of 152 scans. We
then extracted the BOLD signal at 1,557 spatial locations (voxels) in the superior tempo-
ral gyrus, which is a brain structure thought be to associated with the experiment. Next,
we modeled the hemodynamic response function (HRF) at each location in space under
the standard linear convolution invariance assumption in conjunction with a 13 parameter
finite impulse response (FIR). Since TR = 2 sec., the FIR covers 26 sec. after each stimu-
lus. This step removes the temporal aspect of the data leaving a 13 parameter FIR vector
estimate at each location in space.

We then computed the empirical semivariogram of the third FIR parameter (Figure 6),
which is generally the peak of the HRF 6 seconds after a stimulus for this particular
paradigm and subject. For demonstration purposes, we fit Gaussian (not shown), spher-
ical, and exponential parametric semivariograms. As the figure shows, the exponential
semivariogram fit (green) poorly fits the empirical semivariogram and yields a nugget esti-
mate that is 0% of its estimated sill. The spherical semivariogram fit (red) is better with
a nugget estimate that is 20% of its estimated sill, but appears to overestimate the range.
The Gaussian semivariogram fit is not shown to avoid overcrowding the figure, but it tends
to overshoot the early lags albeit to a lesser degree than the exponential. It has the largest
nugget estimate at 36% of its estimated sill. Finally, the fit from our proposed method
is shown in black with & = 0.63, which uses four non-zero jumps including the nugget
estimated at 9% of its estimated sill. The semiparametric fit is arguably better in the body
of the empirical semivariogram and unsurprisingly yields a nugget estimate between that
of the exponential and spherical fits in light of the discussion of using fixed values of « in
the simulation section. In addition, all the parametric fits required manually set starting
parameter values in a non-linear optimization algorithm, while the new method operated
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in an entirely automated fashion yielding a fit in under 2 sec. on a 2006 Mac Pro including
the time required to estimate a.

6 Discussion

Nonparametric semivariograms offer an effective alternative to choosing a parametric form
for spatial modeling. Others have laid the groundbreaking work in terms of applying
Bochner’s theorem and demonstrating the efficacy of nonparametric semivariograms in a
nugget-free setting. Cherry et al. (1996) discussed an approach to obtain nugget estimates,
but our attempts to implement their suggestion resulted in degenerate estimates. Hence,
we have proposed several key modifications to improve and extend the method. First, a
more flexible basis was introduced by replacing the argument of Q, (-) by A®. Then, care-
ful consideration was given to the definition of the node space to make nugget estimation
feasible and to ensure stable sill estimation. Finally, a method for estimating o was set
forth making unsupervised semiparametric semivariogram and nugget estimation possible.

The simulations using either a fixed or estimated o demonstrate that the new method is
competitive with fits from the true parametric form, while outperforming the misspecified
models. The new method, especially when estimating o, admittedly exhibits biased nugget
estimates, but much less so than the misspecified models, which speaks to its robustness.
The fMRI application demonstrates that the method can be reliably used in place of para-
metric semvariograms in unsupervised brain imaging where it is impractical to manually
inspect every semivariogram fit in such massive datasets.

The rank of ATA is 1 when o = 0 and increases as a — 1, which translates into more
usable basis elements as « increases. This is likely the reason Cherry et al. (1996) noted
that only three or four basis elements are typically used despite having a saturated node
space. Hence, the sum of squared errors is a generally decreasing function of «, which
necessitates estimating the degrees of freedom for model selection. The new method also
needs medium ranges to obtain reliable nugget estimates, which is why we have included
the option of using a fixed value for a. While using a fixed value still allows for semipara-
metric modeling for short ranged semivariograms, the decision is again in the hands of the
modeler instead of being data driven. The solution to both these problems may ultimately
be solved via the node space, as we discuss in the next paragraphs.

The definition of the node space set forth in this paper is not unique, and we experi-
mented with several different approaches. One of the more promising ones defines tz(»n) to
be the i’ root of the Bessel function of order v = 5% and redefines h® to be (h/hs)* so

that all the distances in the empirical semivariogram fall in the unit interval. This has the
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advantage that €2, (-) forms an orthogonal basis for covariograms with respect to the inner-
product weighting function w, (h) = h*~! since fol Qs <ht§k)) Qs <ht§-k)) wy, (h)dh = 0 for
i+ .

