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ABSTRACT
To simultaneously detect differences in marginal locations and/or scales in bivariate data, a
set of permutation tests that are both exact and distribution-free are proposed. The tests
take advantage of the fact that only under the null hypothesis of equal means and variances
are the pairwise differences symmetrically distributed about zero and uncorrelated with the
pairwise sums. Two statistics for detecting the marginal location and scale differences are
combined in a quadratic form. A permutation distribution for this quadratic form follows
from considering all 2" conditionally equally likely sign changes on the differences.
Several methods of estimating the covariance matrix of the quadratic form are examined
including conditional and unconditional (plug-in) approaches. These new tests are
compared with the standard tests in the literature and are found, through simulation for
several families of bivariate distributions, to perform quite favorably. This paper also
brings to light the overlooked likelihood ratio test for equal means and variances in the
bivariate normal and shows its relationship to more recent approaches, including those

presented here.

KEY WORDS: Bioequivalence; Bivariate Symmetry; Conditional Test; Location-Scale

Test; Pitman-Morgan Test; Randomization.



1. INTRODUCTION

When the same experimental units are used in both the treatment and control groups
the result is often highly correlated paired observations. Situations like this naturally
involve the null hypothesis that Bell and Haller (1969) termed bivariate symmetry,
meaning that the group labels are in fact arbitrary. Perhaps a more descriptive term, used
by Sen (1967), is bivariate interchangeability. Several tests have been proposed over the
years that are designed to detect certain alternatives to the hypothesis of bivariate
interchangeability. Hollander (1971) proposed a nonparametric test to detect general
alternatives. Recently, Hilton and Gee (1997a,b) have given an efficient algorithm that
makes it more reasonable to get the exact distribution of Hollander’s test. Many
approaches, including the present one, concentrate on the alternative hypothesis of
unequal location and/or scale parameters in the marginal distributions. For bivariate
normal data, tests of this type have been proposed by Hsu (1940), Bell and Haller (1969),
and Bradley and Blackwood (1989). Sen (1967) and Kepner and Randles (1984)
proposed some rank-based conditionally distribution-free location/scale tests.

Section 2 introduces a new class of permutation tests designed to detect differences in
marginal Jocations and/or scales. Estimation of nuisance parameters is discussed in
Section 3. Various approaches are illustrated in Section 4 for a test-retest dataset. The
results of a simulation study, designed to compare the new tests to some of those
previously proposed, are presented in Section 5. On a historical note, we point out how
the test by Hsu (1940) has been overlooked in the literature. We derive an interesting
relationship between his test, the test proposed by Bradley and Blackwood (1989), and

one proposed here.



2. TEST PROCEDURE
2.1 Bivariate Interchangeability
The bivariate random variable X = (X7,X;) is said to possess bivariate
interchangeability if its cumulative distribution function (cdf) F( -, - ) satisfies

F(zy,z9) = F(z9,x1) (D

for every pair of real numbers (z;,z2). An important consequence of bivariate
interchangeability is that X; and X have the same marginal distributions, denoted by
X L X,

The approach taken here is to parameterize the problem in terms of location and scale
parameters. Bivariate interchangeability is required to hold for F(-, - ) under a null
hypothesis, Hy. While F(-, -) does not need to satisfy (1) under the alternative
hypothesis, the specific alternatives to bivariate interchangeability being tested are those of
location and scale differences.

To introduce location and scale parameters, suppose that X has finite second

Ty lil Lo —Ho
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//a:zdF(xl,xQ =0 and //3: dF (z1,29) =

for i = 1 and 2. Then, the expectation and variance of X is E[X] = u = (u1, ) and

2
VX=X = o P 01202 , respectively, where |p| < 1. The null hypothesis of
poioe 0§

moments and cdf F’ ( ) Without loss of generality, also assume that

interest is that X possesses bivariate interchangeability. This can be stated as

Ho: 1 = po, a% = ag, and F( -, - ) satisfies (1).

The alternative hypothesis is

Hy:p1 # pg Or 03 # 03,



that the marginals of X differ in either location or scale (or both). It is important to note

that under H,), X3 2 Xo, yet X7 and X9 may still be (and typically are) correlated.

2.2 Test Statistics

Iy —H1 Tog—H3
g ! o9

Suppose Xj,...,X, is a random sample of size n from F( ) where
X; = (X1;, Xo;)'. Two test statistics, one designed to detect location differences and the
other to detect scale differences, can be used to measure the sample’s departure from Hp.

It is useful to transform the paired data into their pairwise differences and sums,

Y; = (X1 — Xoi, X1 + Xoi) = (D;, S5),

for i = 1,...,n. Clearly, a suitable function of the differences (such as D) can be used to
detect differences in marginal location since E[D;] = 1 — po.
Pitman (1939) and Morgan (1939) observed for the bivariate normal distribution that

the resulting covariance is

C[D;, S;] = C[Xq; — Xoi, X1; + Xoi]
Cl X1, X15] + C[ X1, Xo;] — C[Xg;, X1:] — C[Xo;, Xoi]
2

Ul - 0-%.

|

Hence, the marginal variances are equal if and only if the differences and sums are
uncorrelated. In fact, this is true for any bivariate distribution with finite second moments.
Therefore, the difference in scale can be judged by measuring the covariance between the
differences and sums. With this in mind, we define the statistic U = (Uy,U,)’, where

— n — —
Uiy=D and Us = n—ETZ (Di — D) (Si — S’). This pair can be used to simultaneously
i=1

detect differences in marginal location or scale.

2.3 Permutation Distribution
The null hypothesis of interchangeability implies that a permutation distribution for U

can be constructed from all 2" interchanges of Xi; and Xo;, 2 =1,...,n. This is
3



equivalent to considering all 2" possible signs on the differences. Recalculating U for each
of the conditionally equally likely 2" sign changes of the differences will yield a
permutation distribution of 2 points in R?. This permutation distribution is illustrated in
Figure 1 for the dataset consisting of 10 pairs of observations displayed in Figure 2(a).
This permutation distribution contains 2! = 1024 points. Figure 2(b) displays the
differences and sums from the data in Figure 2(a) that are used to calculate U; and Us.

The testing principle here is that Hy is to be rejected if U is “extreme” in this
permutation distribution. Under Hy E[U] = 0, hence the farther U is from the origin
compared to the other points in the permutation distribution, the more “extreme” it is.
The distance of U from the origin will be measured by an estimated Mahalanobis distance
given by the quadratic form £ = U’ T'~'U, where T is an estimate of ' = V[U], the 2 x 2
covariance matrix of U.

