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ABSTRACT 

To simultaneously detect differences in marginal locations and/or scales in bivariate data, a 

set of permutation tests that are both exact and distribution-free are proposed. The tests 

take advantage of the fact that only under the null hypothesis of equal means and variances 

are the pairwise differences symmetrically distributed about zero and uncorrelated with the 

pairwise sums. Two statistics for detecting the marginal location and scale differences are 

combined in a quadratic form. A permutation distribution for this quadratic form follows 

from considering all 2" conditionally equally likely sign changes on the differences. 

Several methods of estimating the covariance matrix of the quadratic form are examined 

including conditional and unconditional (plug-in) approaches. These new tests are 

compared with the standard tests in the literature and are found, through simulation for 

several families of bivariate distributions, to perform quite favorably. This paper also 

brings to light the overlooked likelihood ratio test for equal means and variances in the 

bivariate normal and shows its relationship to more recent approaches, including those 

presented here. 

KEY WORDS: Bioequivalence; Bivariate Symmetry; Conditional Test; Location-Scale 

Test; Pitman-Morgan Test; Randomization. 



1. INTRODUCTION 

When the same experimental units are used in both the treatment and control groups 

the result is often highly correlated paired observations. Situations like this naturally 

involve the null hypothesis that Bell and Haller (1969) termed bivariate symmetry, 

meaning that the group labels are in fact arbitrary. Perhaps a more descriptive term, used 

by Sen (1967), is bivariate interchangeability. Several tests have been proposed over the 

years that are designed to detect certain alternatives to the hypothesis of bivariate 

interchangeability. Hollander (1971) proposed a nonparametric test to detect general 

alternatives. Recently, Hilton and Gee (1997a,b) have given an efficient algorithm that 

makes it more reasonable to get the exact distribution of Hollander's test. Many 

approaches, including the present one, concentrate on the alternative hypothesis of 

unequal location andlor scale parameters in the marginal distributions. For bivariate 

normal data, tests of this type have been proposed by Hsu (1940), Bell and Haller (1969), 

and Bradley and Blackwood (1989). Sen (1967) and Kepner and Randles (1984) 

proposed some rank-based conditionally distribution-free location/scale tests. 

Section 2 introduces a new class of permutation tests designed to detect differences in 

marginal locations and/or scales. Estimation of nuisance parameters is discussed in 

Section 3. Various approaches are illustrated in Section 4 for a test-retest dataset. The 

results of a simulation study, designed to compare the new tests to some of those 

previously proposed, are presented in Section 5. On a historical note, we point out how 

the test by Hsu (1940) has been overlooked in the literature. We derive an interesting 

relationship between his test, the test proposed by Bradley and Blackwood (1989), and 

one proposed here. 



2. TEST PROCEDURE 

2.1 Bivariate Interchangeability 

The bivariate random variable X = ( X 1 , X 2 ) '  is said to possess bivariate 

interchangeability if its cumulative distribution function (cdf) F  ( . , . ) satisfies 

F ( x l ,  ~ 2 )  = F ( x 2 ,  X I )  ( I )  

for every pair of real numbers ( x 1 , x 2 ) .  An important consequence of bivariate 

interchangeability is that X I  and X2 have the same marginal distributions, denoted by 

The approach taken here is to parameterize the problem in terms of location and scale 

parameters. Bivariate interchangeability is required to hold for F (  . , . ) under a null 

hypothesis, 'Ho.  While F ( .  , . ) does not need to satisfy (1) under the alternative 

hypothesis, the specific alternatives to bivariate interchangeability being tested are those of 

location and scale differences. 

To introduce location and scale parameters, suppose that X has finite second 

moments and cdf F  ( y  , y). Without loss of generality, also assume that 

IS xi d F ( x l ,  x2) = 0 and x: d ~ ( x 1 ,  x2) = 1 

IW2 JJ IW2 

for i = 1 and 2. Then, the expectation and variance of X is IE[X] = p = ( p l ,  p2)' and 

V[X] = C = [ , respectively, where p 5 1. The null hypothesis of 
pa102 0 2  I 

interest is that X possesses bivariate interchangeability. This can be stated as 

2 Xo:pi  = p a 7  0, = o;, and F ( .  , . )  satisfies (1). 

The alternative hypothesis is 



that the marginals of X differ in either location or scale (or both). It is important to note 

that under Ro ,  X1 2 X2 , yet X1 and X2 may still be (and typically are) correlated. 

2.2 Test Statistics 

21 -P1  X2-P2 Suppose XI, . . . , Xn is a random sample of size n from F (T ,  __) where 

Xi = (Xli, X2i)'. Two test statistics, one designed to detect location differences and the 

other to detect scale differences, can be used to measure the sample's departure from Ro.  

It is useful to transform the paired data into their pairwise differences and sums, 

Yi = (Xli - X2i7 Xli f ~ 2 ; ) '  = (Di, Si)', 

for i = 1, . . . , n. Clearly, a suitable function of the differences (such as D) can be used to 

detect differences in marginal location since IEIDi] = pl - p2. 

