A Bootstrap Generalized Likelihood Ratio Test in Discriminant Analysis

by

J. Baek, H.L. Gray, W.A. Woodward, J. Miller and M. Fisk

Technical Report No. SMU/DS/TR-280



A Bootstrap Generalized Likelihood Ratio Test in Discriminant Analysis
J. Baek, H. L. Gray, W. A. Woodward, J. Miller and M. Fisk

Abstract

A generalized likelihood ratio test is developed for classification in two populations
when one needs to control one of the probabilities of misclassification. The proposed
classification procedure is constructed by applying the parametric bootstrap to the
generalized likelihood ratio. There are known methods for controlling this
misclassification probability for the case where normal distributions with the same
covariance matrix are assumed. Qur approach, however, can be applied to not only this
case but to the case of normal distributions with different covariance matrices and the
case of a mixture of discrete and continuous variables.

The results given here do not depend on normality but can, in fact, be applied to
any distribution for which the maximum likelihood estimates exist. We do, however,
restrict our simulation of these results to the normal distribution if the variates are all
continuous. Three cases are simulated: normal distributions with equal covariance
matrix, normal distributions with unequal covariance matrices, and mixture of
categorical and normal variables. An application to classifying seismic events is

presented.
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1. Introduction

One of the primary problems associated with monitoring worldwide nuclear
proliferation is the problem of distinguishing seismically between small earthquakes and
explosions. Although the statistical problem appears to be one of discriminant analysis,
it is actually one of testing hypotheses since the political and physical environment will
usually require one of the errors to be preassigned.

Classical approaches for discriminant analysis in two populations depend on the
ratio of the probabilities or probability density functions. The classification rule based
on the ratio is optimal in the sense that it minimizes the total probability of mis-
classification (Welch 1939). Under the assumptions of normality, equal covariances, and
unknown parameters for the variables, Anderson (1951) derived a classification rule
based on the linear discriminant function, which is known as Anderson’s W statistic, by
substituting estimates for the parameters in the ratio. When the covariance matrices are
not equal, replacing each parameter by its estimate gives the classical quadratic
discriminant function (Seber, 1984, p297; Anderson, 1984, p235).

Among other classification rules is a hypothesis-testing approach which is derived
by obtaining the generalized likelihood ratio. This rule based on the assumption of
normal distributions with equal covariance matrices, was proposed by Anderson (1958),
studied by John (1960, 1963), and has become known as John’s Z statistic. Krzanowski
(1982) extended this approach to mixed discrete and continuous variables. For more
discriminant procedures in the mixture case, see Knoke (1982), Krzanowski (1975, 1979,
1980), and Tu and Han (1982).

Most of these classical classification rules allocate the individual to be classified to

one of the populations if the ratio is less than a cut-off point ¢, and to the other



otherwise. The cut-off point ¢ is usually based on the probabilities of drawing an
observation from the individual populations and the costs of misclassification.
Associated with these procedures are the resulting misclassification probabilities.
When, as in the problem of interest here, it is important to fix one of these probabilities
of misclassification, the statistician will need to determine the cut-off point to allow this
probability of misclassification to be prespecified.

When this probability is prespecified the problem then becomes one of testing a
hypothesis. However, because of the setting of this problem we shall continue to refer
to it as a classification problem. When the p-dimensional characteristic variable V ~
Np(p(o), 3°) for a population 7y, V ~ Np(p(l), Y ) for another population x;, and p(o),
41, T are unknown, Anderson (1973) and Kanazawa (1979) obtained the
asymptotically normal expansion of the distribution of statistics W and Z respectively,
which are used to find the cut-off point for a fixed value of the particular misclassi-
fication probability. In other cases (for example 2(0) # Z(l) or V not normal) the
asymptotic distribution of the classification statistics is, in general, unknown so that no
hypothesis test is available.

In this paper we determine a test of the classification hypothesis that satisfies the

following requirements:

i) 2(0) is not necessarily equal to 2(1)
ii) The p-dimensional discriminant variable may be a mixture of
continuous and discrete variables

i) The continuous variables need not be normally distributed.

Examples of continuous discriminants that are commonly used in the nuclear

monitoring setting are ratios of amplitudes or spectra for different time windows and



frequency bands of the observed seismogram. Earthquakes typically generate more
shear energy than compressional energy, while explosions usually have much more
compressional energy than shear. Since compressional waves propagate faster than
shear elastic waves, this leads to larger relative amplitudes in different time windows for
the two source types. Although explosive devices are expected to have more intrinsic
high frequency content than earthquakes, explosions are usually shallower, in more
anelastic materials than the deeper earthquakes, which tends to attenuate the high
frequency content. As a result, spectral ratios of particular portions of the seismograms
are useful discriminants in some regions of the world.

Some examples of categorical variables that are commonly used are presence of
cepstral peaks, regional seismicity (high/low), location (off-shore/on-shore), depth
(deep/shallow), and, in the context of associating mine blasts with a particular mine,
day of the week.

The inability to treat a mixture of discrete and continuous variables rigorously in
this setting has limited the application of many statistical classification methods in the
past. This has led to rule-based approaches (Sereno and Wahl, 1993) which are
somewhat ad hoc, artificial intelligence approaches (Baumgardt, et al, 1992), or
inappropriate applications of linear discriminant functions or chi-squared tests. It is
vital, however, for monitoring applications that these issues are all addressed with
statistical rigor so that the error rates involved have meaning. The classification
method proposed here satisfactorily addresses this problem by applying the bootstrap to
the generalized likelihood ratio. Although this method is actually a test of hypothesis,
it could just as well be used as a method for classification in the classical sense with the
bootstrap being used to determine the probabilities of misclassification. For additional
discussion of procedures for classifying seismic events see Shumway(1988).

