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Abstract 

Recent investigations have stimulated renewed interest in accommodating the effects of 
influential observations in the estimation of semivariogram values. Because of the 
increasing size and complexity of spatial data sets, it is not sufficient to rely solely on 
graphical methods for detecting aberrant data values. Influence diagnostics have long been 
used to identifjr influential observations in regression analyses and have recently been 
adapted to the fitting of variogram and kriging models. Less emphasis has been placed on 
the identification and accommodation of influential data in the estimation of the sample 
semivariogram values that are used to fit these models. In this paper prior work on the 
identification of influential observations is extended to robust estimation of semivariogram 
values. We concentrate on robust semivariogram estimators that can be readily 
implemented by modest adaptations of existing computer software. The robust estimators 
evaluated in this paper are compared to classical semivariogram estimators and to one 
another in terms of both accuracy and precision. 

1. Introduction 

Semivariogram modeling is central to the prediction of point values and areal averages of 
geostatistical random fields. Additionally, estimates of semivariogram model parameters 
themselves are of intrinsic interest because of the information they provide about spatial 
dependence across a region. The fitting of semivariogram models is in turn critically 
dependent on the shape of sample semivariogram plots. While this dependence has been 
studied extensively (see Cressie 1991 for numerous citations), recent work by Basu et al. 
(1995) documents that the presence of influential spatial data values can seriously distort 
sample semivariogram plots, in some cases even when a robust estimator is used. These 
distortions can critically affect both the choice of models that are fit to sample 
semivariograms and the calculation of parameters for the chosen models. Basu et al. 
(1995) also present graphical and numerical diagnostics that are highly effective for 
identifjrlng influential spatial data values. In this paper, we discuss several robust 
estimators of semivariogram values that aid in the identification of influential spatial data 
values and that can be used as alternatives to the deletion of the observations from the 
data base. 

The need for hrther research into robust alternatives to the sample semivariogram stems 
in part from the application of spatial methods to very large data sets and in part from the 



observation that current robust methods are not highly effective in accommodating 
influential data values. One application of interest in this work is to the modeling of 
temperature anomaly trends over the last century. The data files used in these 
investigations consist of monthly temperature readings fiom several thousand reporting 
stations &-om approximately 1850 to 1991. In ternis of resources and the time expended, it 
would be prohibitive to graphically investigate the presence of influential observations for 
each station in each of a number of regions of the globe for each month of each year 
included in the data base. Thus, there is a well defined need both for influence diagnostics 
and effective robust methods that can accommodate these large spatial data sets. 
Moreover, the application of some of the more popular robust methods to these data files 
did not satisfactorily accommodate some obvious influential observations. This latter 
finding will be documented below, following a brief review of sernivariogram estimation. 

We begin with the usual definition of semivariogram values: 

where z(s) denotes a spatial variate measured at location s. Semivariogram values quantiG 
the spatial covariance structure of the random variables in a fashion similar to covariances 
and correlations. Under the second-order spatial stationarity assumptions stated below, 
cov{z(s;) , ~(sj ) )  = var{z(s)) - y{z(si) - z(sj)), where var{z(s)) is the common variance of 
spatial variates. Many spatial measurements are characterized by variation that is a 
fbnction of distance but not direction. These isotropic spatial variates have variograms 
defined as 

where d = I( Si - Sj ( 1  is the (Euclidean or great circle, as appropriate) separation distance 
between the spatial locations. With irregularly spaced locations, pairs of locations are 
ordinarily assigned to bins that are multiples of a nominal distance. In this case, d 
represents the midpoint of the range of distances in a bin. Under intrinsic stationarity 
assumptions, E{z(si) - ~(sj ) )  = 0 and cov{z(si) , ~(sj))  is a fbnction of only si - sj, SO that 
for isotropic spatial variates (1) can also be expressed as 

Second-order spatial stationarity is slightly stronger than intrinsic stationarity since the 
first assumption is replaced by E{z(s~)) = p, a constant for all locations in the region of 
interest, and the variance of individual spatial variates is assumed to be finite. With 
intrinsic stationarity assumptions, the variance of differences of spatial variates is assumed 
to be finite, even though the variance of an individual spatial variate need not be so. 
Except where explicitly stated otherwise, we assume isotropic, second-order stationary 
spatial variates in the remainder of this paper. 