Pitman (1939) and Morgan (1939) observed for the bivariate normal distribution that 

the resulting covariance is 

Hence, the marginal variances are equal if and only if the differences and sums are 

uncorrelated. In fact, this is true for any bivariate distribution with finite second moments. 

Therefore, the difference in scale can be judged by measuring the covariance between the 

differences and sums. With this in mind, we define the statistic U = (Ul, U2)', where 
n 

Ul = and U2 = ( D ~  - n) (s~ - 3). This pair can be used to simultaneously 
i=l 

detect differences in marginal location or scale. 

2.3 Permutation Distribution 

The null hypothesis of interchangeability implies that a permutation distribution for U 

can be constructed from all 2n interchanges of Xli and X2i, i = 1, . . . , n. This is 
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equivalent to considering all 2" possible signs on the differences. Recalculating U for each 

of the conditionally equally likely 2" sign changes of the differences will yield a 

permutation distribution of 2" points in IR2. This permutation distribution is illustrated in 

Figure 1 for the dataset consisting of 10 pairs of observations displayed in Figure 2(a). 

This permutation distribution contains 21° = 1024 points. Figure 2(b) displays the 

differences and sums from the data in Figure 2(a) that are used to calculate Ul and U2. 

The testing principle here is that 7-10 is to be rejected if U is "extreme" in this 

permutation distribution. Under 7-10 IE[U] = 0, hence the farther U is from the origin 

compared to the other points in the permutation distribution, the more "extreme" it is. 

The distance of U from the origin will be measured by an estimated Mahalanobis distance 

given by the quadratic form E = u ' ~ - ' u ,  where f is an estimate of I? = V[U], the 2 x 2 

covariance matrix of U. 

The following notation will prove helpful in constructing a reference distribution for 

E. Defme 6: to be the ith digit (from the right) in the unique binary representation of the 

integer k. The binary expansion of an integer index between 0 and 2" - 1 consists of n 

digits, which can be used to identlfy the sign of each Di. This representation is useful for 

identlfying each of the 2" permutations of the data. 

Now, let 

be the 2 x n data matrix of observed differences and sums. In a s d a r  fashion, define the 

kth permutation of the data as 

for k = 0 , 1 , .  . . ,2" - 1. Notice that Y(0) (6: = 0, i = 1 , .  . . , n) is the observed value of 

the random variable Y. Then y = {Y(k) 1 k = 0,1, . . . , 2n - 1) forms the set of all 
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equally likely data matrices conditional on the observed data matrix Y(0). It should be 

noted that the sums remain unchanged for every permutation of the data. 

Next define U(k) to be the statistic U calculated from Y(k), the kth permutation of the 

observed data. This can be written as 

Notice that U2(k), the sample covariance between the permuted differences and sums, can 

be written without using the mean of the permuted differences. Now let 

U = {U(k) I k = 0,1, .  . . , 2n - 1) be the set of 2" conditionally equally likely outcomes of 

U = (Ul, ~ 2 ) ' .  The 21° points in Figure 1 form such a permutation set of values of U. 

Again, U(0) is the observed value of the random variable U. 

In the next section, four methods of estimating I? will be considered. Estimates of I? 

are denoted by f M, where M identifies the particular estimation method. For a specific 

estimate of I? the distance from a point in U to the origin is determined by 

EM(k) = uIk)f &'u(,), k = 0,1, . . . ,2" - 1. The conditional permutation distribution of 

EM is given by E = {EM(k) 1 k = 0,1, . . . , 2n - 1). Again, EM (0) is the observed value of 

the random variable EM. 

As noted earlier, values of U far from the origin are evidence against E o ,  therefore 

large values of EM are evidence in favor of El. Conditional on the observed data, the 

elements of y, U, and E are equally likely under Eo (Kepner and Randles 1982). Hence 

for each k = 0,1, .  . . ,2" - 1, PE[EM = EM(k) I Eo] = 2-n, where the probability is taken 

with respect to E. A conditionally distribution-free test of Eo with exact nominal level 

CY = m/2n is obtained by rejecting 'Flo when EM(O) is one of the m largest elements in E. 



Another interpretation of this test can be seen by reconsidering Figure 1 which 

graphically depicts U. Of the 2" points in U, if U(o), the observed value of U, is one of the 

m furthest points from the origin (measured in Mahalanobis distance) then IFlo is rejected. 

3. ESTIMATING I? 

The test proposed in the previous section depends on I?, the covariance matrix of U. 

Since in practice I? will not be known, it is necessary to estimate it from the data. In this 

section, four methods of estimating I? are considered along with some properties of the 

associated test statistics EM. The proofs to all the theorems appear in Appendix A. 

3.1 A Conditional Estimate of I? 

Conditional on the observed data, U provides a distribution from which an estimate of 

I? can be calculated directly. Note that IEu [LT] = 0 [Lemma A. l(a)] and define the 

conditional estimate of I? by 

By considering U to be the conditional population from which U is drawn, f is the 

conditional population covariance matrix of U. 

