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In this article, we consider estimation of parameters of random effects models

from samples collected via complex multistage designs. Incorporation of

sampling weights is one way to reduce estimation bias due to unequal

probabilities of selection. Several weighting methods have been proposed in

the literature for estimating the parameters of hierarchical models, of which

random effects models are a special case. We evaluate the bias of the

weighted analysis of variance (ANOVA) estimators of the variance

components for a two-level, one-way random effects model. For these estima-

tors, analytic bias expressions are developed and the accuracy of the expres-

sions is evaluated through Monte Carlo simulation. The expressions are used

to examine the impact of sample size, the size of the intraclass correlation coef-

ficient (ICC), and the sampling design on the estimators’ performance. The

sampling designs considered are two-stage, with a general probability design

at Level 2 and simple random sampling without replacement (SRS) at Level

1. The study shows that variance component estimators using only first-order

weights perform well when both cluster size and ICC are moderate. However,

this weighting method should be used with caution for small cluster sizes (less

than 20), particularly when ICC is small (less than 0.2). In such scenarios,

scaled first-order weighted (SFW) estimators provide an alternative to the

difficult-to-use second-order weighted estimators for designs in which SRS is

used at the ultimate sampling unit level (Level 1). This article is discussed in the

context of large educational survey assessments.
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1. Introduction

Large-scale survey assessments, such as the National Assessment of Educa-

tional Progress (NAEP), typically collect cognitive data from a complex multi-

stage sample of schools and students, along with a rich amount of background

information. Researchers often fit models designed to understand the relation-

ships or interdependencies between students’ performance and student or school

characteristics.

It is cost-efficient to use a multistage sampling design to test groups of students

from the same school (cluster). However, the selection probabilities for different

schools and different students within a school may be unequal. And if they are,

sampling weights are needed in the estimation procedure when the design is infor-

mative, that is, when units at any level of the hierarchy are selected in ways that are

not accounted for by the model (Pfeffermann, Skinner, Holmes, Goldstein, &

Rasbash, 1998). See Sugden and Smith (1984) and Binder and Roberts (2001) for

more detailed discussion on the informativeness of a sampling design.

First-order weights are (before adjustments for nonsampling errors) recipro-

cals of the inclusion probabilities of sampling units, while second-order weights

are reciprocals of the joint inclusion probabilities of pairs of units. Weighting in

single-level regression models uses methods appropriate for pseudomaximum

likelihood (PML) estimation (Binder, 1983; Skinner, 1989). Yet weighting in

hierarchical models is not a trivial extension of PML (Pfeffermann et al.,

1998). Several methods have been proposed in recent years for incorporating

first-order weights into hierarchical models (Asparouhov, 2006; Graubard &

Korn, 1996; Grilli & Pratesi, 2004; Kovacevic & Rai, 2003; Pfeffermann

et al., 1998). A number of commercially available software packages also imple-

ment the method by Pfeffermann et al. to obtain estimates for parameters of hier-

archical models (e.g., hierarchical linear model [HLM] 6.0, MLWIN, LISREL,

and Stata GLLAMM. See Chantala & Suchindran, 2006, for detailed discus-

sions). In hierarchical models, however, for estimators that are nonlinear in

the data (such as estimators of model variance components), the property of

asymptotic unbiasedness requires the sample sizes at both levels to increase

(Pfeffermann et al., 1998), while in practice, the cluster size (e.g., number of

students within school) is often small. In fact, Korn and Graubard (2003) noted

that estimators of variance components that used only first-order weights could

be substantially biased, even for designs with simple random sampling without

replacement (SRS) at each stage.
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The goal of the current study is to determine when first-order weighted

estimators of variance components are adequate and when they are not through

an analytic approach. The article is organized as follows. Section 2 reviews the

background of sampling weights and hierarchical models. Section 3 presents

analytical expressions for the bias of the first-order weighted analysis of variance

(ANOVA) estimators under the random effects model. Section 4 characterizes the

conditions under which the first-order weighted estimators studied in Section 3

have an unacceptably high bias. In Section 5, first- and second-order weighted

ANOVA estimators are computed for a random effects model fit to the NAEP

2003 fourth-grade reading data. First-order weighted estimators adjusted by

scaling (Pfeffermann et al., 1998) are evaluated in Section 6. Finally, a summary

and recommendations for users of NAEP data follows in Section 7.

2. Sampling Weights and Hierarchical Models

When the purpose of a survey assessment is to make valid inferences from a

sample to a finite population of students, the students must be chosen according

to a probability design; that is, the probability of selection of each sampled stu-

dent must be known. The estimation procedure needs to take into account the

unequal selection probabilities by weighting to assure approximately design

unbiased estimation. One estimator that is design unbiased for the total for any

probability design is the Horvitz–Thompson (H-T) estimator weights each stu-

dent’s score by the inverse of his or her selection probability and can be written

for the two-stage design as

T̂ ¼
Xk

i¼1

Xmi

s¼1
yis=�i�sji;

where k is the number of schools in the sample, mi is the number of students

sampled from each selected school, yis is the score of the sth student in the ith

school, �i ¼ Pðschool i in sampleÞ, and �sji ¼ Pðstudent s in samplejschool

i in sampleÞ. The first-order weights are defined as wi ¼ 1=�i and wsji ¼ 1=�sji.

Frequently scientific research questions require inference based on stochastic

models, rather than finite population descriptive statistics. For example,

researchers might be interested in examining relationships between student

assessment scores and the background questionnaires about schools, teachers,

and the students themselves. A simple two-level HLM (Raudenbush & Bryk,

2002) that could describe such relationships can be written as

Level 1 : yis ¼ b0i þ xisb1i þ "is; ð1Þ

Level2 : b0i ¼ g00 þ g01zi þ a0i;

b1i ¼ g10 þ g11zi þ a1i;

Random Effects Model Estimators
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for i ¼ 1, . . . , k and s ¼ 1, . . . , mi, where xis are covariates corresponding to the

student, zi are covariates corresponding to the school, k is the number of schools

(clusters), mi is the school size, b ¼ b0i; b1i½ �T is a vector of unknown regression

parameters, and ai ¼ a0i; a1i½ �T and "is are random effects, which are mutually

independent and normally distributed with zero means and constant variances,

Var ai

� �
¼ and Var "isð Þ ¼ s2

e .