The following notation will prove helpful in constructing a reference distribution for
E. Define b¥ to be the i digit (from the right) in the unique binary representation of the
integer k. The binary expansion of an integer index between 0 and 2™ — 1 consists of n
digits, which can be used to identify the sign of each D;. This representation is useful for
identifying each of the 2™ permutations of the data.

Now, let

Y=[Y: Ys - Y= Dy Dy --- Dn:|

S Sy - S,
be the 2 x n data matrix of observed differences and sums. In a similar fashion, define the
k™ permutation of the data as

k k k
Yy = (-V"Dy (=)D, - (—1)b"Dn]

S; Sy S,

for ¥k =0,1,...,2" — 1. Notice that Y ) (b? =0,2=1,...,n) is the observed value of
the random variable Y. Then Y = {Yy)|k =0,1,...,2" — 1} forms the set of all
4



equally likely data matrices conditional on the observed data matrix Y. It should be
noted that the sums remain unchanged for every permutation of the data.
Next define Uy to be the statistic U calculated from Y 3y, the kh permutation of the

observed data. This can be written as

1 1 bez
Uy = [Uw‘“)} — ”2:1( )
Vet LS (-1)%D;(Si - 9)
=1

Notice that Uy ), the sample covariance between the permuted differences and sums, can
be written without using the mean of the permuted differences. Now let
U={Upl|k=0,1,...,2" — 1} be the set of 2" conditionally equally likely outcomes of
U = (U;,Us). The 219 points in Figure 1 form such a permutation set of values of U.
Again, U(0> is the observed value of the random variable U.

In the next section, four methods of estimating I" will be considered. Estimates of T"
are denoted by T M, where M identifies the particular estimation method. For a specific
estimate of I' the distance from a point in U/ to the origin is determined by
Eypy = U'(k> f‘;llU(kV k=0,1,...,2" — 1. The conditional permutation distribution of
Ey is givenby £ = {Epy| k£ = 0,1,...,2" — 1}. Again, Ey () is the observed value of
the random variable Ejy.

As noted earlier, values of U far from the origin are evidence against Hy, therefore
large values of E; are evidence in favor of H;. Conditional on the observed data, the
elements of Y, U, and £ are equally likely under Hp (Kepner and Randles 1982). Hence
foreach £ = 0,1,...,2" — 1, Pg[Ey = Epry| Ho] = 27", where the probability is taken
with respect to £. A conditionally distribution-free test of Hy with exact nominal level

a = m /2" is obtained by rejecting Ho when E} (o) is one of the m largest elements in £.



Another interpretation of this test can be seen by reconsidering Figure 1 which
graphically depicts /. Of the 2" points in U/, if Ug), the observed value of U, is one of the

m furthest points from the origin (measured in Mahalanobis distance) then Hj is rejected.

3. ESTIMATING T’
The test proposed in the previous section depends on I, the covariance matrix of U.
Since in practice I will not be known, it is necessary to estimate it from the data. In this
section, four methods of estimating I' are considered along with some properties of the

associated test statistics Eps. The proofs to all the theorems appear in Appendix A.

3.1 A Conditional Estimate of T
Conditional on the observed data, Uf provides a distribution from which an estimate of
T can be calculated directly. Note that [Ey[U] =0 [Lemma A.1(a)] and define the

conditional estimate of I" by

n_1
Po = VU] = zinz (U — EulU]) (U - EU[U])'
k=0
. (2)
1 2m7-1
= z_n; Uy Upsy-

By considering U to be the conditional population from which U is drawn, T'¢ is the
conditional population covariance matrix of U.

The definition in (2) is a computationally cumbersome method of calculating Tc.
This requires calculating a 2 X 2 covariance matrix from 2" points. The following

theorem gives an alternate and more efficient way to calculate Tc.



Theorem 3.1. In (2), f‘c can be written as

72 D? o DI(S: - 9)
T'c = T = ., 3)
n(nl—l)i:1 D?? (SZ - S) (n_ll)z et D;‘Z (Sz - S)

This simplifies the calculation of fg greatly in that the covariance matrix can be
calculated from the original » points rather than the full permutation distribution of 2"

points.

3.2 Unconditional Estimates of T"
Another approach to estimating I" is to express it in terms of the moments of the
differences and sums and then estimate these from the data. The following theorem gives

I in these terms.
2
Theorem 3.2. If T =V[U]= {711 712} and V[Y;] = {"D "Df}, then
Yo1  7Ye2 Ops Og
Y11 = 0% /1, M2 = Y21 = 691/m, and

gy = (n—1)bes — (n — 2)01235 + O'QDO'%
n(n—1) ’

provided 522 < 00, where 620_ = IE[(I)z -~ /JD)Q(Sz' — /Jg)a] .

Now an unconditional estimate of I" can be obtained by replacing the unknown
parameters in I' by their appropriate sample estimates. This estimate is unconditional in
the sense that I' is derived without dependence on the conditional permutation
distribution. This “plug-in” method will result in a different unconditional estimate of T’
for each Yy € ), call it T P(k)- More formally, define the following estimates based on

Y(k):



o) ;,_1( ¥ D; = Uy,
~ 1 & 2
03)(@ = 1;[(—1) ‘D ”D(k)} ,
~ 1 & 2
U%:n—1;(si_s) : 4)
~ 1 <
ODS(ky = o — IZ[ —Ep k)] (S S) Ua(ky,

/(S\Qa(k> = lzn: [(—1)b’l‘D¢ — ﬁD(@]Q(Si — g)a, a=1,2.

n=

Then the “plug-in” estimate of T" is given by

~2 =~

N 1| 9pw 021 (k)

Loy = — [A ~ N o : (5)
b1y baarky — [(n— 2)8Dsy — Opwy 8] /(n — 1)

Thus the elements of £ are Ep ) = U'<k>1“ %k)UUv)’ kE=0,1,...,2" — 1.

An advantage of the conditional estimate of I" in the previous section is its invariance
over Y. That is, if any element of Y were the observed value of the data, the resulting
permutation distribution, and thus f‘c, would be unchanged. Hence f‘c only needs to be
calculated once rather than 2" times as I'p does. This has obvious computational
advantages.

A similar invariant version of T'p can be obtained by more strongly imposing the null
hypothesis in the estimation of I'. A common testing principle is to use the information in
the null hypothesis to estimate nuisance parameters. For example, when testing whether a
binomial proportion p is equal to a hypothesized value py, it is not uncommon to use pp
rather than the observed proportion P in the estimation of V[p].