The defmition in (2) is a computationally cumbersome method of calculating f c. 

This requires calculating a 2 x 2 covariance matrix from 2" points. The following 

theorem gives an alternate and more efficient way to calculate fc.  



Theorem 3.1. In (2), f  can be written as 

This simplifes the calculation of f c  greatly in that the covariance matrix can be 

calculated from the original n points rather than the full permutation distribution of 2" 

points. 

3.2 Unconditional Estimates of I? 

Another approach to estimating r is to express it in terms of the moments of the 

differences and sums and then estimate these from the data. The following theorem gives 

in these terms. 

Theorem 3.2. If r = V[U] = "111 "112 

provided 622 < 00, where qa = IE [(Di - pD)2  (si - p ~ ) ~ ]  . 

Now an unconditional estimate of I? can be obtained by replacing the unknown 

parameters in I? by their appropriate sample estimates. This estimate is unconditional in 

the sense that r is derived without dependence on the conditional permutation 

distribution. This "plug-in" method will result in a different unconditional estimate of I? 

for each Y ( k )  E Y ,  call it f  p j k ) .  More formally, define the following estimates based on 

Y ( k )  : 



Then the "plug-in" estimate of r is given by 
h 

h 62 1 ( k )  

621(k) 622(k) - [(n - 2)eks(k) - e k ( k ) c i l  /(n - 

Thus the elements of E are EP(k) = u ; ~ ) P P ~ ~ ) u ( ~ ) ,  k = 0.1' . . . 2" - 1. 

An advantage of the conditional estimate of r in the previous section is its invariance 

over y. That is, if any element of Y were the observed value of the data, the resulting 

permutation distribution, and thus PC, would be unchanged. Hence PC only needs to be 

calculated once rather than 2" times as f p  does. This has obvious computational 

advantages. 

A similar invariant version of P p  can be obtained by more strongly imposing the null 

hypothesis in the estimation of I?. A common testing principle is to use the information in 

the null hypothesis to estimate nuisance parameters. For example, when testing whether a 

binomial proportion p is equal to a hypothesized value po, it is not uncommon to use po 

rather than the observed proportion j j  in the estimation of V[jj]. 

Under the null hypothesis, p~ = = 0. If these null values are used in the 

estimation of the parameters in I?, then the estimates in (4) become 



These estimates are invariant over y, hence, the invariant ccplug-in" estimate of I' is given 

If the underlying distribution from which the data are generated is bivariate normal, 

then so too are the differences and sums. Since the differences and sums are uncorrelated 

under x o ,  bivariate normality implies that they are in fact independent. Therefore, under 

the null hypothesis and bivariate normality 

and 

Thus, I' simplifies to 

which can be estimated by 



and the elements of E are EN(,) = u ; , ) ~ ~ u ( , ) ,  k = 0'1, . . . , 2n - 1. 

Even if the underlying distribution is not normal, the elements of E are conditionally 

equally likely since they are functions of the elements of U and the mapping from U to E 

(through f N) does not depend on the permutation distribution. Hence, regardless of the 

underlying distribution, a test based on EN is conditionally distribution-free. 

Historical Note. The likelihood ratio test of 'Flo under bivariate normality was given 

by Hsu (1940). Even though it was published in The Annals of Mathematical Statistics 

and is such a fundamental problem, it has never been referenced in the bivariate symmetry 

literature and appears to be essentially unrecognized. The only prominent publication that 

we found referencing it is Kotz, Johnson, and Read (1985, p. 740). Bradley and 

Blackwood (1989) proposed a test of 'Flo assuming bivariate normality that consists of 

regressing the differences on the sums and testing parameters of that regression model. 

Hsu's likelihood ratio test (LRT) was apparently unknown to Bradley and Blackwood, 

and in Appendix B we see that these two tests are equivalent. In addition, it is shown that 

these two statistics are monotone functions of EN. Hence, EN is a randomization version 

of the bivariate normal LRT. 

3.3 Rejection Region 

Figure 1 is an example graphical depiction of U, the permutation distribution of U. 

Each point in the scatterplot represents a calculated value of Ul and U2 from one of the 2n 

permutations of the observed data. The rejection region for each test is determined by the 

m points corresponding to the largest values of EM(,) = U;,)f klU(,,, 

k = 0 ,1 , .  . . , 2n - 1, where a, = m / 2 n  is the nominal level of the test. When M = C, I ,  
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or N, f M  is the same for all permutations of the data (k = 0 ,1 , .  . . ,2" - I), hence the 

distance from the origin to each point in U is being measured using the same metric. 

Therefore, constant values of EM define equidistant points. Since constant values of a 

quadratic form define an ellipse, an elliptical contour can be drawn with constant distance 

equal to the 100(1 - a)" percentile of the EM(k) distribution. Points outside this ellipse 

will correspond to the m largest values of EM(k) and constitute the rejection region for 

the test. 

Different estimates of I? will lead to different ellipses, defining the appropriate 

rejection regions. The three ellipses for Ec, EI, and EN are shown in Figure 3 for the 

permutation distribution in Figure 1. These ellipses use a = 102/21° = .0996. 