Although stationarity is assumed in this work, if the random field does not satisfjr 
stationarity assumptions one ordinarily either (1) fits low-order polynomial models to the 
data using the spatial locations as predictors, (2) fits local linear or quadratic models using 
the spatial locations, (3) performs median polish, or (4) fits more complex models to the 
spatial variables using both the spatial locations and other spatial covariates. The residuals 
from such fits are then assumed to satisfjr stationarity assumptions and are used in the 
calculation of sernivariogram values and in the fitting of semivariogram models. Although 
the following discussion is framed in terms of the spatial variates z(s;), the methods 
discussed may in practice be applied to residuals. 

From (2), the classical method-of-moments semivariogram estimator (Matheron 1962) for 
pairs of locations binned a distance d apart is 

where N(d) denotes the set of all pairs of locations binned together at (nominal) separation 
distance d and Nd is the number of such pairs of locations. For locations a fixed distance d 

apart, this sample semivariogram estimator is unbiased for the semivariogram value y(d) 
under either second-order or intrinsic stationarity. 

Cressie and Hawkins (1980) introduced a robust estimator of semivariogram values that is 
less susceptible to influential data values than the sample semivariogram estimator. Their 
robust estimator is 

This estimator was derived under the assumption that the differences ~(s i )  - z(sj) are 
normally distributed for all station pairs (s; , sj). The square root transformation of the 
differences was shown to have moments close to those of a normal distribution and the 
denominator in (4) is a bias correction. 

Basu, et al. (1995, Figure 1) demonstrate a variety of effects that can be induced on 
semivariogram plots because of the presence of influential observations. The examples 
presented in that paper include some in which a single influential observation causes 
dramatic spikes in the semivariogram plot and others in which a small number of influential 
observations cause a mound-shaped excitation crest. In the following example, we expose 
yet another way in which influential observations can affect semivariogram plots, the 
inducement of anisotropy. 

The semivariogram plots in Figure 1 are of soil nitrate concentrations from core samples 
taken from a 3 ha field. The sample locations were on a regular 9x7 grid with 25m spacing 



between north-south and east-west grid locations. Bins for this semivariogram plot were 
chosen to be multiples of 25m. The first bin includes all core sample locations that are 
between 0 and 25m; the second, those between 25m and 50m; etc. Each symbol denotes a 
different direction between pairs of locations on the grid. For example, the north-south 
semivaiiogram values, identified by the triangles in Figure 1, include all grid locations 
within each bin that are 90°f 22.5" from one another. Prior to calculating the 
semivariogram values, median polish (e.g., Cressie 1984, 1986) was performed on the raw 
nitrate concentrations in order to reduce the effects of any nonstationarity in directions 
along the north-south and east-west grid lines. The median-polish residual pairs were then 
binned and directional semivariogram values were calculated using the robust estimator 
(4) with the median polish residuals inserted as the z (s~ ) .  

Consider first the semivariograrn plots indicated by the various symbols connected with 
solid lines. The semivariogram values for each of the four directions generally increase 
throughout the range of distances plotted. However, the semivariogram plots for each 
direction do not increase at the same rate. The least change in variability across the range 
of distances occurs with pairs of grid locations that are in the northwest-southeast 
direction from one another. The most striking change in variability occurs for location 
pairs that are in the northeast-southwest direction from one another. When spatial 
variability patterns change with direction, the spatial variability is called anisotropic. It is 
highly desirable when fitting semivariogram models that the semivariogram plots be 
isotropic and that the semivariogram values remain basically constant or increase smoothly 
to a plateau, referred to as the sill of the semivariogram. This desirability is not simply 
computational; in many instances the nature of the measurements strongly suggests that 
variability should be isotropic. For example, the homogeneity of the soil treatments 
applied to this field does lead one to expect isotropic spatial variability. The spatial 
variability indicated by the symbols connected with solid lines in Figure 1 is clearly not 
isotropic and the sills, if they exist, are quite different for the four directional 
semivariogram plots. 

Contrast the semivariogram values for the solid lines with those indicated by the dashed 
lines in Figure 1. The latter semivariogram values are much smaller than the former ones. 
They appear to be isotropic and the semivariogram plots are relatively flat, suggesting 
white noise errors and a common sill. Figure 2 highlights the reason for the differences in 
the two sets of semivariograrn values. Figure 2 is a three-dimensional smoothed plot (S- 
PLUS, 1991) of the data. Strikingly evident in the plot are several pockets of very large 
nitrate concentrations. The semivariogram values identified by the solid lines in Figure 1 
were calculated using all the nitrate values while those indicated by the dashed lines were 
calculated from a reduced data set in which the 8 largest nitrate values were removed. 