One special case of Model 1 is the two-level, one-way random effects model,

in which b0i ¼ m is the grand mean and b1i ¼ 0, that is

yis ¼ mþ ai þ "is ð2Þ

for i¼ 1, . . . , k and s¼ 1, . . . , mi, where ai � N 0;s2
a

� �
and "is � N 0;s2

e

� �
, and

ai and "is are all mutually independent. As a common practice, data analysts often

start with Model 2 with no predictors to establish a baseline for the decomposi-

tion of the total variance into variance components associated with each level of

the model. Another quantity of interest here is the intraclass correlation coeffi-

cient (ICC):

ICC ¼ s2
a

s2
a þ s2

e

; ð3Þ

which is the proportion of total variability in scores due to the school-to-school

differences.

As stated before, asymptotically unbiased estimators of the model variances

with first-order weights require the sample sizes at both levels to increase. This

is because the full-population functions of the data being estimated are nonlinear,

specifically involving squares of sums of the individual scores. Even though

Pfeffermann and LaVange (1989) and Korn and Graubard (2003) proposed var-

ious second-order weighted estimators that are asymptotically unbiased when the

number of clusters increases, no commercial software package is currently avail-

able to incorporate those methods. Furthermore, second-order weights are not

typically provided on data files, so users have to produce them from knowledge

of the sampling design, which is difficult for all but the most expert users.

Because the cluster size is often small in practice, in the absence of the

second-order weights, it is important to study the asymptotic bias of the first-

order weighted estimators of variance components, under the conditions of an

increasing number of clusters while leaving the cluster size as a fixed small finite

value. Results from simulations studies (Asparouhov, 2006; Grilli & Pratesi,

2004; Pfeffermann et al., 1998) seem to suggest that the biases of the first-

order weighted variance component estimators of a hierarchical model are

related to cluster size, design informativeness, and interclass correlation. Theo-

retical evaluation of the weighted estimators becomes rapidly intractable when

the estimation procedure involves iterative methods, so the focus of this article

is on the weighted ANOVA estimators for one-way random effects model that
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were proposed by Graubard and Korn (1996). These are easier to examine

analytically and are identical to the restricted maximum likelihood estimators

when the estimator of the between cluster variance is greater than zero. This

focus allows systematic and insightful examination of the estimation bias for a

larger range of sampling designs and population scenarios than can easily be

handled by simulation.

3. Bias of First-Order Weighted ANOVA Estimators

3.1. First-Order Weighted ANOVA Estimators

To study the properties of an estimator from a survey sample, the randomiza-

tion from both complex survey designs and stochastic models are considered

through the ‘‘superpopulation’’ approach. This framework was first introduced

by Hartley and Sielken (1975), in which a superpopulation model was assumed

with the finite population as a realization, and the sample is selected from the

finite population using certain sampling designs. The large sample properties

of the sample estimators are then evaluated with regard to the joint distribution

induced by the model and the sampling scheme. This view has been adapted by

many researchers, including Fuller (1975), Binder and Roberts (2003), Rubin-

Bleuer and Kratina (2005), among others.

If all students from all schools in a finite population are observed, the popu-

lation mean and within- and between-school variances can be written as

�Y ¼
PK

i¼1

PMi

s¼1 YisPK
i¼1 Mi

; ð4Þ

S2
e ¼

1PK
i¼1 Mi � 1ð Þ

XK

i¼1

XMi

s¼1
Yis � �Yi:ð Þ2; ð5Þ

S2
a ¼

1

ðK � 1ÞM0

XK

i¼1
Mi

�Yi: � �Y::ð Þ2 � S2
e

M0

; ð6Þ

where K is the total number of schools in the population, Mi is the total number of

students within each school, �Yi: is the ith school average, �Y is the overall average,

and

M0 ¼
1

K � 1

XK

i¼1
Mi �

1PK
i¼1 Mi

XK

i¼1
M2

i

 !
: ð7Þ

In this article, it is assumed that the finite population has arisen from a superpop-

ulation described by Model 2, and we are interested in estimating the model para-

meters m, s2
e , and s2

a. The population quantities in Equations 4 to 6 are consistent

for these model parameters. Of course, access to data from all students in the pop-

ulation is usually not available; instead, the model parameters must be estimated

Random Effects Model Estimators
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from a sample by replacing the sums over all population units with the analogous

sums over all sample units in Equations 4–6. If a sample from a two-stage prob-

ability sampling design of students chosen within schools is available, and if the

sample units have equal selection probabilities at each of the two stages, then the

estimators from the sample are design consistent for the finite population quan-

tities and are consistent for the model parameters as well. But the sample estima-

tors can be design-biased, even asymptotically, if either the students or the

schools have unequal selection probabilities (see Jia, 2007, for detailed

discussion).

To reduce design bias, Graubard and Korn (1996) suggested the first-order

weighted ANOVA estimators:

�y::FW ¼
Pk

i¼1

Pmi

s¼1 wiwsjiyisPk
i¼1

Pmi

s¼1 wiwsji
; ð8Þ

s2
eFW ¼

1Pk
i¼1 wi

Pmi

s¼1 ðwsji � 1Þ

Xk

i¼1
wi

Xmi

s¼1
wsji yis � �yi:FWð Þ2; ð9Þ

s2
aFW ¼

1

m0FW

Pk
i¼1 wi � 1

� �Xk

i¼1
wi

Xmi

s¼1
wsji

� �
�yi:FW � �y::FWð Þ2 � s2

eFW

m0FW

; ð10Þ

where

m0FW ¼
1Pk

i¼1 wi � 1

Xk

i¼1
wi

Xmi

s¼1
wsji �

1Pk
i¼1 wi

Pmi

s¼1 wsji

Xk

i¼1
wi

Xmi

s¼1
wsji

� �2

 !
;

�yi:FW ¼
Pmi

s¼1 wsjiYisPmi

s¼1 wsji
:

These statistics estimate m, s2
e , and s2

a by replacing all population sums in Equa-

tions 4–7 with weighted sample sums. It is straightforward to show that the

weighted estimator �y::FW is consistent for m with respect to both design and model

randomizations. However, large sample sizes at both levels are required for s2
eFW

and s2
aFW to be unbiased. The number of students within each school is often not

large, so there can be substantial bias in the estimators. In the next subsection,

expressions for their approximate biases are derived.