Since f p, the unconditional plug-in estimator, changes for each permutation of the 

data, an ellipse will not define the rejection region. But in Figure 3 the rejection region for 

Ep is depicted in another way; the points corresponding to the m = 102 largest values of 

E p ( k )  are marked with a +. 
This graphical representation allows us to see similarities and differences in the 

behavior of the different tests. Notice that the ellipse for EN has axes that are parallel to 

the (Ul, U2) axes. This is due to the diagonality of f N. Also, the ellipses for Ec and EI 

are very similar, almost overlapping. This similarity comes from the algebraic similarity of 

f and f I, which can be seen by comparing (3) with (6) and (7). 

The permutation distribution in Figure 3 is generated by one particular permutation of 

the data, namely, the permutation of the data that was observed (in Figure 2). This 

observed value of U = (-.76,3.86)' is marked with a 0. When this point falls outside 

one of the ellipses, then it is in the rejection region for the corresponding test. For each of 

the three ellipses, the legend shows the critical value for EM that the ellipse represents, 

followed by the observed value of EM for each test. Points outside the ellipse have larger 

values of EM than the critical value. If the is overlayed with a +, then it is in the 
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rejection region for Ep. For the permutation distribution in Figure 3, EN would reject IFlo 

while the other tests would not. 

3.4 Some Properties of EM 

To calculate the test statistic EM,  P must be invertable. This condition and the 

asymptotic distribution of EM are addressed in the following theorem. For all four 

methods the estimates are non-negative definite. The four corresponding tests all have the 

same limiting chi-squared distribution. 

Theorem 3.3. For M = C, P, I, and N, 

(a) IfM1 2 0 ,  
2) 

(b) when IFlo is true, EM + Xi as n + oo. 

The validity of (b) for EN also requires the underlying distribution to be normal. 

As the sample size increases, enumerating the entire permutation distribution becomes 

prohibitive. An alternative is to take a random sample from the permutation distribution. 

This was first proposed by Dwass (1957). The test remains exact and conditionally 

distribution-free, the only penalty being a loss of efficiency. The previous theorem 

suggests that the asymptotic distribution of EM may be used as an alternative to 

enumerating the permutation distribution, but relying on the asymptotic Xi distribution is 

only an approximation that has no guarantees for small and moderate sample sizes. 

Sampling from the permutation distribution is still an exact, distribution-free procedure. 

An interesting feature of the asymptotic distribution of Ec is found from the 

expectation of Ec over the permutation distribution, 

If we let be the ijth element of f (see the notation in Appendix A), then by 
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explicitly inverting f and writing out the quadratic form, we see that 

That is, regardless of the original data, the conditional expectation of Ec is 2 for every n, 

matching the mean of the limiting chi-squared distribution. 

4. AN EXAMPLE 

We will demonstrate the application of these tests with an example dataset. A study 

by Wenzel, Lehrnkuhl, Kubilis, Idris, and Pichlmayr (1997) evaluated the cardiopulmonary 

resuscitation (CPR) skills retention of 113 medical students. The students were given a 

CPR skills test following a two-hour basic life support class and again four to seven 

months later. There were several pertinent variables, but for this example we will 

concentrate on the rate of mouth-to-mouth ventilation (breaths per minute). The two- 

minute test was performed on a CPR manikin that automatically transferred the 

performance data to a computer. 

Figure 4 displays a scatterplot of the baseline versus retest results. Because of the 

discrete nature of the test scores there are many ties, hence some jittering (uniform noise) 

was added to allow overlapping points to be seen. Figure 5 shows boxplots of the 

baseline and retest scores with an individual's results for each test connected by a line. 

Again, because of ties these lines are jittered. The dashed lines indicate recommended 

limits (10-12) for the ventilation rate. While it appears that as a group the students' 

ventilation rate was slightly higher than recommended at baseline, this seemed to worsen 

for the retest. It appears that the group became slightly faster, but also more variable, due 

to a dramatic increase in some individuals' ventilation rate. 



For this example, the permutation distribution contains 2113 ( > points. Since 

enumerating that many points is impractical, we took a random sample of 1999 points 

from the permutation distribution and did the four permutation tests at the a = .05 

significance level. This is illustrated graphically in Figure 6. The observed value of 

U = ( - 2.11, - 21.42)' is marked by a (in the lower left corner) and is in the rejection 

region for all four tests. We can estimate a p-value for the test by noting the rank of the 

observed value of EM among its permutation distribution. Graphically for Ec, EI, and 

EN,  this is equivalent to using the observed value of U as the critical value to draw the 

ellipse and then counting how many points in the permutation distribution fall outside the 

ellipse. In this case, for all four tests, the estimated p-value is 1/2000 = .0005. 

Since the observed value of U in Figure 6 appears extreme for both the Ul and Uz 

components it seems that the difference between the baseline test and the retest is a 

combination of a location difference (as reported by Wenzel et al. 1997) and a scale 

difference. Therefore, the students' ventilation rates at retest months later were faster and 

more sporadic than immediately after their CPR instruction. 