Under the null hypothesis, up = ops = 0. If these null values are used in the

estimation of the parameters in I, then the estimates in (4) become



1 < —
6% = —> (Si-5)", (6)

These estimates are invariant over ), hence, the invariant “plug-in” estimate of I" is given
by

1|3% 691

ff R e = PP
n|éa1 b9 +0p0s/(n—1)

(7
~ .
and the elements of & are Ey ) = U’<k>I‘I Uy, k=0,1,...,2" — 1.
If the underlying distribution from which the data are generated is bivariate normal,
then so too are the differences and sums. Since the differences and sums are uncorrelated
under Hj, bivariate normality implies that they are in fact independent. Therefore, under

the null hypothesis and bivariate normality

891 = E[(D; — up)*(S; — ps)| Ho]
=E[(D; — pp)*| Ho] BI(S; — ps)| Ho] = 0

and

ba2 = E[(D; — up)*(S; — ps)?| Ho)
= E[(D; — pp)*| Ho] E[(S; — ps)?| Ho] = oh0%.

Thus, I" simplifies to

which can be estimated by



AN _ | dp/n 0 )

P - ?
0 3%5%/(n—1)

$-1
and the elements of £ are Eyy = U'<k>1"N U, k=01,..,2"—1
Even if the underlying distribution is not normal, the elements of £ are conditionally
equally likely since they are functions of the elements of I/ and the mapping from U/ to £
(through T'y) does not depend on the permutation distribution. Hence, regardless of the

underlying distribution, a test based on E is conditionally distribution-free.

Historical Note. The likelihood ratio test of Hy under bivariate normality was given
by Hsu (1940). Even though it was published in The Annals of Mathematical Statistics
and is such a fundamental problem, it has never been referenced in the bivariate symmetry
literature and appears to be essentially unrecognized. The only prominent publication that
we found referencing it is Kotz, Johnson, and Read (1985, p. 740). Bradley and
Blackwood (1989) proposed a test of Hy assuming bivariate normality that consists of
regressing the differences on the sums and testing parameters of that regression model.
Hsu’s likelihood ratio test (LRT) was apparently unknown to Bradley and Blackwood,
and in Appendix B we see that these two tests are equivalent. In addition, it is shown that
these two statistics are monotone functions of E. Hence, Ey is a randomization version

of the bivariate normal LRT.

3.3 Rejection Region
Figure 1 is an example graphical depiction of U/, the permutation distribution of U.
Each point in the scatterplot represents a calculated value of U; and U, from one of the 2"
permutations of the observed data. The rejection region for each test is determined by the
m points corresponding to the largest values of Epp) = U'<k> f‘;{lU ky?
k=0,1,...,2" — 1, where & = m/2" is the nominal level of the test. When M = C, I,
10



or N, Tj; is the same for all permutations of the data (k = 0,1,...,2" — 1), hence the
distance from the origin to each point in {{ is being measured using the same metric.
Therefore, constant values of E), define equidistant points. Since constant values of a
quadratic form define an ellipse, an elliptical contour can be drawn with constant distance
equal to the 100(1 — o)™ percentile of the Epry distribution. Points outside this ellipse
will correspond to the m largest values of Ej; ) and constitute the rejection region for
the test.

Different estimates of I' will lead to different ellipses, defining the appropriate
rejection regions. The three ellipses for F¢, Er, and En are shown in Figure 3 for the
permutation distribution in Figure 1. These ellipses use oo = 102/219 = .0996.

Since T'p, the unconditional plug-in estimator, changes for each permutation of the
data, an ellipse will not define the rejection region. But in Figure 3 the rejection region for
E'p is depicted in another way; the points corresponding to the m = 102 largest values of
Epxy are marked with a +.

This graphical representation allows us to see similarities and differences in the
behavior of the different tests. Notice that the ellipse for Ex has axes that are parallel to
the (U1, Us) axes. This is due to the diagonality of Tn. Also, the ellipses for Ec and Ef
are very similar, almost overlapping. This similarity comes from the algebraic similarity of
f‘c and T 1, which can be seen by comparing (3) with (6) and (7).

The permutation distribution in Figure 3 is generated by one particular permutation of
the data, namely, the permutation of the data that was observed (in Figure 2). This
observed value of U = (—.76,3.86)" is marked with a [J. When this point falls outside
one of the ellipses, then it is in the rejection region for the corresponding test. For each of
the three ellipses, the legend shows the critical value for Ej, that the ellipse represents,
followed by the observed value of E,, for each test. Points outside the ellipse have larger

values of Ej; than the critical value. If the [J is overlayed with a 4+, then it is in the

11



rejection region for Ep. For the permutation distribution in Figure 3, £y would reject H)

while the other tests would not.

3.4 Some Properties of Ejs

To calculate the test statistic Ejy, T must be invertable. This condition and the
asymptotic distribution of Ej; are addressed in the following theorem. For all four
methods the estimates are non-negative definite. The four corresponding tests all have the

same limiting chi-squared distribution.

Theorem 3.3. For M =C, P, I, and N,
@ |Tu|>0,
(b) when Hj is true, Epy 2» x§ as n — 00.

The validity of (b) for £ also requires the underlying distribution to be normal.

As the sample size increases, enumerating the entire permutation distribution becomes
prohibitive. An alternative is to take a random sample from the permutation distribution.
This was first proposed by Dwass (1957). The test remains exact and conditionally
distribution-free, the only penalty being a loss of efficiency. The previous theorem
suggests that the asymptotic distribution of Ej; may be used as an alternative to
enumerating the permutation distribution, but relying on the asymptotic xg distribution is
only an approximation that has no guarantees for small and moderate sample sizes.
Sampling from the permutation distribution is still an exact, distribution-free procedure.

An interesting feature of the asymptotic distribution of Es is found from the

expectation of E¢ over the permutation distribution,

12
BelEol = 57y Uy T'0,,,.
k=0

~~

If we let ,yg,j) be the ijM element of T'¢ (see the notation in Appendix A), then by
12



explicitly inverting T'c and writing out the quadratic form, we see that

n1 772 22 2 (1,1 (1,2
Ee[Ep] = 1 X3 UL 36 ” + U e = 20Uy Uppy ™
elBc] = 5. AODARD _ ALDA(12)

k=0 Yo Ve Yo Yo
R+ sy
o (1,1)2(2,2) ~(1,2) ~(1,2) -

YoAe — A e
That is, regardless of the original data, the conditional expectation of E¢ is 2 for every n,

matching the mean of the limiting chi-squared distribution.

4. AN EXAMPLE

We will demonstrate the application of these tests with an example dataset. A study
by Wenzel, Lehmkuhl, Kubilis, Idris, and Pichlmayr (1997) evaluated the cardiopulmonary
resuscitation (CPR) skills retention of 113 medical students. The students were given a
CPR skills test following a two-hour basic life support class and again four to seven
months later. There were several pertinent variables, but for this example we will
concentrate on the rate of mouth-to-mouth ventilation (breaths per minute). The two-
minute test was performed on a CPR manikin that automatically transferred the
performance data to a computer.