3.2. Bias Expressions for the First-Order Weighted ANOVA Estimators

Expressions of the estimation bias and relative bias for fairly general sample

designs were developed to evaluate the performance of s2
eFW and s2

aFW . The

designs considered were two-stage, with a general probability design at the

school level and SRS at the student level. A design that is approximately SRS

at the lower level is common in educational surveys, including NAEP. Under
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such designs and Model 2, the school-level selection probability �i was allowed

to be related to both the school-level random effect ai and the school population

size Mi. Then �i ¼ � Mi; aið Þ, so that �i was a random variable with respect to the

jointed model-design distribution. The student within school conditional

selection probability �sji ¼ mi=Mi is constant within each school. In addition, a

random indictor variableIi is denoted with value 1 if the ith school is included

in the sample and 0 otherwise. Similarly, Isji is defined as the inclusion indicator

for the sth student in the ith school. As an example, the quantity �y::FW that appears

in Expressions 8 and 10 can be rewritten as

�y::FW ¼
PK

i¼1 Iiwi

PMi

s¼1 IsjiwsjiyisPK
i¼1 Iiwi

PMi

s¼1 Isjiwsji
:

The expectations of Ii and Isji with respect to sampling designs are denoted by �i

and �sji, respectively. Let pIand pII denote the randomization due to sampling

designs at the school and the student level, �I and �II the randomization due

to the model at both levels, the expectation of a given statistic is defined as

E�p ŷ
� �
¼ E�I EpI j�I E�II EpII ŷ

� �
;

and its corresponding bias and relative bias are defined as

Bias�p ŷ
� �
¼ E�p ŷ

� �
� y;

RB�p ŷ
� �
¼

E�p ŷ
� �
� y

y
:

The expectation of s2
eFW is approximated by taking the expectation of the first

term of the Taylor expansion (see the Appendix A).This yields an approximate

bias and approximate relative bias for s2
eFW of

Bias�pðs2
eFW Þ � �

PK
i¼1 Mi=mið Þ � K

N � K

 !
s2

e ¼ �
avgðM=mÞ � 1

�M � 1
s2

e ;

RB�pðs2
eFW Þ � �

avgðM=mÞ � 1
�M � 1

; ð11Þ

where N ¼
PK

i¼1 Mi, �M ¼ N=K, and avgðM=mÞ ¼ ð1=KÞ
PK

i¼1 Mi=mi. Equa-

tion 11 shows that s2
eFW is negatively biased, with larger relative bias for small

school sample size (unless Mi is also small) and bounded below by �1. A com-

plex design at the school level does not affect the approximate relative bias.

The bias and relative bias of s2
aFW can be approximated using similar methods

(see Appendix A). The resulting bias Expression A20 is too complicated to be

Random Effects Model Estimators
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helpful for drawing general conclusions, so we consider a simpler balanced case

in which Mi ¼ M and mi ¼ m for all i. Then

RB�p s2
aFW

� �
� 1

m

1� ICC

ICC

K � E�I wið Þ
K � 1

� m� 1

M � 1

� �
� E�I wið Þ � 1

K � 1

�r�I �ijwiwj; aiaj

� �
sd�I �ijwiwj

� �
�
r�I wi; a

2
i

� �
sd�I wið Þ

K � 1
;

where E�IðÞ, sd�I wið Þ and r�I ðÞ are defined as the expectation, standard deviation,

and correlation of the random variables with respect to the school-level model

randomization.

Note that if the schools were censused, all terms but the first on the right-hand

side of Equation 12 would be equal to zero and the bias would be positive unless

the students were also censused (m ¼ M). The relative bias in this case could be

large if the ICC and m are both small. The second term,

�E�I wið Þ � 1

K � 1
;

is negative for a given sample but can be substantial only if a small proportion of

schools in the population are selected in the sample. The next two terms in Equa-

tion 12 are related to the informativeness of the sample. The third term is usually

small unless the design has �ij is considerably different from �i�j, for example,

if a small school-level sampling rate is present. Otherwise, �ij � �i�j ¼ 1=wiwj.

If extreme schools (those with either high or low scores) are oversampled, then

the last term in Equation 12,

�
r�I wi; a

2
i

� �
sd�I wið Þ

K � 1
;

will contribute a positive component to the relative bias.

Because the bias expressions reported in this section are approximations based

on Taylor expansion, a simulation study was conducted to check their accuracy.

In the simulation, we assumed a population of K ¼ 1,500 schools, each of size M

¼ 56 students (which was the estimated average school population size in the

NAEP 2003 fourth-grade reading national sample). A two-stage stratified design

was selected with two strata at the school level and SRS at the student level.

Three experimental factors (denoted as Factors A, B, and C) were considered.