5. EMPIRICAL POWER STUDY 

5.1 Description 

We designed a simulation study to compare the empirical powers of the proposed 

permutation tests among themselves and with several other tests that have been previously 

proposed. Besides the four statistics introduced in Section 3 (Ec, Ep,  EI, EN), the 

simulation included two conditionally distribution-free tests due to Kepner and Randles 

(1984) and Sen (1967) as well as the normal likelihood ratio test of Hsu (1940). The tests 

of Kepner and Randles (1984) and Sen (1967), denoted K and S, respectively, are rank- 

like tests that each combine a location statistic and a scale statistic in a quadratic form. 



These tests use the same permutations of the data as EM to form their reference 

distributions. 

Sen's test uses the overall ranking of the 2n paired values and combines the Wilcoxon 

rank-sum statistic with Mood's statistic for scale. The test of Kepner and Randles 

combines the Wilcoxon signed-rank statistic on the differences with Kendall's tau 

calculated from the paired differences and sums. In our simulation, both quadratic forms 

used the conditional estimates of the covariance matrix between the location and scale 

statistics. Kepner and Randles ( 1984) derived unconditional estimates of the covariance 

matrices for both K and S, but their simulation revealed that these estimates could 

occasionally be singular. The seventh competitor is the F for Hsu's (1940) normal LRT. 

There are five different families of bivariate distributions in our study. These are the 

normal, t, generalized Laplace, Cook-Johnson, and the lognormal. The multivariate 

generalized Laplace distribution is a family of elliptically contoured distributions that 

includes the multivariate Laplace, normal, and uniform distributions. In the bivariate case, 

its density function for uncorrelated components is 

where X > 0 is a shape parameter. A value of X = 5 provides a fairly light-tailed bivariate 

elliptically contoured distribution. 

The Cook-Johnson distribution, which is a type of multivariate uniform distribution, 

was introduced by Cook and Johnson (1981). In its bivariate form, the density function is 

for a, > 0 and 0 < ui 5 1, i = 1,2. Since the marginals are uniform on (0 ,  I ) ,  a variety 

of marginal distributions can be obtained by applying the appropriate inverse probability 

integral transformation. Normal marginals were used in our simulation. The bivariate t 



distribution used in the simulation has four degrees of freedom and the marginal shape 

parameters for the lognormal distribution are 0-1 = 0 2  = 1. 

These five distributions provide a wide range of bivariate distributions. Besides the 

bivariate normal distribution, we include a heavily skewed distribution (lognormal), a non- 

elliptically contoured distribution with normal marginals (Cook-Johnson), and two 

elliptically contoured distributions: one with heavier tails than the normal ( t)  and one with 

lighter tails (generalized Laplace). 

The simulation considered four small to moderate sample sizes: n = 8,12,16,20, and 

three different correlations: p = 0, .5, .8. For the six distribution-free tests, the entire 

permutation distribution was enumerated for n = 8. For the larger sample sizes, a random 

sample of 499 elements was drawn from the permutation distribution. The same sample 

was used for all six tests. A nominal significance level of a = .05 was used throughout 

(except for n = 8, where a = 1212~ = .046875). 

The marginal mean and variance of one variable, X1, is fixed at (p l ,  0:) = ( 0 , l )  in 

all cases while the mean and variance of X2 varies. The different values of p2 are 

(p207p21,p22) = (0,.25,.5) and the values of 0; are ( ~ ~ 0 , ~ ~ 1 , ~ ~ 2 )  = (1,2,3). 

Therefore, of the nine combinations, one value of (p2, 0-22) satisfies IFlo and eight imply 

E l .  The empirical power of each test is the percentage of the 10,000 pseudo-random 

samples for which the test rejected IFlo. All pseudo-uniform variates on (0 , l )  were 

obtained using the ran2 random number generator from Press, Teukolsky, Vetterling, and 

Hannery (1992, p. 282). A more detailed description of the simulation is available from 

the authors. 

5.2 Results 

Some of the results of the power study are summarized in Tables 1-3. The observed 

relative efficiencies of the tests are similar at all four sample sizes. Therefore, to simp@ 
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comparisons, only the results for n = 20 are reported. Each table contains the empirical 

power for each of the seven tests (based on the same 10,000 repeats) independently at 

every one of the 3 x 3 x 3 = 27 combinations of p, p2, and a;. The standard errors of 

the empirical powers range from .2% when No is true to a maximum of .5% when the true 

power is 50%. 

Table 1 presents the results for the bivariate normal distribution. The likelihood ratio 

F test is clearly superior when there is some variance difference in the marginals, while 

EN comes in second. When there is only a mean difference in the marginals, Ec and EN 

have slightly higher power than the F test. The differences among Ec,  Ep, and El. are 

small or insignificant, not consistently favoring any one of the three. This agreement is 

suggested by the example critical regions displayed in Figure 3. The pattern holds for the 

other four distributions, thus the remaining tables contain only Ec to save space. The full 

set of all tables may be obtained from the authors. 