Figure 4 displays a scatterplot of the baseline versus retest results. Because of the
discrete nature of the test scores there are many ties, hence some jittering (uniform noise)
was added to allow overlapping points to be seen. Figure 5 shows boxplots of the
baseline and retest scores with an individual’s results for each test connected by a line.
Again, because of ties these lines are jittered. The dashed lines indicate recommended
limits (10-12) for the ventilation rate. While it appears that as a group the students’
ventilation rate was slightly higher than recommended at baseline, this seemed to worsen
for the retest. It appears that the group became slightly faster, but also more variable, due

to a dramatic increase in some individuals’ ventilation rate.

13



For this example, the permutation distribution contains 2113 ( > 1034) points. Since
enumerating that many points is impractical, we took a random sample of 1999 points
from the permutation distribution and did the four permutation tests at the o = .05
significance level. This is illustrated graphically in Figure 6. The observed value of
U = (—2.11, — 21.42)" is marked by a (I (in the lower left corner) and is in the rejection
region for all four tests. We can estimate a p-value for the test by noting the rank of the
observed value of E),; among its permutation distribution. Graphically for E¢, E;, and
Ey, this is equivalent to using the observed value of U as the critical value to draw the
ellipse and then counting how many points in the permutation distribution fall outside the
ellipse. In this case, for all four tests, the estimated p-value is 1/2000 = .0005.

Since the observed value of U in Figure 6 appears extreme for both the U; and U,
components it seems that the difference between the baseline test and the retest is a
combination of a location difference (as reported by Wenzel et al. 1997) and a scale
difference. Therefore, the students’ ventilation rates at retest months later were faster and

more sporadic than immediately after their CPR instruction.

5. EMPIRICAL POWER STUDY

5.1 Description

We designed a simulation study to compare the empirical powers of the proposed
permutation tests among themselves and with several other tests that have been previously
proposed. Besides the four statistics introduced in Section 3 (FE¢, Ep, Er, Ey), the
simulation included two conditionally distribution-free tests due to Kepner and Randles
(1984) and Sen (1967) as well as the normal likelihood ratio test of Hsu (1940). The tests
of Kepner and Randles (1984) and Sen (1967), denoted K and S, respectively, are rank-

like tests that each combine a location statistic and a scale statistic in a quadratic form.

14



These tests use the same permutations of the data as FEj, to form their reference
distributions.

Sen’s test uses the overall ranking of the 2n paired values and combines the Wilcoxon
rank-sum statistic with Mood’s statistic for scale. The test of Kepner and Randles
combines the Wilcoxon signed-rank statistic on the differences with Kendall’s tau
calculated from the paired differences and sums. In our simulation, both quadratic forms
used the conditional estimates of the covariance matrix between the location and scale
statistics. Kepner and Randles (1984) derived unconditional estimates of the covariance
matrices for both K and S, but their simulation revealed that these estimates could
occasionally be singular. The seventh competitor is the £ for Hsu’s (1940) normal LRT.

There are five different families of bivariate distributions in our study. These are the
normal, ¢, generalized Laplace, Cook-Johnson, and the lognormal. The multivariate
generalized Laplace distribution is a family of elliptically contoured distributions that
includes the multivariate Laplace, normal, and uniform distributions. In the bivariate case,

its density function for uncorrelated components is

A ()
f($17$27)\)— 27TF(2/)\)6 )

where A > 0 is a shape parameter. A value of A\ = 5 provides a fairly light-tailed bivariate
elliptically contoured distribution.
The Cook-Johnson distribution, which is a type of multivariate uniform distribution,

was introduced by Cook and Johnson (1981). In its bivariate form, the density function is

a+1 1) - —1/a —(a+2)
flug,ug;0) = o (U1U2)( Ye) 1<u11/a+u21/ —1) )

fora>0and 0 <u; <1,i=1,2. Since the marginals are uniform on (0, 1), a variety
of marginal distributions can be obtained by applying the appropriate inverse probability

integral transformation. Normal marginals were used in our simulation. The bivariate ¢

15



distribution used in the simulation has four degrees of freedom and the marginal shape
parameters for the lognormal distribution are oy = g9 = 1.

These five distributions provide a wide range of bivariate distributions. Besides the
bivariate normal distribution, we include a heavily skewed distribution (lognormal), a non-
elliptically contoured distribution with normal marginals (Cook-Johnson), and two
elliptically contoured distributions: one with heavier tails than the normal (¢) and one with
lighter tails (generalized Laplace).

The simulation considered four small to moderate sample sizes: n = 8, 12, 16, 20, and
three different correlations: p = 0,.5,.8. For the six distribution-free tests, the entire
permutation distribution was enumerated for n = 8. For the larger sample sizes, a random
sample of 499 elements was drawn from the permutation distribution. The same sample
was used for all six tests. A nominal significance level of & = .05 was used throughout
(except for n = 8, where o = 12/2% = .046875).

The marginal mean and variance of one variable, X7, is fixed at (u1,0%) = (0,1) in
all cases while the mean and variance of X, varies. The different values of po are
(120, p21, po2) = (0,.25,.5) and the values of o2 are (02,,05;,0%) = (1,2,3).
Therefore, of the nine combinations, one value of (us,03) satisfies Hp and eight imply
‘H1. The empirical power of each test is the percentage of the 10,000 pseudo-random
samples for which the test rejected Hy. All pseudo-uniform variates on (0,1) were
obtained using the ran2 random number generator from Press, Teukolsky, Vetterling, and

Flannery (1992, p. 282). A more detailed description of the simulation is available from

the authors.

5.2 Results
Some of the results of the power study are summarized in Tables 1-3. The observed

relative efficiencies of the tests are similar at all four sample sizes. Therefore, to simplify
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comparisons, only the results for n = 20 are reported. Each table contains the empirical
power for each of the seven tests (based on the same 10,000 repeats) independently at
every one of the 3 x 3 x 3 = 27 combinations of p, uy, and 2. The standard errors of
the empirical powers range from .2% when ‘Hj is true to a maximum of .5% when the true
power is 50%.

Table 1 presents the results for the bivariate normal distribution. The likelihood ratio
F' test is clearly superior when there is some variance difference in the marginals, while
Ex comes in second. When there is only a mean difference in the marginals, E¢ and E
have slightly higher power than the F' test. The differences among £, Ep, and E; are
small or insignificant, not consistently favoring any one of the three. This agreement is
suggested by the example critical regions displayed in Figure 3. The pattern holds for the
other four distributions, thus the remaining tables contain only E to save space. The full
set of all tables may be obtained from the authors.