Factor A varied the nature of the informativeness of the stratification design:

Level A1 indicated oversampling schools with large values of aij j (extreme

schools, symmetric strata) and Level A2 indicated oversampling schools with

large values of ai (high-performing schools, asymmetric strata). Factor B denoted

the sample size assignment at the school level. Defining Stratum 1 as the over-

sampled stratum and Stratum 2 the remainder, Level B1 denoted selecting all the

units from Stratum 1 and half of units from Stratum 2 k1 ¼ K1; k2 ¼ K2=2ð Þ and

Level B2 denoted selecting 90 schools from Stratum 1 and 9 schools from

Jia et al.
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Stratum 2 k1 ¼ 90; k2 ¼ 9ð Þ. Factor C was the student-level sample size, with C1

denoting a large sample (m ¼ 23, which was the average school sample size for

the NAEP 2003 fourth-grade reading sample) and C2 denoting a small sample (m

¼ 5). The population data (K ¼ 1,500, M ¼ 56 for all schools) was simulated

using Equation 2, with s2
e ¼ 11 and ICC¼ 0.23.2 Then 5,000 samples were simu-

lated from the data for each of the 2� 2� 2 ¼ 8 conditions just described. To

obtain the estimation bias from simulation, the first-order weighted estimators

s2
eFW and s2

aFW from Equations 9 and 10 were computed for each sample, the bias

for each estimator was computed by averaging the estimates, and the relative bias

was computed. Expressions for relative bias were then computed from Equations

11 and 12 for each of the eight designs. The results are reported in Table 1. The

table shows that the simulated and analytically derived approximate biases are

very similar in all cases considered. Based on this result, the analytic expressions

were used to investigate the conditions under which the bias of the first-order

weighted estimators of variance components would be problematic.

4. Examination of Bias of the First-Order Weighted ANOVA Estimators

The goal in this section is to characterize the situations in which the first-order

weighted estimators of variance components are adequate and when they are not.

This is done by systematically varying features of the model parameters and sam-

pling design and using the analytic expressions of bias for evaluation. Equations

11 and 12 show that the relative bias of the first-order weighted estimators of the

TABLE 1

Comparison of Simulated and Approximate Relative Bias (RB) of First-Order Weighted

Estimators From a One-Way Random Effects Model With Informative Designs

A1 (Symmetric Strata) A2 (Asymmetric Strata)

RBðs2
ewÞ RBðs2

awÞ RBðs2
ewÞ RBðs2

awÞ

C1 (m ¼ 23)

B1 Simulated �2.6% 8.7% �2.6% 8.8%
Analytic �2.6% 8.7% �2.6% 8.8%

B2 Simulated �2.6% 2.4% �2.6% 8.1%
Analytic �2.6% 3.2% �2.6% 7.3%

C2 (m ¼ 5)

B1 Simulated �18.5% 62.1% �18.6% 62.2%
Analytic �18.6% 62.3% �18.6% 62.3%

B2 Simulated �18.8% 55.2% �18.8% 59.2%
Analytic �18.6% 55.2% �18.6% 59.2%

Note: Simulation results are based on 5,000 iterations. Analytic results were calculated from Equa-

tions 11 and 12.
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variance components is affected by sample size, ICC, sampling rates, and the

informativeness of the design, which is consistent with results from many simu-

lation studies in the literature. In this section, we use the derived expressions to

examine how much these factors affect the bias.

4.1. Effect of Cluster Size Under Balanced Noninformative Designs

In the first example, we examine the simple case of a single-stage sample from a

population of equal-sized schools. That is, all schools are selected and a simple ran-

domsample ofm students within eachschoolare selected. FromEquations11and12,

RB�pðs2
eFW Þ ¼ �

M � m

ðM � 1Þm ; ð13Þ

RB�pðs2
aFW Þ ¼

M � m

ðM � 1Þm
1� ICC

ICC
: ð14Þ

Figure 1 shows these relative biases for a range of school population sizes (M)

and school sample sizes (m) when ICC ¼ 0.2. If a relative bias of 10% or greater

in magnitude is considered unacceptably large, then s2
eFW has too large of a bias if

m < 10 for M ranging from about 40 to 140. The estimator s2
aFW requires even

larger values of m to have an acceptably small bias. For example, m needs to

be at least 20 when M ¼ 40 and at least 30 when M ¼ 100.

4.2. Effect of Variable Cluster Population and Sample Sizes Under an

Unbalanced Noninformative Design

The second example is designed to examine whether variable school population

sizes or school sample sizes affects the bias of the first-order weighted variance

component estimators. It is assumed that the school population size Mi follows

a specified distribution and that all schools and a simple random sample of mi

students per school are selected. Equation A20 (see Appendix A) simplifies to

RB�pðs2
aFW Þ ¼

PK
i¼1

Mi

mi

PK
i¼1 Mi �

PK
i¼1

M2
i

miPk
i 6¼j¼1 MiMj

1� ICC

ICC

�
ðK � 1Þ

PK
i¼1

Miðmi � 1Þ
mi

� �PK
i¼1 MiPk

i6¼j¼1 MiMj

PK
i¼1 ðMi � 1Þ

1� ICC

ICC
:

As in the first example, we set ICC ¼ 0.2. To examine a realistic range of

distributions of school population size, we first fitted a g distribution to the

empirical distribution of estimated school population sizes from the NAEP

2003 fourth-grade reading assessment by matching the first two moments

( �Mweighted ¼ 56; Sweighted Mð Þ ¼ 44). The corresponding coefficient of variation

(CV) is 0.78. Figure 2 plots the histogram of the estimated school population size
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FIGURE 1. Relative bias of first-order weighted variance estimators as a function of

school population and sample sizes for a noninformative design in which all schools are

sampled and a simple random sample of m students are selected within each school.

The dashed lines are the bench marks for�10% and 10% relative bias (&—relative bias

of the estimators of the between-school variance; ~—relative bias of the estimator of the

within-school variance). M ¼ school population size; m ¼ school sample size.
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along with the g density approximation. Then K (¼1,500) units were generated

from that g distribution. To have varying school sample sizes, mi ¼ Mi=2 was

used. In addition, cases were considered for which the school population sizes

were generated from three other g distributions with approximately the same

mean value (¼56) but varying CVs, both smaller and larger than those observed

in the NAEP data. The corresponding histograms are displayed in Figure 3.