Table 2 displays some results for the bivariate Cook-Johnson distribution with normal 

marginals. When p = 0, the marginals are uncorrelated and the Cook-Johnson 

distribution is exactly a bivariate normal distribution. The results for that special case are 

consistent with the results in Table 1, so we do not present them here. 

For p = .5, EN is the clear winner among the distribution-free tests when there is 

some difference in both means and variances. The other EM share second place, with K 

in most cases. When there is only a difference in marginal means, Ec does best. While 

there is no theoretical reason for F to achieve the nominal level of cu = .05, it appears to 

do so here. Indeed it is significantly more powerful than the other tests except when there 

is only a mean difference in the marginals. 

For p = .8, EN is again the convincing winner when there is a difference in both 

means and variances, with the other permutation tests forging ahead when there is only a 

difference in the marginal means. When there is any difference at all in marginal variances, 
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K makes a strong second place showing, although it is less efficient at the smaller sample 

sizes where Ep makes a stronger showing. 

Some of the results for the remaining three distributions are displayed in Table 3. 

These are given as ratios of empirical powers relative to EC.  We know that EM,  K ,  and 

S are exact 5% level tests and the simulation outcomes under the null hypothesis in Tables 

1 and 2 are consistent with this fact. The patterns in Table 3 are easier to see if we 

suppress the 27 redundant estimates of 1.00. For the generalized Laplace distribution in 

part (a) the clear winner among the tests achieving the nominal level is E N ,  while the 

other variants of EM claim second place. One interesting feature of here is that the F test 

is quite powerful in some cases despite being conservative. Similar to the bivariate normal 

distribution, the F test does best when there is some variance difference, but loses by a 

wider margin to EN when there is only a mean difference. 

Part (b) of Table 3 displays the results for the bivariate t distribution. When there is 

some difference in variances EN tends to be the winner, while Ec does well when there is 

only a mean difference. Although K is a strong second place, this is less pronounced in 

smaller samples where Ec tends to do better. The level of the F test is more than twice 

the nominal level. 

The results for the bivariate lognormal distribution are given in part (c) of Table 3. 

The clear winner in most cases is S, although Ec and EN tend to win on the diagonal of 

each of the three 3 x 3 sub-tables. Running a strong second is K ,  although this is a 

slightly better showing than in the smaller sample sizes. In reality, none of the tests do 

very well when there is both a small mean and small variance difference. The F test has 

even more serious difficulties with its level more than eight times the nominal level. 



6. CONCLUDING REMARKS 

The work here provides some new methods for testing the hypothesis of bivariate 

interchangeability with a location and scale parameterization. The graphical representation 

of the permutation distribution is offered as an additional way to interpret the results of 

the test and to provide more insight into the individual contributions of the location and 

scale components to the outcome of the test. We have recognized the early work of Hsu 

(1940) for the bivariate normal and have shown the equivalence of his LRT to that 

proposed by Bradley and Blackwood (1989). 

An example illustrated the new tests in detecting location and scale differences in 

bivariate data. It also demonstrated the utility of sampling from a permutation distribution 

when full enumeration is impractical. 

In our empirical power study, the proposed tests do quite well under all of the 

distributions except the heavily skewed lognormal distribution. In fact, EN does 

especially well in the elliptically contoured distributions, namely the normal, t, and 

generalized Laplace. This should not be surprising for the normal distribution since rN 
was derived under bivariate normality. It turns out that I? is diagonal for every 

distribution in the broad class of elliptically contoured distributions, not just the normal 

distribution (Anderson 1993, eq. 3.18). This explains the success of EN in the t and 

generalized Laplace distributions as well. 



APPENDIX A: PROOFS OF THEOREMS 

Proof of Theorem 3.1 

Lemma A.1. For any real numbers a l ,  a2,  . . . , a,, c l ,  c2, . . . , c,, 
2"-1 n 

(a) C c ai( - l )b f  = 0,  
k=O i=l 

Proof. The key is to understand the patterned behavior of b!. For illustration, 

consider Table A. 1 which contains values of 62 for i E {1 ,2 ,3 ,4 )  and 

k E {0 ,1 , .  . . , 24 - 1) .  Each column gives the binary representation of k .  Noting that 

6" ~ ( L k / 2 ~ - l ] ) ,  where 1x1 is the integer part of x and w is the indicator function 

0 fort  even 
w( t )  = 

1 fort  odd, 

consider the behavior of 6; for fixed i as k goes from 0 to 2" - 1. That is, consider a 

fixed row in Table A.1. It can be observed that incrementing k by 2i-1 will change the 

value of 6: (from zero to one, or one to zero). The result is that as k goes from 0 to 

2" - 1, 6"xhibits an alternating pattern of 2i-1 zeros followed by 2i-1 ones. This 

pattern is repeated 2n-i times. This patterned behavior of 6: leads to the following result. 

Result. Let i ,  j E { 1 , 2 ,  . . . , n) ,  i # j, be fixed. Then as k goes from 0 to 2n - 1,  

0 2"-l times 
1 2"-l times 

and 

(0,O) 2n-2 times 
( 0 , l )  2n-2 times 
(1,O) 2n-2 times 
( 1 , l )  2n-2 times. 