In Section 2, we discuss the motivation for the proposed bootstrap likelihood ratio



classification procedure, show how to construct the bootstrap likelihood ratio statistic,
and explain how to determine the cut-off point for a desired misclassification
probability. Section 3 is devoted to the application of the procedure to three cases. In
Ezample 1, the bootstrap likelihood ratio statistic is shown to perform almost as well as
the statistics W and Z which are specifically designed for Ezample 1, i.e. the case where
two normal distributions with the same covariance matrix are considered. The bootstrap
also performs quite well for both the normal case with different covariance matrices
(Ezample 2) and the case of a mixture of continuous and discrete variates (Ezample 3),
where, in either case, classical classification rules cannot control the probability of
misclassification since their limiting distributions are unknown. In Ezample 4 we apply
the results developed here to some real seismic discriminant data and in Section 4 we

present some concluding remarks.

2. Bootstrap Generalized Likelihood Ratio Test for Classification
2.1. Motivation

Let V' = (Vy, . . .,V,) be a p-dimensional random vector which is used to classify
an individual into either population = or population ;. For i = 0, 1, let fi(v | 0(i)) be
the probability or probability density function of V evaluated at v, if v comes from
population =, where 6() is the set of unknown parameters. The components of V may
be all discrete, all continuous, or mixture of discrete and continuous variables. In the
mixed variables case, for example, let V! = (Y, X) with Y = (Y,...,Y ) and X =X, .
.. ,Xp_k, where Yy, ...,Y, are discrete and X;, . .. ’Xp-k are continuous. Suppose Y has
the probability fi,Y(Ylo@) and the conditional probability density function of X given Y

is fi,Xl Y(X]agé)ly, Y). Then the joint probability density function of V in =, is given by

7109y = £,y (v16$)f, x) v (o ), 1)



where () = {Bg}), og?IY}, i = 0, 1. See Olkin and Tate (1961) for the mixture of the
multinomial and the multivariate normal distributions.
For any given classification rule, suppose that the region R;is such that v € R,

implies that v is classified as belonging to =, Further assume that Ry n R; = 0.

The respective probabilities of misclassification are

P(1j0) = / fi(v169) dv

Ry

POl = [ fiv16Y) dv,
Ry

where dv = dv;. . . dvy. The classical classification rules obtain the optimal regions R,
and R, based on fy(v | 0(0)) / v 0(1)) according to their classification principles (such
as minimization of the total probability of misclassification, minimization of the total
cost of misclassification, maximization of the posterior probability, minimax classifica-
tion, etc.). However under any one of these classification principles, neither P(1{0) nor

P(0]1) is fixed in advance at a certain value, which here we desire.

2.2. Bootstrapping the Log Likelihood Ratio Test Statistic

Suppose we have the training samples {VSO), vgo), ce ’VS‘(J?} of size Ny, and {vgl),
vgl), ey v&}l)} of .size N, from 7y and 7, respectively. A new observation whose value
is v must be classified as from either 7; or 7. Now we employ a hypothesis-testing

approach to classify v. That is, the classification of v is accomplished by testing the

hypothesis
Hy: v, 0, v, ..., VS\(/B emy; WO, v, .., v%l) €m



. vi0) (0) 0) . 1) 1) 1)
Hy: vg ,vg ,...,VS\,O €my; v,vg ,vg ,...,vsvl € .
We use the generalized likelihood ratio method to construct a test. The likelihood of the

two training samples is given by
L(6©®, ¢ | w0, . VSV) Wb, st)) = . f (V(O) 1 60y H A (v(l) 161, (2)

Consider now the new individual v to be classified. If this individual is included
with the training sample from 7;, then an extra multiplying factor
L67 1v) = (v | 8)
must be incorporated in (2). The generalized likelihood ratio is therefore either unity or

given by
{Lo(0® 1 v) LD, 60 10, v (Y, ) )
{Ll(a(l) | v) L(G(O), o) | vg ), e vseg, vg e vg}l))}

up{g(o)’g(l) l H }
sup

LR =

{0(0)'0(1) l Hl}

B0 1) S0
; ] -, 3
1(031)|v) L(d0, ob | v, . vs}l) WD, ""’S\}l)) (3)

where 8(" is the Maximum Likelihood Estimator (MLE) of 61 under Hy and 8{" is the
MLE of 8 under Hy,i=0, 1. Now let A = log(LR). It intuitively follows that small
values of A provide evidence against H and thus the generalized likelihood ratio test is
to reject Hy if A < Ay, where Aq is chosen to provide a size « test.

Let P(A < Ay | Hj) denote the size of the Type I error and P(A > Ay | H;) denote
the size of the Type II error for a constant Aq. Then P(A < Ay | Hy) is the probability
of misclassification P(1[0), and P(A > Ay | H;) is the probability of misclassification

P(0[1) when R and R, are defined in terms of A,. Therefore we can construct a



classification rule which can control one of the probabilities of misclassification by fixing
the size of the test if we know the distribution of A(V, VSO), - ,ng, Vﬁl), e ’VS}B)
In most cases it is difficult to obtain the exact distribution of the test statistic A. The
distribution, however, can be approximated by employing the bootstrap method (Efron
1979, 1982).