It may be that one considers the large nitrate values the most important features of the 
data. Nevertheless, they were unexpected and they cause severe problems when one 
attempts to fit semivariogram models to the sample and robust semivariogram values. We 
are not concluding that these data values are necessarily anomalous nor that they should 
necessarily be eliminated from the data base. However, this example illustrates the 



dramatic effect a small number of data values can have even on some robust estimators. If 
these values are determined to be anomalous, neither the 'sample nor the robust 
semivariogram values plotted in Figure 1 would properly characterize the spatial 
variability of nitrate concentrations in this field. In addition, with data sets of the size of 
global :temperature data sets, it is not likely that sufficient time and resources could be 
relegated to construct perspective plots for each spatial variate of interest over all regions 
of the globe for each month and each year contained in the data bases. Hence, there is a 
need for more effective robust semivariogram estimators 

2. Influence Functions 

Influence Functions (e.g., Hampel et al. 1986) quantifjr the effects of influential data values 
on an estimator. One can think of an influence fbnction as a measure of the change in an 
estimator due. to the presence of a small number of data values fiom a specified 
distribution that is different fiom the distribution of the bulk of the data. If F represents the 
distribution (e.g., normal) generating the bulk of the data and G represents the distribution 
of the influential observations (e.g., a very skewed distribution), then the distribution of all 
the data can be represented as a mixture Fa of these two distributions: Fa = (1 - a)F + aG, 
for 0 < a < 1. For a fixed separation distance d, the semivariogram parameter one wishes 
to estimate can be represented as y(F) = y(d) = var{z(s) - z(s + d))/2. The influence of 
outliers fiom the distribution G can then be quantified as IFy(G) = a(Fa) 1 &la,, . 

For illustration purposes, let F represent a second-order stationary spatial random field 
with variance 0,. If G represents the presence of a single influential outlier of magnitude p 
+6, at location s, in the domain D of the random field, and if location s, is one of the 
locations in the sampled field, one can show that the influence fbnction for the sample 
semivariogram estimator (3) is 

Basu et al. (1995) demonstrate that influential spatial data values typically result in 
overestimation by both semivariogram estimators. In particular, they show that for the 
sample semivariogram (3), if there is an influential spatial variate at location s, then 
E{q(d) ) = y(d) + (JY,,J2~d)62,. Note that the second term of this expression is the value 
of the influence fbnction (5). 

Two features of this influence fbnction are important in the assessment of the effect of 
extreme data values. First, as one might expect fiom the form of the estimator (3), the 
influence of an extreme data value is proportional to the square of its magnitude. Second, 
the influence of an extreme data value is attenuated by the proportion of pairs NJNd in the 
bin that include the outlier. The fbll effect of the extreme data value is realized only if all 
the pairs in a bin include the outlier, whereas the extreme data value has no effect if none 



of the pairs include the outlier. The proportionality factor Nmmd explains the spiking often 
seen in semivariogram plots when anomalous data are present. There is a relatively high 
proportion of outlier pairstin the bins for which spiking is evident but relatively few in the 
bins immediately , . adjacent to them. 

The influence function for the robust estimator (4) is expressible as 

where fm = N m d ,  hm = 6: 1 2(2y(d)) , gj = hj(0), hj = hj(L), 

and T(x) is the gamma function T(x) = Imwx-le-wdw. The value of the influence function 
0 

(6) is defined to be zero if Nm = 0. 

While this expression is far more complicated than the influence function for the sample 
semivariogram, it, like the one for the sample semivariogram, enables one to quantitatively 
evaluate the effect of extreme data values. To illustrate the effectiveness of these influence 
functions on assessing the effects of influential observations, we calculated influence 
function values for one of the more interesting semivariogram plots in Basu et al. (1995). 
Figure l(c) in Basu et al. (1995) contains a mound-shaped semivariogram plot of nitrate 
calculations from the same field as those used in the previous but from a different depth 
and using nitrate concentrations from both the 25 meter grid and a smaller 6x6 5m grid in 
the center of the larger grid. 