Table 2 shows the relative biases computed from Equations 12 and 15. Note

that g (1.70, 0.030) in the third row is the g distribution that most accurately

approximates the NAEP school population size distribution. It can be seen that

even though the CV of the school sizes varied from 0.2 to 2.0, the relative biases

calculated were all similar to the one with the constant school population size of

56 (RB�pðs2
eFW Þ ¼ �1:8% and RB�pðs2

aFW Þ ¼ 7:3%). The results suggest that the

relative biases of s2
eFW ands2

aFW are mainly driven by the average school size and

do not seem to be substantial affected by varying school population sizes and

sample sizes. Thus, an extremely accurate modeling of the school size distribu-

tions may not be particularly necessary in practice.

4.3. Joint Effect of Cluster Sample Size and ICC

Kovacevic and Rai (2003) observed from a simulation study that the relative

bias of their proposed weighted estimators increased as the ICC level decreased.

Similar results were reported in the simulation study conducted by Asparouhov

(2006). The analytic bias expression and Table 1 show that the effect of ICC on

RB�pðs2
aFW Þ is mitigated by large cluster sample size (m). The third example looks

systematically at the joint effect of these factors for both informative and nonin-

formative designs. The analysis is restricted to equal cluster population size and

equal cluster sample size for simplicity.
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FIGURE 2. Histogram of the estimated school population size for National Assessment of

Educational Progress (NAEP) 2003 fourth-grade national assessment. M̂ ¼ estimated

school population size.
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In this example, the number of schools in the population is fixed at 1,500, and the

population is assumed to follow the model in Equation 2. Four different school-level

designs are considered. The first three are informative designs, and were all strati-

fied, with strata defined by varying cut points on the school random effect. Design

1 oversamples high-performing schools (that is, a school belonged to Stratum 1 if

ai � sa and to Stratum 2 otherwise); Design 2 oversamples above-average

schools (strata defined by ai � 0 and ai); and Design 3 oversamples extreme-

performing schools (strata defined by aij j � 0:6745 � sa and aij j). In a real appli-

cation, the stratification design would likely be less informative than these, so in

some sense, this example represents a worst case. Design 4 selects schools by

SRS and so is not informative. For the first three designs, 90 schools were

sampled from the oversampled stratum and 9 from the other one; 99 schools were

M
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FIGURE 3. Histogram of the simulated school population size. The distributions from

which the finite population of school was generated from top left to the bottom right: g
(0.25, 0.004), g (1,0.018), g (1.70, 0.030), and g (25, 0.448). M ¼ school population size.

TABLE 2

Relative Bias (RB) of the First-Order Weighted Estimators of Within-School and Between-

School Variance Components for Variable School Population Size and School Sample

Size

Model CVðMÞ RBI ;a;e s2
eFW

� �
RBI ;a;e s2

aFW

� �
g (0.25, 0.004) 2 �1.9% 7.6%
g (1.00, 0.018) 1 �1.8% 7.1%
g (1.70, 0.030) 0.78 �1.8% 7.2%
g (25, 0.448) 0.2 �1.8% 7.3%

Note: The RBs for comparable constant school sample size cases for within-school and between-

school variance components are �1.8% and 7.3%, respectively. CV ¼ coefficient of variation;

M¼ school population size.
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selected for the fourth design. At the student level, a sample was randomly

selected without replacement from each selected school. The school population

size was 56, and the school sample sizes ranged from 5 to 30. The ICC ranges

from 0.05 to 0.30.

The relative bias of s2
aFW is calculated using Equation 12, where wi and �ij are

all functions of the normally distributed random variable ai. Figure 4 plots

RB�pðs2
aFW Þ as a function of ICC and m under the four given designs. The trends

are similar for the four designs, showing that the relative bias increases as ICC

decreases and as school sample size decreases. A design having small school

sample sizes could make the relative bias unacceptable. The informative designs

show similar magnitudes of bias to the noninformative design. It appears that the

relative bias of the first-order weighted estimators of the between-school var-

iance component is mainly due to the school sample size and ICC effect and is

insensitive to design informativeness.

4.4. Summary

The purpose of this section was to examine whether the first-order weighted

estimators have an acceptably small bias for estimation of variance components
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FIGURE 4. Effect of intraclass correlation coefficient (ICC), school sample size (m), and

sampling design on the magnitude of the relative bias of the first-order weighted estimator

of the between-school variance component.
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in the random effects model. Our examples show that the first-order weighted

variance components estimators are biased under both informative and

noninformative designs. However, the degree of informativeness of the school

sampling design is not the main factor contributing to the bias. The first-order

weights remove most of the bias due to this source. Rather, the relative bias was

large when the ICC and the within school sampling rate were both small. In any

particular case, when a data analyst has an idea about the size of ICC, m, and M,

he or she can investigate the magnitude of the relative bias by using the simpli-

fied expressions in Equations 13 and 14.

5. Application—NAEP 2003 Fourth-Grade Reading Assessment

The NAEP is a large-scale educational assessment designed to give informa-

tion on what U.S. students know and can do. Data for the NAEP are collected

from a complex multistage sample of schools and students; therefore, sampling

weights are required for proper analysis of these data. Online documentation

from the National Center for Education Statistics (NCES) provides secondary

data analysts with information on how to use weights on the NAEP data file when

estimating means, population totals, and standard one-level regression coeffi-

cients but nothing on how to use weights when fitting hierarchical models.

Because these models are increasingly popular in educational research and sev-

eral different weighting methods have been proposed for estimating the model

parameters, guidance for data analysts is needed.

In this section, we calculate first-order and second-order weighted estimates

of the variance components from a random effects model fitted to the NAEP

2003 fourth-grade reading assessment data for the nation as a whole and for two

jurisdictions. Although the true values of the variance components are not

known, the second-order weighted estimators are approximately unbiased (Korn

& Graubard, 2003). Thus, we will judge the first-order weighted estimators com-

paring them to the estimators based on second-order weights.