Since the form of the probability density function is assumed known, the
bootstrap samples can be obtained from the estimated density function. This is called
the parametric bootstrap (Efron 1979), and we employ it in this study. We have
examined the use of the nonparametric approach of resampling with replacement from
the training samples, and for the training samples of size 25 or larger, this
nonparametric bootstrapping yielded similar results to those reported here.

The likelihood ratio statistic for the test of the null hypothesis Hj versus the alter-
native H; can be parametrically bootstrapped as follows. Given the training samples
{vj(o)}jv:ll, {vgl)};v___ll, bootstrap samples {V;(O)}JI-V;);- 1, {v.’]'-‘(l)}]]-vzl1 are generated randomly

from fy(v | 91(0)) and f(v | (‘20(1)), respectively, where 91(0) and 790(1) are obtained from

Ny

the original samples {VJ(O)};\LOI and {vj(l)} =1

respectively. The value of A, to be denoted
X*, is computed for the bootstrap samples by substituting v*j}(?ll, {VI(O), e ,v’}sg)},
v’f(l), ey vf\gll)} for v, {vgo), e ,vwg}, {vgl), - ,VS\}I)} in (3), respectively. This process
is repeated independently B times, and the replicated values of \*, {)\;f}ﬁ__l, evaluated
from the successive bootstrap samples, can be used to assess the true null distribution of
A. In particular, the ath empirical quantile of {/\;-‘}f;l, denoted by A&, will essentially
approach Ay, the true critical value for the test of size a, for large Ny and N, as B
tends to infinity. (See Bickel and Freedman (1981) for some asymptotic theory on the
quantile process for the bootstrap.). Thus we use A} as a critical value for the test of

size . Therefore, we allocate v to 7 if A < A%, and allocate v to 7y, otherwise.

McLachlan (1987) showed the relationship between )}, and the bootstrap



replication size B for the specified test size a. In general, given a set of B order
statistics from a population, the probability that a randomly selected member from the
population is less than or equal to the jth order statistic is j/B+1). Thus, if
a=j/(B+1), then N} is the jth smallest value of {A}£), i.e. if @ =0.05 and B =299

=D
then A& is the 15th smallest value of {A#}2%].

3. Applications

The bootstrap generalized likelihood ratio test proposed here allows the p-
dimensional characteristic variable V to be discrete, continuous, or a combination of
discrete and continuous variables, and its probability or probability density function
fi( V G(i)) for 7, is assumed to be known except for the value of the parameter O(i), i=
0, 1. It can therefore be applied to the classification problem in each of these cases
when one needs to control one of the probabilities of misclassification. As we will see,
the bootstrap generalized likelihood ratio test essentially achieves the required
probability of misclassification for even a moderate size sample. Throughout, we assume
that we have random samples {v§0) };Y_Pl from 7, and {vgl) }JN=11 from 7.

In the following four examples we consider four distinct scenarios. In the first
example we consider the simple case where the observations are all normal with equal
covariances. Of course this case is well established, but we consider it to demonstrate
that very little is lost by using the bootstrap rather than the exact distribution. In
Ezample 2, we continue to assume normality but drop the assumption of equal
covariances. In this case the bootstrap is necessary in order to determine the proper
critical point. However, it is not necessary to bootstrap the likelihood ratio, but instead
one could bootstrap the quadratic discriminant function, ¢). This example demonstrates
that these two bootstrap approaches yield essentially the same result. In Ezample § we

consider a mixture of normal and binomial variates where, to our knowledge, no alter-



native to the method introduced here is available. Finally, in Ezample 4 we consider a

set of real data which is treated as a mixture of normal and multinomial data.

Ezample 1: Normal Distributions with Equal Covariance Matriz

Suppose that f(v | G(i)) is the density function for Np(p(i), E(i)) with 20 = 2(1),
(= X), where o) = (p(i),E). Replacing the unknown parameters in fy(v | (#(0)’ )/ fov |
(/4(1), T)) by their estimates leads to the well-known Anderson’s W statistic (A2). The
likelihood ratio (A3) is characterized by John’s Z statistic (A4). On the other hand,
the log likelihood ratio statistic, A, is given in (A4) and is obtained directly by taking
the log of the expression (A3) and dividing it by a constant. The monotonic
relationship between Z and A is obvious. If the values of W, Z, and A are greater than
their cut-off points, then 7 is favored for v, and 7 is preferred otherwise.

Now we want to choose the cut-off point so that one probability of
misclassification is controlled. Let « be the desired P(1]0). Anderson (1973) has
obtained from the asymptotic normal distribution of W, the following approximate cut-
off point W, which attains the desired probability « to within O(N '2). For large N,
and N,

§P 40w - (5t -bw)+ He-Dm+hel)

where N=Ny+ N; -2, D = \J (7(0)—7(1))’8'1(7(0)—V(l)), ug is such that &(y)) = a,
and ® (-) is the cumulative N(0, 1) density function. Kanazawa (1979) has obtained
the asymptotic cut-off point Zy for the Z statistic. For large N and Ny,

Zo= 3 D? + D[y +§-N132—)(u(2) + Duy—(p-1))

_m(uﬂ+2Duﬂ+(p 1) + D)+ 2w + (4p-3))]

10



where D and v are the same as above.