Table 2 displays some results for the bivariate Cook-Johnson distribution with normal
marginals. When p =0, the marginals are uncorrelated and the Cook-Johnson
distribution is exactly a bivariate normal distribution. The results for that special case are
consistent with the resuits in Table 1, so we do not present them here.

For p = .5, Ej is the clear winner among the distribution-free tests when there is
some difference in both means and variances. The other E); share second place, with K
in most cases. When there is only a difference in marginal means, E- does best. While
there is no theoretical reason for F' to achieve the nominal level of o = .05, it appears to
do so here. Indeed it is significantly more powerful than the other tests except when there
is only a mean difference in the marginals.

For p = .8, En is again the convincing winner when there is a difference in both
means and variances, with the other permutation tests forging ahead when there is only a

difference in the marginal means. When there is any difference at all in marginal variances,
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K makes a strong second place showing, although it is less efficient at the smaller sample
sizes where E'p makes a stronger showing.

Some of the results for the remaining three distributions are displayed in Table 3.
These are given as ratios of empirical powers relative to E¢c. We know that Fy,, K, and
S are exact 5% level tests and the simulation outcomes under the null hypothesis in Tables
1 and 2 are consistent with this fact. The patterns in Table 3 are easier to see if we
suppress the 27 redundant estimates of 1.00. For the generalized Laplace distribution in
part (a) the clear winner among the tests achieving the nominal level is Fy, while the
other variants of Eys claim second place. One interesting feature of here is that the F' test
is quite powerful in some cases despite being conservative. Similar to the bivariate normal
distribution, the F' test does best when there is some variance difference, but loses by a
wider margin to E when there is only a mean difference.

Part (b) of Table 3 displays the results for the bivariate ¢ distribution. When there is
some difference in variances E tends to be the winner, while E does well when there is
only a mean difference. Although K is a strong second place, this is less pronounced in
smaller samples where F¢ tends to do better. The level of the F' test is more than twice
the nominal level.

The results for the bivariate lognormal distribution are given in part (c) of Table 3.
The clear winner in most cases is .S, although E¢ and E}y tend to win on the diagonal of
each of the three 3 x 3 sub-tables. Running a strong second is K, although this is a
slightly better showing than in the smaller sample sizes. In reality, none of the tests do
very well when there is both a small mean and small variance difference. The F' test has

even more serious difficulties with its level more than eight times the nominal level.
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6. CONCLUDING REMARKS

The work here provides some new methods for testing the hypothesis of bivariate
interchangeability with a location and scale parameterization. The graphical representation
of the permutation distribution is offered as an additional way to interpret the results of
the test and to provide more insight into the individual contributions of the location and
scale components to the outcome of the test. We have recognized the early work of Hsu
(1940) for the bivariate normal and have shown the equivalence of his LRT to that
proposed by Bradley and Blackwood (1989).

An example illustrated the new tests in detecting location and scale differences in
bivariate data. It also demonstrated the utility of sampling from a permutation distribution
when full enumeration is impractical.

In our empirical power study, the proposed tests do quite well under all of the
distributions except the heavily skewed lognormal distribution. In fact, Ey does
especially well in the elliptically contoured distributions, namely the normal, £, and
generalized Laplace. This should not be surprising for the normal distribution since Iy
was derived under bivariate normality. It turns out that I' is diagonal for every
distribution in the broad class of elliptically contoured distributions, not just the normal
distribution (Anderson 1993, eq. 3.18). This explains the success of En in the ¢ and

generalized Laplace distributions as well.
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APPENDIX A: PROOFS OF THEOREMS

Proof of Theorem 3.1

Lemma A.1. For any real numbers a1, a9, ...,a,,¢1,C2,...,Cn,
2"—1 n
@ ¥ Ya(-1)" =0,
k=0 i=1
2"—1[ n k n k n
® [Z ai(—l)bi} > ci(—1)% | =23 aic;.
k=0 li=1 =1 i=1

Proof. The key is to understand the patterned behavior of b¥. For illustration,
consider Table A.1 which contains values of bf for i€{1,2,3,4} and
k€ {0,1,...,24 — 1}. Each column gives the binary representation of k. Noting that

b¥ = w(|k/2°71]), where |z] is the integer part of z and w is the indicator function

() = 0 forteven
WE=11 fortodd,

consider the behavior of bf for fixed ¢ as k goes from 0 to 2™ — 1. That is, consider a
fixed row in Table A.1. It can be observed that incrementing k by 2¢~! will change the
value of bf (from zero to one, or one to zero). The result is that as k goes from 0 to
2" — 1, b¥ exhibits an alternating pattern of 2~ zeros followed by 2! ones. This

pattern is repeated 2" times. This patterned behavior of b leads to the following result.

Result. Leti,j € {1,2,...,n},i # j, be fixed. Then as k goes from 0 to 2" — 1,

or _ [0 27 times
11 2771 times

and
(0,0) 272 times
(6F, bt) = (0,1) 22 times
21y (1,0) 2" times
(1,1) 272 times.



With this result, part (a) of the lemma can be written as

2"—1 n n 2"-1 n
S Y a(-1 = z[aizenbf] e
k=0 i=1 =1 k=0

=1
=Y a2 -27") =0,
1=1

and part (b) can be written as

2"—1{ n n o1l n m
Z[Zai(—lf’ﬂ [Z%(—l)"?} =33 w1

k=0 [ i=1 =1 k=0 i=1 j=1
b+b% = 2bF
—ZZ% Z< P aici(—1)™
=1 j=1 k=0 i=1
i#j
—Zzazc] (2772 (=1)° + 2. 272 (=1)! 4272 (—1)? +2”Zazcz
i=1 j=
i#j
_ZZa,cJ 2" —2 _gn-l 4 gn- 2 +2"Z:azc2 =2" Z:azc2
=1 j=1
i#j

We can now prove the theorem. The quantity T'c is the population covariance matrix of
the elements of U. If we let the 77 element of T'¢: be ﬁg’j), then we can calculate each of

the elements directly as

N 1 2n—1 2"—1 n k 1 .
T = 32 Ul = Exlb |72 (D" D;

K=0 =1
1S~ 2
=m0k
1 7=l
Fo?) = 3(51)— ZUl k) Usky
zﬂ 1[4 n

2}1“-”55§}4ﬁ@@—@}
=1

= (n_l ZDQS S),
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and

121

~(2,2) 2
’Y(C 2nZU2
k=0

1 2n—1 1 n 1 n . .
1L SN DS, - s)H SN 1)¥D,(5,- 3)

2’”Lk:0 n—l21 n—1

n

> Di(si-58)’,

B (n— 1)2 i=1

where the last equality in each case comes from an application of part (b) of the lemma.