More than 187,000 students from over 7,700 schools in 54 jurisdictions were

assessed in the NAEP 2003 fourth-grade reading assessment. Jurisdictions included

states, the District of Columbia, U.S. territories, and Department of Defense

schools. The sampling design is described briefly as follows: Schools were stratified

with one stratum per state for public schools and several region-based strata for pri-

vate schools. Within each stratum, schools were selected using a stratified systema-

tic probability proportional to size design so as to oversample minority, nonpublic,

and relatively large schools. This step was followed by a random sample of students

drawn from each school, so that students within sampled schools were selected with

equal probability. The average school sample size for the national sample was 23;

the estimated average school population size was 56. The NAEP restricted use data-

base contains both school and student overall weights (wi and wis), from which the
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student conditional weights wsjiare calculated (wsji ¼ wis=wi). The estimation

procedure was carried out entirely in the R language environment.

We fitted a one-way random effects model to the NAEP national data, using

one of the plausible values (Mislevy, 1991) for the assessment score as the

response variable. Estimation of the model was conducted twice: once computing

first-order weighted estimators as given in Equations 8 through 10 and once com-

puting second-order weighted estimators as specified in Korn and Graubard

(2003). Because second-order weights were not provided on the NAEP file, they

had to be inferred from the first-order weights and from knowledge about the

sample design. At the student level, we calculated second-order selection prob-

abilities for students from school i as �stji ¼ miðmi � 1Þ=MiðMi � 1Þ, as it would

be for SRS within school. As all the details about the school-level design were

not known, the simplifying assumption was made that the selection of schools

was independent; that is, �ij ¼ �i�j. See Brewer and Donadio (2003) for alterna-

tives to estimate �ij for high entropy sampling designs. Based on this analysis, the

ICC was estimated by the second-order weighted estimators to be approximately

0.24. Both Figure 4 and Equation 11 suggest that bias of the first-order weighted esti-

mators of variance components would not likely be a problem for this combination

of ICC and sample size.

In addition, the one-way random effects models were fitted using both

first-order and second-order weighted estimation methods to data from two

jurisdictions. The jurisdictions were chosen to exemplify different kinds of

weight structures. All the schools for Jurisdiction 1 were selected so the

design was noninformative. The sample consisted of 24 schools with an aver-

age school sample size of 30. The estimated average school population size

was 64, and the ICC value was estimated at about 0.08 from the second-order

weighted estimators. Jurisdiction 2 had a design for which several extreme-

performing schools (those with high and low performance) had large weights.

The sample consisted of about 120 schools. The average school sample size

was 16; the estimated average school population size was 32. The ICC for

reading assessment score was estimated to be 0.34 based on the second-

order weighted estimators. Equation 11 suggests that bias of estimators of

the within-school variance component is not likely to be a problem for

either jurisdiction. Figure 4 suggests that the first-order weighted estimator

of the between-school variance for Jurisdiction 2 is also likely to have

acceptable bias but that we should be cautious when using it for Jurisdiction

1 due to the small value of ICC, even for the design’s relatively large school

sample size.

Table 3 shows the estimates of variance components as well as ICC cal-

culated using first- and second-order weights for the national data and the

two jurisdictions. In parentheses below each first-order weighted estimator

is the estimated relative bias, calculated as the difference between the first-
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and second-order weighted estimators divided by the value of the second-

order weighted estimators. This assessment of the actual bias of the first-

order weighted estimator is reasonable if our approximated second-order

weights are accurate. The results show, as expected, that the estimated rela-

tive bias was negative for all estimates of within-school variance and positive

for estimates of between-school variances. The estimated relative biases were

less than 10% for all variance component estimators except the between-

school component for Jurisdiction 1. This result was predicted due to the

small ICC value in that jurisdiction. However, in cases like Jurisdiction 1,

where less than 10% of total variance contributes to the differences among

schools before introducing any regression models, multilevel modeling might

not be necessary. This study shows that the analytic expressions can accu-

rately predict which estimators will perform better based on our

knowledge of the design and population characteristics.

6. Weight Scaling

In Section 4, we saw that the first-order weighted estimators of the variance

components were biased regardless of whether the sampling design was informa-

tive. One approach to reduce the bias is to scale the weights. Recent statistical

literature provides several scaling methods (Asparouhov, 2006; Korn &

Graubard, 2003; Pfeffermann et al., 1998; Rabe-Hesketh & Skrondal, 2006;

Stapleton, 2002). Pfeffermann et al. (1998) propose two scaling procedures that

TABLE 3

First- and Second-Order Weighted Estimators of Variance Components and Intraclass

Correlations Coefficients (ICC) for 2003 National Assessment of Educational Progress

(NAEP) Fourth-Grade Reading Assessment Data

Estimators Using . . .
Estimates of s2

e Estimates of s2
a Estimates of ICC

NAEP National Data

First-order weights 1,026.5 (�2.3%) 355.9 (7.2%) 0.26 (8.3%)

Second-order weights 1,050.6 331.9 0.24

NAEP Jurisdiction 1 data

First-order weights 1,616.3 (�1.7%) 175.1 (19.6%) 0.10 (25%)

Second-order weights 1,644.8 146.4 0.08

NAEP Jurisdiction 2 data

First-order weights 1,111.8 (�2.8%) 573.9 (4.7%) 0.34 (3.0%)

Second-order weights 1,144.4 571.2 0.33

Note: The estimated relative bias, calculated as the difference between the first- and second-order

weighted estimators divided by the second-order weighted estimators, is in parentheses.
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only scaled the student within-school conditional weight (wsji). To be more spe-

cific, the scaled student conditional weight under their Scaling Method 1 is

w
ð1Þ
sji ¼ wsji

Pmi

s¼1 wsjiPmi

s¼1 w2
sji

ð16Þ

and the sum of w
ð1Þ
sji over s is equal to the effective sample size

Pmi

s¼1 wsji
� �2Pmi

s¼1 w2
sji

:

Under Pfeffermann’s Scaling Method 2, the scaled student conditional weight is

w
ð2Þ
sji ¼ wsji

miPmi

s¼1 wsji
: ð17Þ

For this method, the sum of w
ð2Þ
sji over s is equal to the sample size for school i.