Instead of deriving the limiting distribution, the cut-off point A§ of the bootstrap
log likelihood ratio statistic A is obtained by the parametric bootstrap procedure
described in Section 2.2. Using the MLEs of p(O), /1(1) and ¥ from the training samples
i

p(v( ), A/(Ny + Ny)) and a Np(v(l), A/(Ny + Np)), respectively. We compute the

=10 ¢ = 0, 1, bootstrap samples {v*(o)}N°+1} { *(1)}] 1, are generated from a
value of the log likelihood ratio statistic, A* corresponding to (A4), for the bootstrap
samples by replacing v, V(O), V(l), S by Vﬁf—%—l’ V*(O), V*(l), S*, respectively, where v+
= v v*()/N. =0, 1, and S* is calculated according to (A1) for the bootstra
Z]:l 7 2 b) ] g P
samples. This process is repeated independently B times. Then ) is the ath empirical

quantile of {/\*} where {/\*} > | are the values of A* evaluated from the successive

=D
bootstrap samples.
For given a, let Py(1]0), P,{1]0) and Py(1]0) be the probabilities that the new
individual is misclassified into 7; by the statistics W, Z and A using the cut-off points
Wa, Za, My, tespectively. Then Pyf1]0) = P(W < Wylrg), PA10) = P(Z < Zgy|ny),
and Py(1]0) = P(A < A% | mp). We will examine how close Py{1]0), P4(1[0) and
Py(1]0) are to the desired misclassification probability, @ = P(1|0), for the normal
distributions with equal covariance matrix by Monte Carlo method. We generate two
sets of random samples {v,,{v }J—l}r"l’ { }]_I}M from No(p (0) , Z) and No(p (1)

Y)), respectively, where

o (N o (2 1 05
2 =(0)’I‘ =(2)’ ‘mdz=(0.5 1)-

For each i = 1, 2, , M, we obtain the values of the statistics W, Z, A, say w, Z,

A, using {v, {v(o)}J_l, {v } 1,}, and compare them to their corresponding critical

11



values W,

wx’

Z.

i My forafixed a. B = 499 bootstrap samples are used for A%,.

Then Py/(1/0), Py(1/0) and P,(1[0) are estimated by the proportion of times that the
value of the statistic is less than or equal to its critical value among M trials. Since
PW(IIO) is the usual estimate of a proportion, its standard deviation (s.d.) is estimated

by\I PW(IIO)(I - PW(1|0))/M The standard deviation estimates of }52(1]0) and 15)‘(1|0)

are obtained similarly. The first portion of Table 1 shows the estimates of the
probability of misclassification with their standard deviations (s.d.) for the different
sample sizes with a = 0.05, M = 10,000. The results for PW(IIO) and PZ(IIO) are
identical when Ny = N} = 25 since Z = (Ny/(Ny + 1)) W for Ny = N;. Although for the
sample sizes considered, the bootstrap estimate does not attain the same precision as

the Wor Z statistic’s estimate, it is clearly competitive.

Table 1. The estimates of the probability of misclassification, P(1{0) = 0.05,
and the estimates of the power, P(1]1)

P,(1)0) P1)0) By(1]0)
0.054 0.054 0.061
(0.002) (0.002) (0.002)

0.055 0.055 0.060
(0.002) (0.002) (0.002)
Py(11) P1p) By(1]1)

0.726 0.725 0.736
(0.004) (0.004) (0.004)

12



Now we compare the powers, P(1|1), for W, Z and ). Random samples
0 1

{{VS‘?)}J-I_V__O]_}%__I, {vi,{vg})};v__}l}f_[__l are generated from N2(p( ), Y) and N2(p( ), T),
respectively with the same parameters as above. The power estimates for W, Z and ),
PW(1|1), Pz(lll) and P/\(1|1), are obtained in the same way as for PVV(IIO), PZ(IIO)
and ]5/\(1{0), respectively. For a = 0.05, Ny = 30, N; = 45, M = 10,000 and B = 499,
the power estimates are similar to each other with the bootstrap being slightly better
(undoubtedly, due to the slightly larger critical region) as shown in the second portion
of Table 1.

Ezample 2: Normal Distributions with Unequal Covariance Matrices

Let 7y and 7 be Ny(p(¥, £(0) and N,(uV, 5V with @ # V) ana 5O
# 1), When the parameters are unknown, a classical classification rule known as the
quadratic discriminant function is obtained by taking the log after substituting
estimates, V(O), 'w?(l), S and ) of F(O)’ p(l), E(O), and =) into the ratio of the two
multivariate normal probability density functions, fy(v |p(0), 2(0)) /(v | p(l), 2(1)).
The quadratic discriminant function @ is given in (AS5), and v is classified to 7 if @ >
0 and to m; otherwise. The probabilities of misclassification of () are difficult to control
since even its limiting distribution is unknown.

Following the hypothesis-testing approach of (2), the MLEs of ;4(0), p(l), 2(0),
1) under Hj, and Hj are given in the Appendix. The log likelihood ratio statistic, A, is
given in (A6), and to evaluate the cut-off point A}, for the desired probability of
misclassification, P(1|0) = a, we generate bootstrap samples {v;(o)};_v_ﬂf' h {v;(l)}j\él
from a NP(V(O), A(O)/NI) and a NP(V(l), A(l)/N2), respectively. Following the same
bootstrap procedure as in Ezample I, the ath empirical quantile A}, is obtained from the
values of the log likelihood ratio statistic A for the successive bootstrap samples. The

bootstrap generalized likelihood ratio classification rule with misclassification

13



probability P(1|0) = « is, therefore, to assign v to = if AM(v) < ), and to m,
otherwise.