The parameters needed to calculate the influence hnctions (5) and (6) were estimated 
from the large- and small-grid data sets after an influential observation that was identified 
in Basu et a1 (1995) in the large-grid data was removed. The variance o, was estimated to 
be approhmately 40, using the average of variance estimates from the large-grid data and 
the small-grid data. The influential observation's 6,  effect was estimated from its median- 
polish residual to be approximately 41. The values of N, and Nd for each bin were 
determined from the location distances in the data file. Figure 3 is a display of the resulting 
calculations for both the sample and the robust semivariogram estimators. 

The horizontal line at a semivariogram value of 40 represents the theoretical value of the 
sample semivariogram estimator (3) or the robust estimator (4) if the random field were a 
white-noise process with variance o, = 40 and there were no influential data values. The 
sample and robust semivariogram plots in Figure 3 with the effect of the influential 
observation added are obtained by adding the influence hnction values calculated from (5) 
and (6) to the white noise semivariogram value. The excitation crests in each of these 
latter semivariograms are evident, as is the lesser effect of the influential data value on the 
robust semivariogram values than on the sample semivariogram values. 

The simple white-noise model is likely not the most appropriate model for the combined 
large- and small-grid semivariogram model. In practice, each of these grids would be fit 
separately and the resulting fitted semivariogram models would be combined to represent 
the spatial variability of the field. The spatial variation in nitrate concentrations can be 
modeled as separate white-noise processes with large-grid variance o, = 50 (with the 
influential data value removed) and small-grid variance o, = 30. Reconstruction of Figure 
3 with these estimates and separate estimates of the semivariogram values for each bin 
with the influential data value removed produced crests more similar to those in Basu et al. 
(1995) Figure l(c), but did not meaninghlly change the conclusions so clearly evident 
from Figure 5. The importance of this illustration is that even under such a simple white- 
noise model the influence hnctions adequately characterize the gross effects of the 
influential data. One can perform similar computations from the European temperature 
anomaly data to reproduce the spiking in Basu et al. (1995) Figure l(a) fiom influence 
hnction calculations, as well as the anisotropic behavior in Figure 1 of this paper. 

3. Robust Estimators 

McBratney and Webster (1986) concluded that neither the sample semivariogram 
estimator (3) nor the robust semivariogram estimator (4) could always be preferred to the 
other. Our analyses of a variety of data sets and a number of simulations lead to the 
conclusion that the robust sernivariogram is less sensitive to the effects of influential 
observations than the sample semivariogram but it can still be seriously affected, as is 
indicated in Figure 1. These analyses and simulations support the general conclusions 
drawn from a comparison of the influence hnctions (5) and (6) and they reemphasize the 
need for other robust alternatives to the sample semivariogram. 



Prior to discussing possible alternative robust semivariograrn estimators, it is important to 
recognize difficulties that arise as a result of unavoidable data reuse in the estimation of 
semivariogram values. Regardless of the estimation scheme selected, each data value is 
used many times in the calculation of sample and robust semivariogram values. For a 
simple example of how this can exacerbate the influence of extreme data values, consider a 
transect of length 2m+l. Suppose a single unusually large spatial variate occurs at the 
middle location on the transect. If the bin distances are one unit, there will be 2m pairs of 
locations in the first bin, of which 2 will include the influential spatial variate. In the 
second bin, there will be 2m-1 pairs of locations, of which 2 again will include the 
influential spatial variate. One can continue in this fashion and show that up until bin m 
there are fewer and fewer pairs of locations, of which 2 always include the influential 
spatial variate. Thus, the percentage of differences in a bin which include an influential 
spatial data value increases with the bin number and can far exceed the percentage of such 
influential data values in a data set. The percentage can increase even more rapidly if there 
is more than one influential data value in the data set. 

One can easily construct examples with irregularly spaced data for which a 
disproportionate percentage of differences in a bin will contain influential observations but 
many fewer or none of the differences in neighboring bins contain influential observations, 
leading to spikes in the sample semivariogram. Depending on the proportions of pairs in a 
bin that involve influential data, the excitation crests discussed previously are another 
effect of data reuse. In addition, it is not necessarily true that robust methods operating on 
differences of the pairs in a bin will operate only on the differences that contain influential 
data values. Indeed, in bins that do not contain outliers, robust methods will often 
downweight or eliminate differences involving pairs of valid data, thereby tending to 
underestimate the variability for distances represented by those bins. Robust estimators 
must accommodate all of these difficulties caused by data reuse. It is not at all clear that 
robust estimators that operate on pairs of data values in each bin can satisfactorily do so. 
This concern is part of the motivation for the following comparisons of robust estimators 