With this result, part (a) of the lemma can be written as 

and part (b) can be written as 

We can now prove the theorem. The quantity Bc is the population covariance matrix of 

the elements of U. If we let the ijth element of f be ? P I ,  then we can calculate each of 

the elements directly as 



where the last equality in each case comes from an application of part (b) of the lemma. 

Proof of Theorem 3.2 

To derive I?, notice that Ul and U2 are bivariate one-sample U-statistics of degrees 1 

and 2, respectively. The symmetric kernel for Ul is h ( l ) ( Y i )  = Di so that 
n n 

n -1 Ul = ( , )  C h ( l ) ( y i )  = : E D ,  =D. The symmetric kernel for U2 is 
i=l i=l 

h'2' (yi, yj) = 1 (Di - Dj)(Si - S j )  SO that 

Let yi = ( d i ,  si)' be an arbitrary fixed vector. These are involved in standard 

decompositions of U-statistics. Using the notation of Randles and Wolfe (1979), define 

the conditional expectations 



Introducing the centered differences and sums D: = Di - p~ and S,T = Si - p ~ ,  define 

the quantities 

2 <11' = v [hi1) (Y,)] = oD, 

1 [i2' = v [h y )  ( Y ~ ) ]  = -V[(Di - p D )  (Si - p S ) ]  
4 

- - 
1 2 

{ I E [ D : ~ s : ~ ]  - IE[D:s ; ]~)  = - (622 - oDS),  
4 4 

( 2 )  - ( 2 )  1 G -v[h2 ( y i , y j ) ]  = - ~ [ ( ~ i - ~ j ) ( s i - s ~ ) ]  4 

and 

Lee (1990) gives the variance of a U-statistic (Theorem 3, p. 12) and the covariance 

between two U-statistics (Theorem 2, p. 17) in terms of these [s. Using these theorems, 

the elements of I? can be found to be 



and 

Proof of Theorem 3.3 

(a) Each of the four methods of estimating will be considered separately. Considering 
,-. 1 --4 --2 M = N first, it is clear from (8) that IrN I = =oDos, which is clearly 

nonnegative. 

Next for M = C, (3) and an application of the Cauchy-Schwarz inequality 

implies that 

The proof for F I  follows easily from that for fc. Simply notice from (7) that 



The proof for f p ( k )  is a bit more complicated. The method of proof is valid for 

all 2" permutations of the data, therefore we concentrate on f p ( k )  calculated from the 

observed data, namely f ~ ( 0 ) .  

Begin by defming Ai = (D, - D) (s, - S ) ,  i = 1, . . . , n. Recalling the notation 
n 

n - used in (4), notice that z = i C  (Di - B) (si - 3) = ,o~s(o). Defme Q to be 
i=l 

the maximum likelihood estimate of the covariance matrix of the Dis and Ais. Then 

the elements of Q are 

and 

Now, by applying the Cauchy-Schwarz inequality as before, we see that 

But we can also write 



where the inequality results from the fact that (n-1)3 > - &. n-1 Another application of 

the Cauchy-Schwarz inequality shows that (3&,)5: - 622(0)) > 0. Adding this 

quantity inside the brackets in (A.l) and comparing the result to ( 5 )  leads to the 

required string of inequalities 

(b) Recall that in the proof of Theorem 3.2 it was noted that Ul and U2 are bivariate one- 

sample U-statistics of degrees 1 and 2, respectively. Then it follows from the work 

there and Theorem 3.6.9 of Randles and Wolfe (1979, p. 107) concerning the 

asymptotic normality of U-statistics that under Z0 

as n - oo, where A. = [12! ::;]a 

For M = C,  P, and I, it is easily seen from Sections 2.2.2 and 2.2.3 of Serfling 

(1980, pp. 68-69) that all the sample estimates in pM converge in probability to their 
P 

population counterparts and hence n f  - A. as n - oo. Furthermore, 
P 

If n M A;'. An application of Theorem 3.4.8 of Sen and Singer (1993, pp. 137- 

138) implies that 

asn-oo. 



D 
It only remains to be shown that under Wo and bivariate normality, EN --r Xi as 

n --+ m. In Appendix B it is established that A = (1 -  EN/^)"/^, where A is the 

likelihood ratio statistic under bivariate normality. Since the number of constraints 

imposed by WCJ is two (pl = p2 and a: = a:), then Wilk's likelihood ratio statistic, 

-2 1n A, is asymptotically Xi. But 

D 
and therefore EN - 

APPENDIX B: RELATIONSHIPS BETWEEN TESTS ASSUMING BIVARIATE 

NORMALITY 

This section establishes the equivalence of the two tests for equal means and variances 

in bivariate normal data proposed by Hsu (1940) and Bradley and Blackwood (1989). In 

addition, it is shown that these two test statistics are monotonic functions of EN. 

We will proceed by showing the relationship between EN and each of the two test 

statistics. This will allow us to then show the equivalence of the two normal theory tests. 