Consider two bivariate normal distributions N2(p(0), 2(0)), N2(p(1), 2(1)), where

o " 1 05 o (L
0= () =) 2925 1), i m0= (o )

Suppose we apply the @ statistic for classification using the usual classification rule, i.e.
v is classified to 7 if Q > 0 and to 7 otherwise. The probability of misclassification of
interest, i.e. PQ(IIO) is P(Q < 0|mr;). In order to determine the probability of this
classification error we conduct a simulation. We generate {v, {v }J-l} i1, and
{v(l)} LM from Ny(p (0) 2(0)) and N (p(l) 2(1)), respectively. We obtain the @
statistics for {v;, {V(O)} 2.} {v(l)}J_l, i=1,2,..., M, and denote these @, @, . . .,
Q- Then Py(1]0) is estimated by PQ(1|0) which is the proportion of @; values that are
less than or equal to zero. PQ(IIO) (with its standard deviation) is 0.274 (0.004) for N
= 100, Ny = 150 and M = 10,000. When it is important to keep the probability of
misclassification PQ(IIO) small, an error this large may be unacceptable, resulting in the
need for the method we are describing.

Now we consider the log likelihood ratio statistic A. First, we would like to know
how well the parametric bootstrap procedure approximates the true null distribution of
A. Since the true null distribution of A is not known, we generate samples {v,,
(v oM, from No(u®, =) and {(+v{P}}Y, from Ny(u®, 5V) with M =
100,000. Applying {v, {vg)) }]__1, {v } 1 1M, to (A6), we can obtain {A\}¥,. The
true null cumulative distribution function (cdf) of A is approximated by the empirical
cdf using {\ },_1 for (N, N7) = (10, 15), (N, Np) = (30,45), and (N, N;) = (100, 150).
The true critical value )\, is approximated by -1.900, -1.504, -1.353 respectively. These
are the ath quantiles of {\}*; where a = 0.05 for (Ng» Np) = (10, 15), (N, Ny) = (30,

14



45), and (Ny, Nj) = (100, 150), respectively. In this simulation, B = 299 is used for
the bootstrap replication size because of computer-time constraints. Our investigation
indicates that the results using B = 299 and B = 499 are similar.

For a set of random samples {v, {vj(o)}j]Y_Pl}, {vj(l)}]l-vzll} under Hy with (Np, N}) =
(10, 15), (Np, Np) = (30, 45), and (Np, Np) = (100, 150), the empirical null distribution
of the bootstrap log likelihood statistic using {/\J”‘}]B___l with B =299 is also plotted
around the true null cdf in Figure 1. Inspection of this figure shows that the bootstrap
null distribution approximates the true null distribution of the log likelihood ratio stat-
istic quite well as the sample sizes increase and does surprisingly well for small samples.

Even though the null distribution of the @ statistic is unknown, the cut-off point,
Qq, for misclassification probability, P(1|0) = «, can be approximated by the same
parametric bootstrap procedure as for A. That is, we evaluate the @ statistic for B
successive bootstrap samples and call them @, &5, . ..,Q% Then @, is approximated
by Q2, the ath empirical quantile of {Q;}f_:l Therefore, one can allocate v to = if @
< QF, and allocate v to T, otherwise.

With the same simulation data used to get PQ(IIO) = 0.274 above, PQB(IIO) (s.d.),
the estimate of a fixed P(1|0) = 0.05 by the parametrically bootstrapped @ statistic @B,
is 0.050 (0.002) for B = 499. Py(1|0) (s.d.) of the bootstrapped ), i.e. A*, is 0.049
(0.002) for the same bootstrap samples as for @B. Both bootstrap estimates are close to
the true fixed misclassification probability P(1]0) = 0.05.

To further compare the two tests we now investigate their respective powers,
P(1]1), for different parameter values. Consider bivariate normal distributions No( _u(o),
2(0)) and N2(p(1), 2(1)). Let py and p; be the correlation coefficient for Nz(y(o), E(O))
and N2(y(1), 2(1)) respectively. We assume that py = 0.5, p; = -0.5 and that both

distributions have the same marginal variances, o% =1 and o% = 1. That is,

15



0 a’% Pyo 199 1 05
= 9 = . ) b)
2 (Po‘f 192 73 ) (0 51

(1) 0'% p10'10'2 1 -0.5
2= Qm% 2 )= o5 1)

For "(0) = (0, 0)/, we examine the power, P(1]1) of the bootstrap Q) statistic and the
bootstrap A statistic at p(l) = p(o) + Aoy, 09)', A =1, 2, 3, for small samples (N =
10, Ny = 15) and for large samples (N, = 100, N; = 150). For each A = 1, 2, 3 under
H,, we randomly generate {{v(o)} 0,}M. from No(p (0) Z}(O)) and {v; {v }]JY__ll}g_l
from N2(p(1), 2(1)) with Ny = 10, N; = 15 and M = 10,000. Foreach i =1, ... ,M and
for a = 0.05, {v;, {v} 0)} = {vs})}]Ngl} is used for the parametric bootstrap to obtain the
cut-off points Q and A5, for QB and ), respectively. The bootstrap replication size B
used here is 499. Then the power estimate f’Q p(1{1) for QB is the proportion of times
that the @ statistic value is less than or equal to Qpf out of M trials. The power
estimate 13/\(1]1) for the bootstrap A is obtained similarly. PQB(I]I) and P/\(lll) are
listed along with those for large samples (N, = 100, N; = 150) in Table 2.

Table 2. Power comparison between the bootstrap A and the bootstrap @ (@B) with
B = 499. Entry is power estimate with its standard deviation.