In the course of this research, several robust alternatives to (4) were evaluated. The 
following estimators are typical of those investigated and include those found most 
effective: 

-- trim a fixed percentage of raw data values and then bin and apply the sample 
semivariogram estimator (3) to the remainder of the data; 

-- trim a fixed percentage of the differences in each bin and then apply (3) to the 
remaining differences; 

-- apply a robust m-estimator to the differences in each bin; 
-- perform a preliminary test to identi@ and eliminate unusual data values in the data 

set, then bin and apply (3) to the remaining data values; 
-- perform a preliminary test on the differences in each bin to identifjl and eliminate 

unusual differences, then apply (3) to the remaining differences in each bin. 



Consideration was given to applying the robust estimator (4) rather than the classical 
estimator (3) to the trimmed data. It was feared that trimming followed by the use of a 
robust estimator would cause serious underestimation of the spatial variability, especially 
when there were no extreme data values. Spot checks were made by rerunning some of 
the simulations using (4) with the trimmed data. These simulations confirmed that 
substantial underestimation often occurred. Consequently, the trimmed estimators used in 
the simulations all use the classical estimator (3) with the trimmed data. 

Because of the data reuse issues raised above, trimming afixed percentage of the raw data 
values or trimming the differences in bins is likely to be problematic. In the investigations 
discussed below, we include for comparison purposes one robust estimator that trims 5% 
of the largest raw data values in a data set. Denote this estimator fT(d) . For the reasons 
cited above, trimming a fixed percentage of the binned differences was not regarded as a 
viable estimation strategy and no such estimator was included in the simulations. 

Two versions of a robust estimator which tests for influential observations are included in 
the simulations reported below. The preliminary test is used to determine whether any of 
the raw data values or, alternatively, any of the differences in a bin are influential. If the 
preliminary test determines that some of the raw data values or some of the differences are 
influential, then the robust estimator (4) is applied to the remaining data values or 
differences. This robust estimation scheme is included so that, unlike trimming a fixed 
percentage of the data values, the natural variability in the data can assist in determining 
the number of possible influential observations. For the raw data values, the preliminary 
test is a robust version of a t-test. Outliers are deleted if 3, where 

M = median(z(s;)), and S is the median absolute deviation of the spatial variates: S = 
median(lz(si) - M1}/0.6745. Denote this estimator f , (d) . Differences in each bin were 
also tested for their influence using (7) with obvious modifications. Denote this estimator 
?B(d). 

An alternative to trimming that does not require a preliminary test is a robust M-estimator 
of location. Both from efficiency and bias considerations, Cressie and Hawkins (1980) 
found M-estimators applied to the square root differences {lz(si) - z ( s ~ ) ~ } ' ~  to be among 
the preferred robust alternatives in their simulations. The M-estimates used in our work 
are calculated separately for each bin, similar to Cressie and Hawkins (1980). Let N,J 
denote the number of pairs of locations binned a nominal separation distance d apart. Let 

denote the median of the square-root differences in the bin with nominal separation 
distance d and let S d  be the corresponding median absolute deviation: 

Md = median (1 z(si) - z(sj) l}'" , Sd = median (1 z(si) - z(sj) 1'" - Md } / 0.6745 
bin d bin d 



Although the M-estimator is ordinarily calculated iteratively until convergence, a one-step 
iteration oRen is used. The one-step iterative estimate has been shown to give an excellent 
approximation to the hlly iterated estimate and to be computationally expedient when 
computational requirements are large. For our work the one-step robust M-estimator of 
location was calculated as: 

where yij = [{lz(s;) - z(sj)l)ln - &]/Sd, and y is the derivative of Tukey's biweight y 
(Hampel et al. 1986, Staudte and Sheather 1990): 

The bias correction in the denominator of (8) is the same as that in the robust estimator 
(4) since both are based on estimating the center of the distribution of {Iz(si) - z(sj)l)ln. 

3.1 Simulations 

To assess the relative merits of these six sample and robust semivariogram estimators, 
both simulations and analyses of actual data were conducted. The simulations consisted of 
generating random field data using Gaussian and other random processes. Spatial 
correlations were induced by specifllng covariance matrices calculated from Gaussian and 
spherical, and white noise semivariogram models. Influential data were then added with 
stipulated mixture probabilities so that the random field was a known mixture of a 
specified random field process and influential data values. Very consistent results were 
obtained over a wide range of models, model parameters, sample sizes and mixture 
proportions on both transects and two-dimensional grids. A summary of the key results 
and illustrative plots are now given. 