Proof of Theorem 3.2

To derive T, notice that U; and U, are bivariate one-sample U-statistics of degrees 1
and 2, respectively. The symmetric kernel for U; is h(V(Y;) = D; so that
U, = (’;)_lilh(l)(Yi) = %Xn:lDz =D. The symmetric kernel for U, is

h®) (Yz,YJ) = %(Dz — .DJ)(SZ — SJ) so that

U=, ) ;}:ﬂh (YY) = o . 1>; jZI%(Di—Dj)(si—sj)
= ZZ(DS ~— D;S;) (n_ S [n‘” D.S 25?]
_ L SND,-D)(s:-9).
n—ll.:1

Let y; = (d;, si)' be an arbitrary fixed vector. These are involved in standard
decompositions of U-statistics. Using the notation of Randles and Wolfe (1979), define
the conditional expectations
1
hi" (%)

2
R (y:)

E[r(Y,)|Y;: =yi] = d;,

E[R®(Y;, Y)Y =y] =E %(dz' — Dj)(si — S;)

|

[(d: — pp)(si — ps) +aps],

DN | =

i
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and
2 1
hy? (v, ¥) = B[ (Y3, Y)) | Vs = v, Yy = yj] = 5 (di — dj)(si — 3,).

Introducing the centered differences and sums D} = D; — pp and S} = S; — pg, define

the quantities
v[r{(v))] = o},
V[P (%] = $VID; - m(& - ps)]

=]
=V
(BIDFS1%] ~ BIDISI} = 4 (60 — ohs).
= VA

==

(¥:, ;)| = ZVID: - Di)(Si — 5))

V[(D; - D3) (87 - 55)]

I

V[D;S; — D;S; — D;S; + D;S;]

e e

@“mﬁ—m$—m$+m$ﬂ
* Ik * vk * 1k * Ik 2
—E[D;S; — D;S; — D}S; + D;S;] }
1
— Z{IE[DZQS;Q —2D}28; 8} — 2D} D;S;? + 4D} S; D} S; + D;* Sy
—2D;D;S;* + D*S;* — 2D S;S; + D*S;*] — (20ps)°}

1 1
=1 (2522 + QUQDJ% +4a%5 - 40%3) =3 (522 + J%a%),
and
1 * Tk
09 =[P (v, n(v5)] = C[Di, 5 (DiSf +ops)

= ~CID;, ;7] = {E[D;S;] - BIDIIEID; 571}

I

1
—097.
5921

Lee (1990) gives the variance of a U-statistic (Theorem 3, p. 12) and the covariance
between two U-statistics (Theorem 2, p. 17) in terms of these {s. Using these theorems,

the elements of I" can be found to be
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c=1
B e AT,
— ﬁ [(TL — 1)522 — (TL - 2)UZDS + O%U%] )

and

ny-1/2\ (n—2 5
“ZZC[UI’UQ]:(J (1)(1—1) =

Proof of Theorem 3.3

(a) Each of the four methods of estimating I" will be considered separately. Considering

M =N first, it is clear from (8) that |I‘N| s 1) a4D025, which is clearly

nonnegative.
Next for M = C, (3) and an application of the Cauchy-Schwarz inequality

implies that
|To| = {ZDQI lZDQ (S;-9) ] [ZDQ (S; — s] > 0.
The proof for T'; follows easily from that for T'c. Simply notice from (7) that
1 % A 1/ 0n
Ty] = E{EQD [89g +55H0%/(n —1)] — 6;1} > — (3%522 _ 531)
[ZDZ [ZDQS E) } [ZDZS s]

_]_ ~
=—2>|rc| >0,
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The proof for r p(x)y is a bit more complicated. The method of proof is valid for
all 2" permutations of the data, therefore we concentrate on r p(xy calculated from the
observed data, namely T P(0)-

Begin by defining A; = (D; — D)(S; — S),i = 1,...,n. Recalling the notation
used in (4), notice that A = %Zn:l(Dl —D)(S; — S) = 5 ps(ny. Define ® to be

the maximum likelihood estimate of the covariance matrix of the D;s and A;s. Then

the elements of © are

171

012 = EZ(Df —D)(4;-4)==> (D;—D)A

N

1 - ) _%
= >3 (D: = D)*(S: = 5) = Buo.

and
~ 1 —\ 2 1 2 =2 4 n? ~2
0 =—§ A — A =~EA1~—A =6 -0 .
* ni:l( ) "4 20 n—1)2 Dso)

Now, by applying the Cauchy-Schwarz inequality as before, we see that

8] = 011022 — 932
n

- [Ty

(4 - A)°

=1 =1

[ 0.-D)(4-B)|

> 0.

But we can also write
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(b)

(n—1)°
3
52 n = n’ 9 =2
= 7D(0) {n _ 1522<0> - _(n _—1)3 aDS(O):| = 02100
9 n - n—2_, ~9
< 9 D(0) [n — 1522<o> - EUDS@} - 621<0>, (A1)

where the mequality results from the fact that (nf31)3 > Z—:% Another application of
the Cauchy-Schwarz inequality shows that ﬁ (8%@) 325 - 5\22@)) > 0. Adding this
quantity inside the brackets in (A.1) and comparing the result to (5) leads to the

required string of inequalities

Al « 52 |7 n—2o 82D(0> o5 22 2|3
0 <[] <% | b2y — ——1opsot 1|~ bori0) = 7*|Tp( |-

Recall that in the proof of Theorem 3.2 it was noted that U; and Uy are bivariate one-
sample U-statistics of degrees 1 and 2, respectively. Then it follows from the work
there and Theorem 3.6.9 of Randles and Wolfe (1979, p. 107) concerning the

asymptotic normality of U-statistics that under Hy
D
v/nU— Ny (0, Ay),

UQD 521]
001 699

For M = C, P, and 1, it is easily seen from Sections 2.2.2 and 2.2.3 of Serfling

as n — 00, where Ay = {

(1980, pp. 68-69) that all the sample estimates in Ty converge in probability to their
population counterparts and hence nly N Ay as n—o00. Furthermore,
ip Z, A,'. An application of Theorem 3.4.8 of Sen and Singer (1993, pp. 137-

138) implies that
1.
By = (\/au)'(gr@ (/Al) 2o,

as n — o0.
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. . . D
It only remains to be shown that under Hy and bivariate normality, £y — xg as

n— co. In Appendix B it is established that A = (1 — Ey/n)™*

, where A is the
likelihood ratio statistic under bivariate normality. Since the number of constraints
imposed by Hg is two (u1 = pe and a? = ag), then Wilk’s likelihood ratio statistic,

—2In ), is asymptotically Xg' But

(1- %M = —om(1-2) - -nil(_E_N)

=Ey +0p (n_l)’

—2InA = —-2In

D
and therefore £y — X§~

APPENDIX B: RELATIONSHIPS BETWEEN TESTS ASSUMING BIVARIATE
NORMALITY

This section establishes the equivalence of the two tests for equal means and variances
in bivariate normal data proposed by Hsu (1940) and Bradley and Blackwood (1989). In
addition, it is shown that these two test statistics are monotonic functions of Ep .