A=1 A=2 A =3

Ny=10, N, =15
P\(1]1) 0.310 (0.0046)  0.815 (0.0039)  0.992 (0.0009)
Pog1l1) 0.302 (0.0046)  0.795 (0.0040)  0.990 (0.0010)

Ny = 100, N; = 150
Py 0.375 (0.0048)  0.884 (0.0032)  0.999 (0.0003)
Pog1l1) 0.376 (0.0048)  0.884 (0.0032)  0.999 (0.0003)
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In this simulation, the bootstrap A has slightly higher power than the bootstrap @ for

small samples, but there is little difference for large samples.

Ezample 3: Mizture of Categorical and Continuous Variables

In this final example we consider a mixture of continuous and discrete variates.
Of the discriminant functions in the previous sections, only the A statistic applies in this
case. Suppose the variable V is a mixture of discrete and continuous variables. Let V'
= (Z, X) with Z=(Z;, ..., Z;) and X = (X;, ..., X,) where Z, ... ,Z, are discrete
and X, . . ., X are continuous, r and g are positive integers. Suppose further the jth
discrete variable ZJ has kj categories, = 1, . . . , . Then the vector of discrete
variables Z may be expressed as a multinomial random variable Y' = (Yy, .. ., Y,
where Y, = 0or 1, m =1, ...,k Efn:l Yn=1,and k = ;:1 k]-. Thus, each
distinct pattern of Z defines a multinomial cell of Y uniquely. It is assumed that the
probability of obtaining an observation in cell m for =; is pgl), (0 < pg,i,) <1, =1
pg,? = 1), ¢ =0, 1. Then the joint probability density function of V in =, is given by (1),
where 0@' = (pgi),. < up '.)1) and Osgyis the set of parameters of X given Y.

For the population 7, the conditional pdf of X given Y, fi,XIY(X | Y), may be of
any proper type depending on the relationship between X and Y. Following Olkin and
Tate (1961), for this example we assume that X has a conditional multivariate normal
distribution with mean p(,,';) given Y belonging to cell m and common covariance matrix
) in all cells. Y belongs to cell m, i.e, if Y = (Y; Y1 Y Yopyu¥ ) = (0o,
0,1, 0, -+, 0), then f; (Y | 99)) and fi,x]Y(XI ogé)lY’ Y) of (1) are given as follows:

£; y(¥169) = 5
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£ xpeXI8Qy ¥) = @n) V21 EO 2eap{ - (1/2) e - bRy (20 - D}

Let the jth member of the training sample, {vg"), vgi), C e v&')‘} from 7; be
denoted by {vg‘)' = (yj(i), xgi))}, where ygi) is the vector of binary variables obtained
from the discrete components z of vg'), and xgi) is the vector of continuous variables. Let
ng,‘;) denote the number of individuals of the training sample from =; that fall in cell m
defined by Y. Then N; = Y¢_ o), i =0, 1. The likelihood of the two training

samples is given by

Lty (e oz
L=1I1 [{1}1 ()" e 5]} 2
-ezp{-—}:(x Dy 86—l @

where p,; takes the value p( ) if ygi) falls in the mth cell, m =1,. . k.
Consider now the new individual v to be classified, and suppose that the
discrete components place it into cell I If this individual is included with the training

sample from 7, then an extra multiplying factor
£f? = (2m) % SO V20 eap{ Lo ufy (20 - )

must be incorporated in (4) to construct the generalized likelihood ratio test statistic of
(3)- xgi) must belong to one of k subgroups corresponding to the conditional
distributions depending on the value of yj(i) forj=1,...,N,1=0,1 Let xgg, be the
sth member of mth subgroup of the continuous variable measurements whose discrete
covariates fall in the mth cell. Then any element of {x( )} belongs to one of k
subgroups {{x } "‘1}" —1 Where, of course, some of the n(') could be zero. Hence we

can rewrite the exponent of (4) as
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The MLEs under H; and H; are given in the appendix, and the log likelihood ratio
statistic is given in (AT).

Krzanowski (1982) considered a similar likelihood ratio statistic when 20 = E(l),
(= X), and pg,’;) and X are estimated by a second-order regression model of X on Y.
Then he allocated a new individual to 7 if his likelihood ratio statistic is greater than
or equal to 1 and to r; otherwise. He did not consider the problem when it is desired to
control one of the misclassification errors.

We investigate the performance of the bootstrap log likelihood ratio test by
examining the power with a simulation. We consider a simple situation in which we
have a discrete variable from a Bernoulli(p) distribution and an independent continuous
variable distributed Ny, ¢2). For i = 0, 1, let {v](i) = (zy), :z:]("))’}}iil be a random
sample from 7;, where z](i) ~ Bernoulli(p;) and zj(i) ~ N(p,; o?). Let v = (z, z) be a
new observation to be classified where z ~ Bernoulli(p;) and z ~ Ny, a%).

We examine the power of the bootstrap A, P /\(1]1), for different parameter values.
We set py = 0.1, 3 =0, 0y = 0.5, and 0y = 1. For p; = 0.9, 0.7, and 0.5, the estimate
of P/\(1|1) is obtained for p; = 0.5 + Aoy where A = {0, 0.5, 1, 1.5, 2, 2.5, 3}. The
power estimate, 13/\(1|1), is the proportion of times that the A statistic value is less than
or equal to Ay out of 2000 trials, where A}, is the bootstrap cut-off point at «
significance level. With Ny = N; = 50, B = 299, and a = 0.05, these power estimates
are plotted in Figure 2. As the separation between g and p increases, the power of the
bootstrap likelihood ratio test increases. The plot also shows that the larger differences
between p, and p; produces the better power curves. Simulations were also performed

to verify the significance level of the test. The results were good and essentially the
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same as Table 1.