Before proceeding, it can be easily seen from (8) that 

n n - 2 
where 3; = x ~f and 3: = (si - S) 

i=l i=l 

Hsu (1940) gives a monotone function of the likelihood ratio, A, and derives its 

distribution. More specifically, after correcting a typographical error in his equation (9), 

he considers 



2 2 where (Fl , F2, sl , s2, r12) are the MLEs of (pl, p2, D: , a;, p).  To facilitate the change to 

our notation, notice that 

and 

Now, by expanding the numerator and denominator of (B.1) and adding and subtracting 

2 
(s: + s;) in the numerator, we get 

Therefore, L5 is a monotone function of EN. 

28 



The test proposed by Bradley and Blackwood (1989) comes from regressing the 

differences on the sums. They show that testing EL: ,& = PI = 0, where ,& and PI are 

the intercept and slope coefficients, respectively, is equivalent to testing Eo. The statistic 

for testing EL has an F  distribution with 2  and n - 2 degrees of freedom and is given by 

(5 D: - SSE) 1 2  
i=l F =  

SSE/(n - 2 )  
7 

n 2 h - A -  

where SSE = x (D, - Po - & S,) is the error sum of squares, Po = D - Pl S, and 
i=l 

Now, we can write SSE as 

Therefore, the F statistic is 

which is also a monotone function of EN 

Now, substituting EN = n ( l  - L5) &to (B.2), we see that 

Hsu (1940) showed that L5 has a beta distribution with parameters i ( n  - 2 )  and 1. 

29 



Applying the relationship between the beta and F distributions to L5, we see that 

Therefore, the LRT of Hsu (1940) and the F test given by Bradley and Blackwood (1989) 

are equivalent tests. 
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Table 1. Empirical power (in percent) based on 10,000 samples of size n = 20 from the 
bivariate normal distribution. 



Table 2. Empirical power (in percent) based on 10,000 samples of size n = 20 from the 
Cook-Johnson distribution with normal marginals. 



Table 3. Ratios of empirical powers relative to Ec based on 10,000 samples of size 
n = 20 from the (a) generalized Laplace, (b) Student t ,  and (c) lognormal distributions. 

(a) generalized Laplace 

EN P2o 1.01 1.07 1.00 1.08 1.07 1.07 
P2 1 1.21 1.09 1.09 1.20 1.14 1.14 1.18 1.20 1.10 
P22 1.22 1.20 1.16 1.14 1.23 1.18 1.03 1.15 1.11 

P20 .71 1.00 1.13 .75 1.01 1.15 .72 1.12 1.11 
F P21 .89 1.06 1.14 .93 1.13 1.20 1.00 1.26 1.13 

P22 .99 1.17 1.22 1.01 1.24 1.24 1.00 1.19 1.13 
(b) Student t with 4 df 

(c) lognormal 

EN p20 .56 .57 .53 
P2 1 .26 1.20 1.78 .32 1.08 
P22 .34 .38 .94 .59 .46 



Table A. 1. Values of 6; for i = l , 2 , 3 , 4 .  



Figure Captions 

Figure 1. Permutation distribution of U for the data in Figure 2(a). 

Figure 2. Scatterplots of (a) the random sample used to generate Figure 1 and (b) the 
same data transformed to differences and sums. 

Figure 3. Permutation distribution of U with the rejection regions for Ec, Ep,  EI ,  and 
EN depicted. The observed value of U marked with a El. 

Figure 4. Mouth-to-mouth ventilation rate (breaths per minute) of 113 medical students 
after a CPR skills course (baseline) and four to seven months later (retest). 

Figure 5. Mouth-to-mouth ventilation rate (breaths per minute) of 113 medical students 
after a CPR skills course (baseline) and four to seven months later (retest). Solid lines 
indicate individual profiles. Dashed lines indicate recommended limits. 

Figure 6. A random sample of 1999 points from the permutation distribution of U with 
the rejection regions for Ec, Ep,  EI ,  and EN depicted. The observed value of U is 
marked with a . 



Figure 1. Permutation distribution of U for the data in Figure 2(a). 

DIFFERENCE 

Figure 2. Scatterplots of (a) the random sample used to generate Figure 1 and (b) the 
same data transformed to differences and sums. 



Figure 3. Permutation distribution of U with the rejection regions for Ec, EP, El, and 
EN depicted. The observed value of U marked with a 0. 
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Figure 4. Mouth-to-mouth ventilation rate 
after a CPR skills course (baseline) and four 

(breaths per minute) of 113 medical students 
to seven months later (retest). 

BASELINE RETEST 

Figure 5. Mouth-to-mouth ventilation rate (breaths per minute) of 113 medical students 
after a CPR skills course (baseline) and four to seven months later (retest). Solid lines 
indicate individual profiles. Dashed lines indicate recommended limits. 



Figure 6. A random sample of 1999 points from the permutation distribution of U with 
the rejection regions for Ec, Ep,  EI ,  and EN depicted. The observed value of U is 
marked with a 0. 