For designs that are SRS at the student level, Pfeffermann’s Scaling Method 2

is more appropriate to produce an approximately unbiased estimator of the

within-school variance. For such designs, the scaled student conditional weight

in Equation 17 is equal to

w
ð2Þ
sji ¼

Pmi

s¼1 wsji
mi

miPmi

s¼1 wsji
¼ 1;

and the scaled first-order weighted (SFW) estimator (s2
eSFW) reduces to the

unweighted one (with weight of 1), which is approximately unbiased, so that

RB�p s2
eSFW

� �
� 0: ð18Þ

However, the SFW estimator s2
aSFW

� �
of the between-school variance is still

biased. For the same sampling design assumed before with constant M and m,

RB�pðs2
aSFW Þ �

1� E�I ðwiÞ
ðK � 1Þm

� �
1� ICC

ICC
� r�I �ijaiaj; zizj

� �
sd�I �ijwiwj

� �

þ 1� E�I ðwiÞ
K � 1

�
r�I wi; a

2
i

� �
sd�I wið Þ

K � 1ð Þ :

Note that Equation 19 was approximately zero for large K while the first two

moments of wi are finite or if a large fraction of schools is selected.

To examine the accuracy of the bias expressions for the SFW estimators,

the simulation study in Section 3.2 was revisited. The scaled weighted estima-

tors were calculated for each simulated sample, averaged over 5,000 replica-

tions to obtain the relative biases, and compared with values computed from

Equations 18 and 19. Table 4 shows that the simulated and calculated relative

biases were similar for all parameters in all four scenarios. The SFW estimators

of within-school variance were approximately unbiased and those of between-
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school variance were negatively biased. The relative bias of s2
aSFW was trivial

for k � 750 (Condition B1) and increased a bit for k ¼ 99 (Condition B2).

Compared to the first-order weighted estimators whose relative biases are shown

in Table 3 for the same sample designs, those of the SFW estimators were much

smaller.

In summary, scaling of the first-order weighted estimator using Scaling

Method 2 (Pfeffermann et al., 1998) eliminates most of the bias from estimators

of the variance components for designs that are SRS at the student level, along

with a large number of schools in the population or a large fraction of schools

being selected. In the most current version of the HLM software (HLM v 6.0),

the weighting option automatically rescales the student level weights for the

users using Pfeffermann’s Scaling Method 2 and also rescales the school weights

to the total number of schools in the sample.

7. Summary and Discussion

This article covers the possible bias in variance component estimators that can

arise when fitting a one-way random effects model for the data obtained from

complex sampling designs. The primary purpose is to examine when the first-

order weighted estimators are adequate. The results suggest that the first-order

weighted estimators take care of much of the bias due to the informativeness

of the design; but, they can still suffer from a large relative bias when both school

sample size and ICC are small. That is, when school sample size is less than 20,

TABLE 4

Comparison of Simulated and Approximate Relative Bias (RB) of the Scaled First-Order

Weighted Estimators From a One-Way Random Effects Model With Informative Designs

at Level 2

A1 (Asymmetric Strata) A2 (Symmetric Strata)

RBðs2
eSFW Þ RBðs2

aSFW Þ RBðs2
eSFW Þ RBðs2

aSFW Þ

C1 (m ¼ 23)

B1 Simulated 0.02% �0.03% 0.00% 0.01%
Analytic 0.00% �0.07% 0.00% 0.02%

B2 Simulated �0.03% �6.35% 0.01% �0.67%
Analytic 0.00% �5.57% 0.00% �1.52%

C2 (m ¼ 5)

B1 Simulated 0.00% �0.23% 0.00% 0.09%
Analytic 0.00% �0.08% 0.00% �0.03%

B2 Simulated �0.26% �6.92% �0.31% �2.90%
Analytic 0.00% �7.15% 0.00% �3.10%

Note: Simulation results are based on 5,000 iterations. Analytic results were calculated from Equa-

tions 18 and 19.
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and particularly when ICC is less than 0.2. These problems occur even for non-

informative designs. Incorporating sampling weights in the regression coefficient

estimators has been widely discussed (Fuller, 2002; Pfeffermann & Holmes,

1985; Pfeffermann & Lavange, 1989; Skinner, 1989). However, we emphasize

the variance component estimators in this article and use an analytic approach

to successfully identify the factors that affect the estimation bias. The analytic

bias expressions derived are based on one-way random effects models and

ANOVA estimators. Such models commonly serve as the preliminary step in the

hierarchical model fitting in providing baseline information about the outcome

variability at each of level of the model (Raudenbush & Bryk, 2002).

Under the superpopulation framework that was adopted in this study, an

underlying model is assumed to generate the finite population, and the sampling

weights are incorporated to adjust the effect of sampling designs. However, as

discussed in Pfeffermann (1993), weighting can also protect against misspecifi-

cation of the model in producing design consistent estimators, particularly for

descriptive statistics, such as the variance components. This issue is not explored

here, but it would be an interesting direction to pursue.

One limitation of the analytic expressions presented in this article is that the

obtained bias expressions for the first-order weighted estimators only apply to the

specific model and sampling designs they were derived for. The results can shed

light on the bias of the variance component estimators of more general hierarch-

ical models and sampling designs, but the more direct derivation of the bias

expressions would be much more sophisticated.