Ezample 4: A Real Data Ezample

Unfortunately no suitable unclassified data with categorical variables comparing
nuclear explosions to earthquakes are available for this paper. However, there is a
considerable amount of mining explosion data available as training data. Therefore, to
illustrate the method developed here, we have applied the bootstrap generalized
likelihood ratio test to observations at the ARCESS seismic array in Norway which
consist of mining blasts from two separate mines (HB6 and HD9) located in the Kola
Peninsula of the former Soviet Union. (For other applications of the bootstrap
generalized likelihood ratio test to seismic event identification, see Fisk and Gray
(1993); Fisk et al., (1993).) Fifteen blasts were observed from mine HB6 and sixteen
blasts were observed from mine HDJ.

The variables used here are day-of-the-week (DOW), slowness (inverse group
velocity measured in seconds/degree) of Pn (SLOW), and rectilinearity of Pn (RECT).
Pn is typically the first prominent portion of the seismogram to arrive for signals
observed at regional distances (<2000 km). These data are part of a data set
established by Sereno and Patnaik (1992) as a testbed for seismic signal identification
problems. Other features are also available in this data set, but most have many
missing data values, a problem we are currently addressing.

A histogram plot of DOW is plotted in Figure 3 for the two sets of mining blasts.
Note that the HD9 blasts occur predominantly on day 5, while the HB6 blasts occur
more uniformly throughout the week. Dot plots of the continuous variables are shown
in Figure 4. SLOW exhibits relatively good separation, while there is considerable
overlap for RECT.
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In order to assess the value of the discrete variable we considered cases in which
DOW is either included or excluded. Since the day on which an event occurred has no
influence on the seismogram, we treated the continuous variables as independent of
DOW. Furthermore, we assumed unequal covariance matrices since the variances for
SLOW are significantly different. Setting the significance level at 0.01 and 0.05, we
estimated the power using the bootstrap with and without DOW. Table 3 gives the
results using both continuous variables, while Table 4 gives the results using only
RECT, with and without DOW. Since SLOW is such a strong discriminator, Table 4
better demonstrates the power that may be gained by making use of an available

discrete feature.

Table 3. Bootstrap estimates of power using both SLOW and RECT.

Significance DOW excluded DOW included
0.01 0.962 0.982
0.05 0.980 0.986

Table 4. Bootstrap estimates of power using RECT.

Significance DOW excluded DOW included
0.01 0.266 0.377
0.05 0.529 0.736

The power was estimated in these tables using a parametric bootstrap approach.
Specifically, given the training samples of size Ny =15 and N = 16 available from the
two mines, g = HB6 and 7 = HD9, ML estimates of the associated parameters are
obtained. For these data, the bootstrap is used to estimate the a-level critical value by

simulating B = 499 replications. Each replication consists of training samples of sizes
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N, and N; from the models fit to 7y and 7| along with an observation to be classified
which is generated according to the model for 7;. As in the previous examples, the a-
level critical value, A5, was obtained from the likelihood ratio statistics calculated from
these replicates. The power is then estimated by again simulating B bootstrap
replications, where each replicate consists of training samples of sizes Ny and N; from
the models fit to 7y and 7 along with an observation to be classified which this time is
generated according to the model for 7;. The power is estimated as the proportion of
the resulting B likelihood ratio statistics that are less than or equal to A\5. A cross-
validation procedure was also considered, and it gave results similar to those shown
here. Efron (1983) has suggested an alternative bootstrap approach to remove the bias

from the cross-validation estimate.

4. Concluding Remarks

When one needs to classify an individual with one of the misclassification
probabilities under control but does not know the exact or limiting distribution of the
statistic for classification, the bootstrap likelihood ratio method is shown to be useful.
The statistic used for classification is derived from the likelihood ratio, and its limiting
distribution furnishing the discriminant cut-off point is approximated successfully by
the parametric bootstrap.

The bootstrap likelihood ratio statistic is shown to compete well with the
statistics W and Z whose limiting distributions are known, for moderate sample sizes
when two multivariate normal distributions with equal covariance matrices are
considered. It also performs quite well for both the multivariate normal case with
unequal covariance matrices and the case of a mixture of binary and normal variates,
where classical classification rules cannot control the probability of misclassification.

Moreover, the methodology considered here can be applied to any non-normal discrete
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or continuous variable, and to any mixture of continuous and discrete variables,
whenever the MLEs exist. It should be noted that the precision of the test depends on
the sample sizes Ny and Nj, and the bootstrap replication size B. Small sample sizes
may result in MLEs for the parametric bootstrap which are not close to the true
parameter values. Adequate sample sizes for different dimensions of the classification
variable may need to be studied. Finally, it should be noted that the method applied
here could be applied to any test of hypothesis based on the generalized likelihood ratio.
Actually, the approach considered here of calculating A based on normal likelihoods and
finding Ay, should be a sensible approach for continuous, unimodal distributions. The

robustness of this procedure is the topic of current research.