We will proceed by showing the relationship between E and each of the two test
statistics. This will allow us to then show the equivalence of the two normal theory tests.
Before proceeding, it can be easily seen from (8) that
nUZ  (n—1)U2

5% 655%

Ey =UT U=

where 5%, = %; D? and 5% = L-3°(S; —§)2.

Hsu (1940) gives a monotone function of the likelihood ratio, A, and derives its
distribution. More specifically, after correcting a typographical error in his equation (9),

he considers
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43132(1 - 7"%2)

Ls = A2/n — (B.1)

) o
[s2+ 5+ 1@ — 7)) — [2s150m12 — 3(F1 — T)°

where (Z1,Ts, 87, 83, 712) are the MLEs of (u1, pi2,02,0%, p). To facilitate the change to

our notation, notice that

3% +s% — 2r198189 = —Z D D ZDQ = 52 UIQ,

3% +3% + 2r198189 = —Z S S

and
2 2 18 = \2 — \2
81— Sy = ;{Z[(Xlz - X1)" — (Xai — X2) }
1=1

1 — — — —
= ;Z(Xlz - Xl - X2i +X2) (Xlz — Xl —|—)(22 — XQ)
i=1
=I5 (Di-D)(5:-F) =
ni3

n—1
n

Us.

Now, by expanding the numerator and denominator of (B.1) and adding and subtracting
(s2 + s%)2 in the numerator, we get
(s3 +53)" — 4stsirdy — (53 +3)° + 4ol ]
(82 4+ 82) + 1U2 + U2(s2 + ) — 4s3s2r2, — 1U1 + 23189712 U7
[(3% +53)" — 43%3%7”%2} - [(3% +s3)" — 43132}
(s + 32) — 45282r2, + UZ(s3 + 8% + 2s189712)

(31 + 32 + 231327*12)(31 + 32 — 28189712) — (31 — 32)

Ly =

2

s% + 82 + 2s150712) (82 + 82 — 28189712) + U2(s? + 53 + 25189712)
_ =163(6h - U - (10s)° 6% (6% — UD) - U3
CEGIG o) A
_ _gf_wzl__77,U12_|_(77,—1)U22 :1_@
75 noLo% n| 6% 55% n

Therefore, Ly is a monotone function of Ej.
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The test proposed by Bradley and Blackwood (1989) comes from regressing the
differences on the sums. They show that testing Hy: 5y = 61 = 0, where 5 and 5, are
the intercept and slope coefficients, respectively, is equivalent to testing 7. The statistic

for testing Hj has an F distribution with 2 and n — 2 degrees of freedom and is given by

(i:znle? —SSE)/Z

SSE/(n—2)

F =

n o~ o~ 2 -~ J— N —
where SSE = 3 (D; — B, — ;S;)" is the error sum of squares, Fy, = D — 3,5, and
=1
g(Di -D)(8i-5)

B, = = = U, /5%.
o Z:(Si—g)Q /%

Now, we can write SSE as

SSE = - [Di - (D 5:8) - 315 = Yo [0~ D Bu(s-3)'
B Zj; [(Dz - D)’ + 5 (5: —3)* — 2B,(S: - 5)(D; —5)}

= D?—nﬁ2 +ﬁ?(n—1)325—231(n—1)U2

- 1)U?
_ gty —nu2— DY e gy
Jgs
Therefore, the F statistic is
F:n—2 nE%AQ—E%(n—EN) :n—2< Ey >’ B.2)
2 op(n — Ey) 2 n— Ey

which is also a monotone function of Ej.

Now, substituting Ey = n(1 — Ls) into (B.2), we see that
F— n—27(1— L5 .
2 Ly

Hsu (1940) showed that Ls has a beta distribution with parameters 1(n —2) and 1.
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Applying the relationship between the beta and F' distributions to Ly, we see that

n—2 1—L5
~ Fy, .
2 < L5 ) 2n—2

Therefore, the LRT of Hsu (1940) and the F' test given by Bradley and Blackwood (1989)

are equivalent tests.
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Table 1. Empirical power (in percent) based on 10,000 samples of size n = 20 from the
bivariate normal distribution.

p=0 p=-5 p=-38
‘7%0 ‘7%1 ‘7%2 ‘730 ‘7%1 ‘732 ‘7%0 ‘7%1 ‘7%2
Ec  poo 48 168 36.1 4.8 21.5 457 50 37.8 70.6
o1 92 198 389 14.0 26.6 49.1 294 474 733

H22 244 300 449 45.0 453 57.8 839 77.1 825
Ep  puoo 48 173 384 46 225 478 5.1 40.1 742

Ho1 92 214 416 13.6 29.0 532 280 526 792
H22 23.8 325 495 435 494 649 819 82.1 894
E;r oo 48 17.6 385 48 2277 483 50 402 734
Ha1 9.1 205 407 13.7 277 51.6 28.7 49.0 76.1
Ha2 23.8 304 469 440 457 59.7 832 T77.6 84.2
En  po 46 19.6 46.1 47 253 56.8 5.1 478 85.6
H21 9.5 23.8 48.0 14.8 328 62.1 30.7 59.6 88.7
Hag 254 356 568 46.2 5377 727 83.9 86.7 953
K o 46 17.1 384 48 216 470 50 392 752
o1 86 199 400 13.5 27.2 514 27.5 489 783
Ho2 232 298 46.6 43.0 449 612 81.7 776 813
S p2o 51 16.6 36.5 46 20.7 445 50 359 694
Ha1 84 200 389 129 25.8 48.7 24.0 45.1 736
Ha2 225 29.0 45.6 30.6 428 585 75.5 735 844
F pso 49 235 54.1 47 304 65.7 5.1 568 91.6
Ha1 9.1 274 56.2 142 374 704 289 66.6 93.7