Plotted on Figure 4 are the results from a simulation of 200 realizations of an ordinary 
kriging model z(s) = p + e(s) with mean p = 0 and spatially correlated errors e(s) 
generated by a spherical semivariogram model: 



Each realization consisted of data along a transect of length 100. The spherical model had 
a nugget 81 = 2, a range €I3 = 10, and a sill 81 + €I2 = 12. At location 20, an influential 
observation of magnitude 6, = 25 or 50 was inserted in place of the randomly generated 
data value with probability 0.1 or 1 as shown over each panel in the figure. The solid 
curve in the figure is the theoretical semivariograh.' The calculated semivariogram values 
averaged over the 200 realizations are indicated by the following symbols: sample (S), 
Cressie-Hawkins robust (R), M-Estimator (M), sample estimate following a 5% trimming 
of the raw data (T), sample estimate following a preliminary test for trimming anomalous 
raw data values (P), and sample estimate following a preliminary test for trimming 
anomalous binned differences @). 

The strong positive bias of the sample semivariogram is evident in three of the four panels 
of Figure 4. The sample semivariogram does not appear to be much affected in the first 
panel, but in most of the simulations the positive bias was clearly evident. The Cressie- 
Hawkins robust estimator does provide protection against the effects of the influential 
observations, as is evident in Figure 4, but it too is generally biased upward. Typically the 
Cressie-Hawkins robust estimator had less bias than the sample semivariogram but more 
than some of the other robust estimators, notably the preliminary test estimators and the 
M-estimator. The shift in the semivariogram plots for the sample and robust estimators 
occurs because the influential data value was paired with two other observations for all 
separation distances up to 20 and with only one thereafter. The 5% trimmed estimator 
consistently had large negative bias in the simulations. This negative bias is evident in 
Figure 4. The major result suggested in the figure and consistent throughout all the 
simulations was that the preliminary test estimators 7, (d) and 7 , (d) and the M-estimator 
7 , (d) suffered the least from the effects of the influential observations. 

Figure 5 displays the sample standard deviations of the semivariogram estimates across the 
200 realizations for the same model that was used in Figure 4. Across the many simulation 
models examined, the sample semivariogram tended to be the most variable. This is 
especially true when the probability of an outlier was less than 1, as in the two left-hand 
panels of Figure 5. Thus, the sample semivariogram tends to have strong positive bias and 
be highly variable. At the other extreme of variability is the fixed 5% trimmed mean. This 
semivariogram estimator tends to have the least variability, although often by only a small 
amount. In spite of its relatively smaller variation, the reduction in variability does not 
offset its large negative bias. The preliminary test estimators not only have small bias, as 
discussed above, they generally have the least variability of the remaining robust 
estimators. The M-estimator usually has somewhat greater variability but it is not 
substantially worse. The Cressie-Hawkins robust estimator often has substantially more 
variability than the preliminary test estimators and the M-estimator. 

Figures 6 and 7 show comparable results to Figures 4 and 5 for data that were generated 
on a two-dimensional grid using the same spherical semivariogram model, but with the 
range changed from 10 to 4. The influential data value was placed at the center of the 10 x 
10 grid. The conclusions drawn from Figures 6 and 7 for the transect data remain basically 
the same for the two-dimensional grid data. 



Figure 8 displays average semivariogram values from a simulation in which no influential 
observations were added to a random field. Data were generated fiom a normal random 
field and,a highly skewed random field. the normal field data were generated using the 
same spherical semivariogram model as in ~ igu re  4'. The skewed data were generated by 
squaring data values fiom this same normal field. To make the theoretical semivariograms 
comparable in expectation, the squared normal values were location- and scale-adjusted. 
As is suggested in Figure 8, the preliminary test estimators 7, (d) and f B  (d) performed 
comparably to the sample semivariogram estimator. Overall, these three estimators had the 
least bias and small variability, but this finding was not consistent throughout a series of 
simulations of skewed data with and without influential observations. The simulations with 
influential observations showed that the robust estimators had far less bias than the sample 
semivariogram estimator, but none of the robust estimators were uniformly superior to the 
others. All the robust estimators were inferior to the sample semivariograrn estimator 
when the data were highly skewed but contained no influential observations. 