Appendix: Formulas Related to Examples
Ezample 1
p(i) is estimated by v = 23{21 v§‘) /N; and Y is estimated by

(Ny - 1)s© + (¥, —1)sV)
Ny T N, =2 ’

S = (A1)

where §() = 2;\;‘1@;")—7(")) (vgi)— V(i))'/(Ni— 1), ¢ =0, 1. Anderson’s W statistic
is given by
w=[v - 7O + 50 1O _50), (42)

Under the null hypothesis H, the MLEs of p(o), p(l), and ¥ are

w0 = (Ve @ + v/ + 1),
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i) =),

. N -
20=N0 +}V1 +1[A+N0_?_l(v - V(O))(V _V(O))I],

where A = Y1, 2?;‘1 (vg-i)—ir‘(i)) (vgi) -—V(i))’=(N0+N1—2)S. Under the

alternative hypothesis H;, the MLEs of the parameters are

I‘:‘SO) = 7(0)
MY = v + v/ + 1),

. N - -
£0 = mprirrr A+ w0 )6

In this case the likelihood ratio given in (3), with 960) = (;‘;80), 530), @81) = (;‘161), }30), é&O)
= (f;go), 21), and i)ﬁl) = ([zgl), 21) is, therefore,

. N+ Ny+1)/2
N+ gy (v—vDysly— v

N,
N+ Nng ) (v — V(O))'S'I(V—V(O))

where N= Ny + N; — 2. The likelihood ratio (A3) is characterized by John’s Z statistic,

Z=1

N N,
e (v e)- e =v e )

Thus
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A =log {N+ NlNi - (v - vy s1(v —v)}

N
~log {N + ; f (v - 7Oy 51y -v(ﬂ))}. (A4)

Ezample 2

The quadratic discriminant function is given by

| s
19

Q= Flog(75) +3 (v — ¥OysOyly —v1)
~ (v —vOysO)yl (v -3 7. (A5)
The MLEs of #(0), p(l), E(o), (1 under H), are

) = (N7 +v) /(2 + 1),

D =0,

. N,
£ = g (A0 + 50 (v O30,

2 (1) _ 1 (1
£ =4 a0,

where Al = E]-‘A;‘
H;, the MLEs are
NOJC)

1 (v](i) —V(i)) (v](i) —V(i))' , =0, 1. Under the alternative hypothesis
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iV = (ND 4 vy + 1),
=(0) _ 1 0
£0 =4 A,

- N
£ = g [ A0+ g (v W) - 0|

The log likelihood ratio statistic is given by

(1)
A=11og (5]

1 N =(1 1)y- _(1
I_S(F)'l)"' 2 (N + 1)108{(N1"1) + Nlil v —vWy(sWyLy ))}

— (N + Dlog {(Ny—1) + Nf 0 (v—vOY(SOylv O 1o, by (A6)

where SO = AD/(N;~1), i=0, 1, and

(No-l)(NO +1-p)/2 (N, + 1)(No+1)p/2 N1N1P/2

C(N,, V) =log
(No. Ny (Nl_l)(N1+1—p)/2 NONOp/2 (N1+1)(N1+1)p/2

Ezample 8

We consider the log likelihood ratio statistic under the scenario discussed in Ezample 3,
i.e. the new individual v to be classified has discrete components that place it into cell

. The likelihood functions on the numerator and denominator of (3) are given by

L)L = {(2,r)q}'(N0+N1+1)/2|2(0)|“N0/2 12O M/2 |g@p1/2

(L 1 e 6

1
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(k)

e (-3 35 (3% o4l - DYzl -
+ @=i(EO x-uDY L i=0,1,
Under Hy, the MLEs of p(), u(d, 29 are
Y =nQy(Ny+ 1), m=1,...,1-1, 11,. ..,k
8 = (=" + /(¥ + 1),
O =%, m=1,. .., -1, 41, ...,k
i = (o =0+ )/(xf") +1) ,
$(0) W(ﬁ_l U N(N)Sil () (x —x{Oy
#0 = /Ny, m= k,
A =x®), m=1,.. .
2P = AW
where £ = £ x/al0, AQD = £ ) D)l —x DY, m

AD = an:l Ag,i,). Under the alternative hypothesis H; the MLEs are
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P =nlD/(N +1), m=1,...,1-1,141,...,
D = (afV+ 1)/, + 1),
~(1

A= 2D m=1,..  1-1,1+1,...,k

AP = () =M + x)/(=) + 1),

)
(1) = 1A M — Wy x—x{Dy|.
21 Nﬁ-l{ MD 41 (x = %)) (x — x{ ):I

Since the exponential term of Lsi)L after replacing the parameters by their MLEs, is

ezp{ —(1/2)g(Ny + Ny + 1)} for i = 0, 1, the log likelihood ratio statistic is given by

o (I TGS E0) (RN EEY .

Som=1p B =0 s =M
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Figure Captions

Figure 1. Plots of distribution functions. Solid line: true null distribution of A, broken
line: empirical null distribution of the bootstrap A. (a) Ny = 100, N; = 150.

Figure 2. Power curves of the bootstrap A with mixed binary and continuous variables.
p; = 0.1. Delta denotes A.

Figure 3. Histogram of Day of Week (DOW) for mines HD6 and HD?9.

Figure 4. Dot Plots of Slowness (SLOW) and Rectilinearity (RECT) for mines HD6
and HD9.
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Figure 2. Power curves of bootstrap A with mixed binary and continuous
variables. Py =0.1. DELTA denotes A.
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HB6 AND HD9 MINES: DAY-OF-WEEK
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Figure 3. Histogram plot of the categorical variable day-of-week.
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Figure 4. Dot plots of continuous variables used to classify mining blasts.