Using this fact, it can be shown that 1 — Q, (-) forms a quasi-orthogonal basis for
semivariograms with respect to wy (-) for large k. Such a basis could potentially take
advantage of generalized Fourier series theory, but there are two problems with this ap-
proach. First, no root larger than tgn) (he/h1)” can be used in the fitting process since the
corresponding basis element would pass through 1 before the first distance in the empirical
semivariogram. This restriction is compounded by the fact that the first root grows larger
as k increases. Thus, quasi-orthogonality comes at the price of a sparse node space, which
severely impacts the flexibility of the basis. Even if quasi-orthogonality is discarded, em-
pirical semivariograms covering a short range of distances will suffer from node sparsity.
For ones covering a large range of distances, we were able to obtain good fits using this
technique and will continue to pursue this avenue of research.

A second approach involves modifying the node space so that the basis elements are
equivalent in a certain sense. A general sketch of the technique is to define the ¢; nodes
for a = 1 as proposed in this paper. For a, < 1, each u; node for that space is defined so
that [i [1 — Qu (h®u;)]dh = [ [1 — Q. (ht;)] dh. Some of the u; nodes will have to be
discarded since they will not obtain their respective jumps within the hull of the data. The
corresponding t; nodes will also have to be removed to keep the two node spaces on parity.
Taken to the extreme of «, = 0, only the node corresponding to the nugget will be left in
both spaces. We have experimented with restricting «,, to a lower bound of 0.5, say, and
then applying model selection criteria with some success. This remains an active area of
research where a different definition of node equivalence may eventually obviate the need
to estimate degrees of freedom.
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Figure 1: Plots of semivariogram basis elements for various values of K and a. The dashed
horizontal line shows the unit sill, while the dashed vertical line indicates the first lag. All
of the basis functions pass through the unit sill for the first time at the first lag. As &
increases, the oscillatory behavior about the unit sill quickly dampens beyond the first lag.
The influence of o towards the origin is comparable in all four plots.
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Figure 2: In the upper plot, the dashed line shows the number of nonzero NNLS parameters
as a function of a, while the solid curve shows the degrees of freedom as estimated by ridge
regression. The lower plot shows o2 (-) as a function of a using the number of nonzero
NNLS parameters as degrees of freedom as the dashed line, and using the ridge regression
estimated degrees of freedom as the solid curve. The dot indicates the minimum of the
solid curve. The erratic behavior in the upper dashed curve makes reliably minimizing
the lower dashed curve difficult. Both plots are based on the same sample generated by a
spherical semivariogram with 10% nugget, and a range of 6 from a 20 x 20 realization.
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Nugget Estimates
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Figure 3: Nugget estimates and WISE for the 2D exponential spatial field simulations.
The upper portion of the figure consists of five side-by-side boxplots of the nugget esti-

mates produced by the new semiparametric method using o = 0.575, an estimated value

from Equation (1), and from the three parametric fits for 1,000 20 x 20 two-dimensional

realizations. The true nugget is indicated as a dashed horizontal line across the boxplots
with the true values for #; and 63 indicated at the top of each panel. The lower portion of
the figure is the weighted integrated squared error (WISE) defined in Equation (2).

19



WISE(Y)

Figure 4: Nugget estimates and WISE for the 2D spherical spatial field simulations. The
upper portion of the figure consists of five side-by-side boxplots of the nugget estimates
produced by the new semiparametric method using o = 0.750, an estimated value from
Equation (1), and from the three parametric fits for 1,000 20 x 20 two-dimensional real-
izations. The true nugget is indicated as a dashed horizontal line across the boxplots with
the true values for #; and 03 indicated at the top of each panel. The lower portion of the
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figure is the weighted integrated squared error (WISE) defined in Equation (2).
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Figure 5: Nugget estimates and WISE for the 2D Gaussian spatial field simulations. The
upper portion of the figure consists of five side-by-side boxplots of the nugget estimates
produced by the new semiparametric method using o = 1.000, an estimated value from
Equation (1), and from the three parametric fits for 1,000 20 x 20 two-dimensional real-
izations. The true nugget is indicated as a dashed horizontal line across the boxplots with
the true values for #; and 03 indicated at the top of each panel. The lower portion of the

figure is the weighted integrated squared error (WISE) defined in Equation (2).
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Figure 6: Plot of three semivariogram fits to an empirical semivariogram shown as hollow
circles. The empirical semivariogram is based on the third (peak) parameter of the hemo-
dynamic response function (HRF) estimated using a finite impulse response (FIR) fit to
event related fMRI data in the superior temporal gyrus consisting of 1,557 voxel locations
collected at 152 time points with a time to repeat (TR) of 2 seconds. The nuggets esti-
mated by the spherical, exponential, and semiparametric fits are 20%, 0%, and 9% of their
estimated sills, respectively. For the semiparametric fit, & = 0.63, which is between an
exponential and spherical fit.
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