One suggestion for data users who estimate variance components with

small school sample sizes and with multilevel models for which they expect

small ICC is to first examine the weights. If the weights are relatively con-

stant at both student and school levels (as for Jurisdiction 1 in the NAEP

example), then unweighted estimators of variance components will be less

biased than the first-order weighted estimator. If the weights vary at either

level, then the second-order weighted estimators are needed for estimating

variance components. This difference presents a problem for the typical data

user, not only because of the unavailability of commercial software to com-

pute these estimators but also because constructing second-order weights

accurately requires a level of knowledge about the design that is not likely

to be available. Some examples can be found in which inaccurate assessment

of second-order weights used actually could cause more bias than using the

first-order weighted estimators. SFW estimators provide an alternative to the

difficult-to-use second-order weighted estimators for designs in which SRS is

used at the student level, given a large number of schools in the population

or a large fraction of schools being selected. But until some method of mak-

ing the second-order weights available to users is implemented in publicly

available software programs, an adequate and unique solution does not

appear to be available.
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Appendix A

Bias Expression of First-Order Weighted Estimators Bias Expression of

the First-Order Weighted Estimator of the Within-School Variance

The first-order weighted ANOVA estimator of the within-school variance is

given as

s2
eFW ¼

sseFWPK
i¼1 Iiwið

PMi

s¼1 Isjiwsji � 1Þ
; ðA1Þ

with

sseFW ¼
XK

i¼1
Iiwi

XMi

s¼1
Isjiwiy

2
is �

XK

i¼1
Iiwi

XMi

s¼1
Isjiwsji�y

2
i:FW : ðA2Þ

where Iiand Isji are indicator functions with

Ii ¼
1 if unit i is in the sample

0 unit i is not in the sample

�
;

Isji ¼
1 if unit s within i is in the sample; given that unit i is in the sample

0 Otherwise

�
;

and

�yi:FW ¼
PMi

s¼1 IsjiwsjiyisPMi

s¼1 Isjiwsji
:

The expectations of Ii and Isji with respect to the sampling design are

Ep Iið Þ ¼ �i ¼ 1=wi and Ep Isji
� �

¼ �sji ¼ 1=wsji:

We first take the expectation of each quantity on the right-hand side of Equation

A1 with respect to the design, then to the model

E�p yð Þ ¼ E�Epj� yð Þ ¼ E�I E�II EpI j�I EpII j�II yð Þ: ðA3Þ

Given SRS at Level 1, the student selection probability is independent of the stu-

dent level random effect "is, and with the properties ofXMi

s¼1
Isji ¼ mi; E Isji

� �
¼ E I2

sji

� �
¼ �sji ¼

mi

Mi

: ðA4Þ

Given the designs, Expression A3 can be further simplified as

E�I E�II EpI j�I EpII j�II yð Þ ¼ E�I E�II EpI j�I EpII yð Þ:

Therefore,

(continued)
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E�p
XK

i¼1
Iiwi

XMi

s¼1
Isjiwsjiy

2
is

� �
¼ E�I E�II EpI j�IEpII

XK

i¼1
Iiwi

XMi

s¼1
Isjiwsjiy

2
is

� �
¼ E�I E�II

XK

i¼1

XMi

s¼1
mþ ai þ "isð Þ2

h i
¼ E�I

XK

i¼1
m2 þ a2

i þ s2
e þ 2mai

� �
Mi

h i
and

E�p
XK

i¼1
Iiwi

XMi

s¼1
Isjiwsji�y

2
i:FW

� �
¼ E�I EpI j�I E�II EpII

XK

i¼1
Iiwi

XMi

s¼1
Isjiwsji�y

2
i:FW

� �

¼ E�I
XK

i¼1
�iwi m2Mi þ a2

i Mi þ
PMi

s¼1 �sjiw
2
sji

Mi

s2
e þ 2maiMi

 !" #

¼ E�I
XK

i¼1
m2 þ a2

i þ
1

mi

s2
e þ 2mai

� �
Mi

	 

:

As a result,

E�pðsseFW Þ¼E�I
XK

i¼1
m2 þ a2

i þ s2
e þ 2mai

� �
Mi �

XK

i¼1
m2 þ a2

i þ
1

mi

s2
e þ 2mai

� �
Mi

	 


¼ E�I s2
e

XK

i¼1

Mi mi � 1ð Þ
mi

� �	 


¼ s2
e

XK

i¼1

Mi mi � 1ð Þ
mi

� �
:

Meanwhile,

E�p
XK

i¼1
Iiwi

XMi

s¼1
Isjiwsji � 1

� �h i
¼ E�I EpI j�I E�II EpII

XK

i¼1
Iiwi

XMi

s¼1
Isjiwsji � 1

� �h i
:

ðA8Þ

The right-hand side of Expression A7 can be written as

E�I EpI j�I E�II EpII

XK

i¼1
Iiwi

XMi

s¼1
Isjiwsji � 1

� �h i
¼ E�I EpI j�I

XK

i¼1
Iiwi Mi � 1ð Þ

� �
¼ E�I

XK

i¼1
�iwi Mi � 1ð Þ

� �
¼
XK

i¼1
ðMi � 1Þ:

Equations A6 and A8 together yield

E�p s2
eFW

� �
�
PK

i¼1
Mi mi�1ð Þ

mi

� �
PK

i¼1 Mi � 1ð Þ
s2

e ; ðA10Þ

and

(continued)
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RB�p s2
eFW

� �
�
PK

i¼1
mi�Mi

mi

� �
PK

i¼1 Mi � 1ð Þ
: ðA11Þ

Bias Expression of the First-Order Weighted Estimator of the Between-

School Variance

The first-order weighted ANOVA estimator of the between-school variance is

given as

s2
aFW ¼

ssaFW

ð
PK

i¼1 Iiwi � 1Þm0FW

� s2
eFW

m0FW

: ðA12Þ

with

ssaFW ¼
XK

i¼1
Iiwi

XMi

s¼1
Isjiwsji�y

2
i:FW � �y2

::FW

XK

i¼1
Iiwi

XMi

s¼1
Isjiwsji; ðA13Þ

�y::FW ¼
PK

i¼1 Iiwi

PMi

s¼1 IsjiwsjiyisPK
i¼1 Iiwi

PMi

s¼1 Isjiwsji
; ðA14Þ

m0FW ¼
1PK
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Given A4, we have
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However, the expectation of Equation A16 is
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Combining Equations A6, A17, and A18, the delta method gives
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Notes

1. As indicated in Expressions 11 and 12, the relative biases of s2
eFW and s2

aFW

do not depend on the actual value of s2
e . So the analytic results in Table 1 can be

generalized to cases where ICC ¼ 0.23 with s2
e different from 1.

2. The ICC value estimated from NAEP Grade 4 reading 2003 assessment.
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