For spatial data generated fiom normal random fields, both the preliminary-test estimators 
7 , (d) and 7, (d) and the M-estimator 7, (d) were much closer over a wide range of 
models to the theoretical semivariogram than the other estimators studied in this 
simulation. All three provided excellent protection against serious bias due to influential 
observations. In addition, both provided informative diagnostics for influential 
observations: the weights ~ ( t )  / t for the M-estimator and the t values for the preliminary- 
test estimators. It was surprising to find that the preliminary test estimators performed as 
well as is indicated in Figures 4-8. They were studied because other robust estimators, 
including several that were not reported in this paper, did not accommodate the reuse of 
influential observations in the binned differences used to estimate semivariogram values. 

In addition to these robust location estimators, robust scale estimators were investigated, 
including trimmed standard deviations (e.g. Bickel and Lehman 1976). None that were 
examined in preliminary simulations performed better than the location estimators that 
were included in the main simulations. 

3.2 Spatial Data Analyses 

The various semivariogram estimators were applied to the data sets discussed in Section 1. 
The 5% trimmed estimator ?,(d) will not be discussed hrther because of its poor 
performance in the simulations. 

Figures 9 and 10 display directional semivariogram plots for the nitrate soil data discussed 
in Section 1 for the M-estimator 7, (d) and the preliminary test estimator 9 ,  (d) , 
respectively. The M-estimator maintains much of the directional differences noted in the 
Cressie-Hawkins robust estimates shown in Figure 1. On the other hand, the preliminary 
test estimates f,(d) plotted in Figure 10 are directionally consistent and they are 



comparable in magnitude to the sample semivariogram values obtained by the subjective 
elimination in Figure 2 of the 8 largest nitrate values. The preliminary test identified 14 of 
the 63 data values as having unusually large values, with the t values (7) ranging from 3.1 
to 23.0. Nine of the 14 t values exceeded 5.0. .Thus, the preliminary test estimator is 
achieving one of the goals of this work: the robust estimation of semivariogram values 
without the labor-intensive investigation of graphical and numerical summaries of the data. 
Note too that the t values (7) identify the influential observations and would thereby flag 
them to an investigator who then could choose to graphically investigate the causes of the 
large diagnostics. 

Figure 11 compares semivariogram estimates for the European temperature anomalies 
discussed in Basu et al. (1995). All the sample and robust estimates except f,(d) are 
plotted. The M-estimator again performs similarly to the Cressie-Hawkins robust 
estimator. The binned preliminary test estimator f , (d) tracks the sample semivariogram 
estimator and is virtually identical with it in most of the bins. The preliminary test 
estimator f,(d) identifies (t = 5.9) and removes Copenhagen, as well as 6 other 
influential data values that have t values ranging from 3.1 to 4.0. Copenhagen's t value 
would certainly cause one to investigate it further. The 6 other temperature stations are all 
clustered nearby one another just north of the Caspian Sea and might reflect some regional 
anomaly. Perhaps the most striking feature of Figure 11 is that the preliminary test 
estimator is the only estimator that plateaus, reaching a sill of about 0.8 at a range of 
approximately 1,200-1,400 km. None of the other estimators in the figure show evidence 
of having reached a sill. 

Figure 12 is included only for completeness. The preliminary test estimator clearly 
identifies the influential observation (t = 8.2) and as a result eliminates most of the 
excitation crest that is so prominent in the sample and the other robust semivariograms. 
The remaining portion of the excitation crest is due to the different magnitudes of 
variability in the large and the small grid portions of the data. In practice, these would be 
separately estimated. 

Conclusion 

The preliminary test estimator P was most effective overall in identifying and 
accommodating highly influential spatial data values. The M-estimator and the preliminary 
test estimator B also were generally effective, but occasionally, as in Figure 11, they did 
not satisfactorily accommodate one or more influential data values. Perhaps the most 
important conclusions from this work are that robust estimators are preferable to the 
classical estimator and that estimators such as the preliminary test estimators and the M- 
estimator are well-suited to large data sets because they efficiently identify highly 
influential data. 
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Fig. 1. Robust Nitrate Semivariogram Values. 
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Fig. 4. Average Semivariogram Estimates, Transect Data 
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'ig. 8. Comparison of Semivariogram Estimators for Uncontaminated Distributions 
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