Ho2 242 383 640 440 57.1 179.8 83.1 89.7 973
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Table 2. Empirical power (in percent) based on 10,000 samples of size n = 20 from the
Cook-Johnson distribution with normal marginals.

p=.9 p=.3
030 051 ng Ugo 031 ng
Ec  pog 49 27.1 530 48 47.1 735

725 16.5 249 50.0 47.1 355 664
Ho2 513 37.2 530 93.8 610 690

Ey oo 50 262 596 50 43.0 805
Hea1 15.7 33.0 615 2677 50.8 81.3
72y 46.9 503 700 79.2 757 88.5

K pa 49 265 550 4.8 50.1 793
Ho1 15.8 253 532 444 43.0 76.5
Ha2 497 379 573 93.1 643 799

S s 52 245 505 48 454 754
ppr 143 248 498 370 387 705
pee 437 368 541 877 629 756

F s 50 30.6 682 76 549 897
per 139 377 703 296 617 892
peo 443 542 770 822 819 94.0
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Table 3. Ratios of empirical powers relative to Ex based on 10,000 samples of size
n = 20 from the (a) generalized Laplace, (b) Student ¢, and (c) lognormal distributions.

p=0 p=.5 p=..8
0% 03 03 0% 05 0% oh 05 %
(a) generalized Laplace
En  pa0 1.01 1.07 1.00 1.08 1.07 1.07

He1 1.21 1.09 1.09 1.20 1.14 1.14 1.18 1.20 1.10
Hag 1.22 120 1.16 1.14 123 1.18 1.03  1.15 1.11

K g .93 .92 .90 .93 91 97
H21 .99 .90 91 .96 .93 .96 .95 .97 .99
199 94 .95 .95 .94 .95 .97 .95 97 1.01

S o .87 .86 .86 .86 .82 .90
o1 .96 91 .86 .90 .89 .89 .83 .89 93
29 .94 94 91 .86 .93 94 .88 .95 .98
2% 71 1.00 1.13 75 1.01 1.15 720 1,12 1.11

F g .89 106 1.14 93 1.13 1.20 1.00 126 1.13
122 99 117 1.22 1.01 124 124 1.00 1.19 1.13

(b) Student £ with 4 df

En oo 1.53 1.66 1.54 1.65 1.66 1.62
K21 84 1.21 143 83 1.13 1.41 87 112 1.32
(499 .85 98 1.18 91 97 1.10 .98 99  1.04

K o 1.33 1.45 1.34 1.46 1.45 1.48
o1 94 1.13 1.29 95 1.09 1.26 98 1.10 1.27
1499 98 1.03 1.13 1.00 1.02 1.09 1.00 1.01 1.04

S pgo 1.30 1.40 1.32  1.40 1.33  1.38
o1 91 1.10 1.25 87 1.04 1.23 91 1.03 1.20
[hoo 95 1.01 1.11 97 99 1.06 .99 .99  1.03

F pg 2.48 2.49 2.38

(c) lognormal
M1 26 1.20 1.78 32 1.08 2.15 S 99 271
H22 34 38 .94 .59 46 78 .85 72 .79
K g 207 1.98 2.02 1.66 1.71 143

Ha1 1.32 1.06 3.32 1.25 93 395 1.08 .87 4.09
Hoo 1.11  1.09 .85 1.03  1.10 .83 1.00 1.01 .88

S oo 266 2.28 220 1.72 1.79 1.45
He1 1.60 1.12 4.34 1.27 1.05 4.46 1.08 97 4.39
Ho2 1.15  1.27 .93 1.03  1.09 .88 1.00 1.01 .93

F g 8.78 8.37 8.16
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Table A.1. Values of b¥ fori =1,2,3, 4.

10 11 12 13 14 15

8 9

7

1

2i—1
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Figure Captions

Figure 1. Permutation distribution of U for the data in Figure 2(a).

Figure 2. Scatterplots of (a) the random sample used to generate Figure 1 and (b) the
same data transformed to differences and sums.

Figure 3. Permutation distribution of U with the rejection regions for E¢, Ep, E7, and
Ey depicted. The observed value of U marked with a L1

Figure 4. Mouth-to-mouth ventilation rate (breaths per minute) of 113 medical students
after a CPR skills course (baseline) and four to seven months later (retest).

Figure 5. Mouth-to-mouth ventilation rate (breaths per minute) of 113 medical students
after a CPR skills course (baseline) and four to seven months later (retest). Solid lines
indicate individual profiles. Dashed lines indicate recommended limits.

Figure 6. A random sample of 1999 points from the permutation distribution of U with
the rejection regions for E¢, Ep, Ej, and Ey depicted. The observed value of U is
marked with a [J.

37



) !
< - ) s ! . ° TR R
. ”'5.‘" nc! e Vet
s Le et Uy 0 e
.. N S .
N c': : :" . \ ,'.u
b et gt ¢t .
- * % e * . s .
‘..‘ oy , :‘”. s X et . : e tt .
”'f.':.:. ..t ¢! . ”,l‘ Let e ., :
o . .t ‘.. '- L] :’ "- Lottt H et Pt .".;l e ss 88
D ©7 ° Y e e ORI ¢t . ol cegt, . o .
. eott e, fe e . sa 8t "”l, G . 8
REEIE ! i s 8 L ;'” :
* e 8t ot . ) . cet LT
. st ggtt .t
’ o LA
A st . s ft oy ‘-.
wl ) ot R s !
st R :‘.;'”' gt I
. s e ': t.: KU .t
< et e it , ;' e .
P - (TR _: ) s
-
“l T T T —T T T
-15 -1.0 -0.5 0.0 0.5 1.0 15
U1
Figure 1. Permutation distribution of U for the data in Figure 2(a).
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Figure 2. Scatterplots of (a) the random sample used to generate Figure 1 and (b) the
same data transformed to differences and sums.
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Figure 3. Permutation distribution of U with the rejection regions for E¢, Ep, Ef, and
Ey depicted. The observed value of U marked with a [1.
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Figure 4. Mouth-to-mouth ventilation rate (breaths per minute) of 113 medical students
after a CPR skills course (baseline) and four to seven months later (retest).
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Figure 5. Mouth-to-mouth ventilation rate (breaths per minute) of 113 medical students
after a CPR skills course (baseline) and four to seven months later (retest). Solid lines
indicate individual profiles. Dashed lines indicate recommended limits.

40



= 17.58

5.78 E-C
—-—- 579 El = 17,56

232 E-N= 71.65

E-P

+

0¢

0l

an

olL-

Oc-

U1

Figure 6. A random sample of 1999 points from the permutation distribution of U with
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the rejection regions for F¢, FEp, E;, and Ey depicted. The observed value of U is

marked with a O.





