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Summary 

This report presents several results pertaining to bias in Monte Carlo 

estimates of cumulative distribution functions, means and variances when 

restricted pairing is employed. Some analytical results are derived to 

yield bounds on the magnitude of the difference between the true cdfs 

estimated by random sampling and by restricted random sampling. The pri- 

mary focus of this report is the bivariate distribution with uniform 

marginals and zero correlation. Several of the findings extend to higher 

dimensions, other distributions and low to moderate amounts of correlation. 

1. Introduction 

The restricted pairing technique, Iman and Conover (1982),which trans- 

forms an (nxk) matrix, R, whose colunms are random permutations of van der 

Waerden scores, is used to induce specified rank correlation among the k 

input variables. The resulting score matrix, R*, specifies how the n obser- 

vations for each input variable X should be ordered. Observations for 
j 

input may be obtained by simple random sampling (RS) or Latin Hypercube 



Sampling (LHS) . Each (nxl) vector X is reordered according to the jth 
- j 

column of the R* matrix, which results in an (nxk) input matrix having rank 

correlation matrix exactly as specified by the user. 

Although Latin Hypercube Sampling is used in practice in uncertainty 

analysis for large-scale, computer models more often than RS, attention is 

focused on the latter. In their paper introducing the restricted pairing 

technique, Iman and Conover (1982) present two methods. It is the 

"variance reduction technique", the second method, that is studied. A 

short summary of the technique is as follows: 

1. Generate a (nxk) matrix R whose columns are random permutations of 

( i n + l )  The sample (Pearson) correlation matrix of R is denoted by T. 

2. Use Cholesky Factorization to get Q such that T = QQ'. Also use 

Cholesky Factorization to obtain a matrix P such that C = PP', where C is 

the desired (rank) correlation matrix for the k input variables. 

-1 - 1 
3. Calculate R* = R(PQ )'. Each row gy * Fti(PQ )' will have corre- 

lation matrix P~-'TP' = C. 

4. Independently generate n observations of each of the k-variates 

and order them as specified by each of the k columns of R*. - 

The fact that the sample correlation matrix, T, is used rather than 

the theoretical identity matrix is a matter for concern for small samples 

only. In other words, the "variance reduction" distinction vanishes as n -) 

a, due to the fact that T + I. Thus the main concern that one might 

reasonably have, pertains to the small sample effect of forcing the input 

correlation matrix to equal the target, C, with no Monte Carlo sampling 

error in this characteristic. 



A question of interest is how the output Z = g(XI,. . . ,X ) is affected 
k 

by the technique. That ia, are the estimates of the cdf, mean and variance 

of Z unbiased? The general concern connected with not allowing sampling 

variability may be illustrated in the aimple univariate situation of iid 

2 
observations from N(0,a ) .  Suppoae that analogous to steps 2 and 3, we 

utilize the sample standard deviation, S, and rescale the data to better 

conform to the known target value a. If it happens that the statistic of 

interest is Z s2, then we have introduced a severe bias in our estimate 

of the cdf. That is, instead of learning about the chi-square sample 

distribution we produce a degenerate cdf. 

In the section that follows the bivariate (k=2) case is considered in 

connection with several transformations g(X ,X ). To ease the notational 
1 2  

burden on subscripts Z = g(X,Y) will be used. To avoid the ambiquity about 

the structure of the particular bivariate distribution that is simulated 

the case of independent X and Y is studied. It follows that the target 

correlation matrix (2-1, the identity. Therefore the subject of this 

investigation becomes a comparison of Z = g(X,Y) where X,Y are truly inde- 

pendent (RS) with Z* = g(X*,Y*) where x*,* are generated by restricted 

pairing (RRS) . 

2. Exact Distribution for Small Samples 

Two settings are considered in some detail: 

(i) the input variables are independent and simple random sampling is 

used to form the nx2 input matrix of uniform (0,l) variates (RS), 



(ii) input variables are all independent and the restricted pairing 

technique is used to get the input matrix (RRS). 

For relatively small n the exact distributions of Spearman's rank 

correlation in the two cases are easily obtainable'. For n-4 pairs of input 

variables, the distributions (to be examined in more detail later) are 

given below. 

True Independence: 
r P(R=r) 

Restricted pairing: 
r P( R=r) 

Since the re-stricted pairing does not allow samplee having rank correla- 

tion coefficient of + I . ,  + - 8  and ? -6, (which have positive probability 

in the true independence case) the method may be too restrictive. Positive - 
correlationnear 1 results whe,nX a n d Y  are paired, orwhenX and 

(1) (1) (4) 

Y 
(4) 

are paired. Similarly, the occurrence of pairs (X 
(4)'Y(1) 

) and 

(X( 
?Y( 4) ) in the sample yield high negative correlation. Samples with 

rank correlation near ~1 are not permitted in the restricted pairing tech- 

nique. Theref ore one might expect scatterplote of the (X*,*) pairs to 

exhibit somewhat sparse realizations near the corners of the unit square. 

A s  the two plots of 1000 pairs in each of Figures la and lb demonstrate, 

this is not visually detectable. The points in Figure la are 1000 pairs of 

independent uniform (0,l) random variables. The points in Figure lb are 



Figure la  

1000 p a i r s  o f  i i d  Uniform ( 0 , l ) :  RS 

Figure l b  

250 s e t s  o f  4 pa ir s  o f  uniforms: RRS 



2 5 0  sets of 4  pairs (n-4) generated by restricted pairing of uniform ( 0 , l )  

order statistics. Any differences which may exist, even in this extremely 

small sample case, are not obvious. 

The joint distribution, f*(x,y) of a randomly selected pair generated 

by RRS can be derived for comparison with f(x,y) = I ( O , l ) ( x ) * I  (0 ,1) (" ) .  

There are nl-2 22 permissable, equally likely, distinct R matrices of van 

-1 ' 
der Waerden scores. The transformation R* = RQ is applied in each case. 

This results in ten different outcomes, each having 4  pairs of uniform 

order statistics. 

These final pairings are given below with the associated rank 

correlation and likelihood. 

X  
( 1 )  Y(4)  

X Y 
( 1 )  ( 3 )  

X  
(1) Y ( 2 )  X ( l )  Y(4 )  

X 
( 1 )  Y ( 2 )  

X  
( 2 )  Y ( l )  

X Y 
( 2 )  ( 2 )  

X 
( 2 )  Y ( 3 )  X ( 2 )  Y ( l )  

X 
( 2 )  Y ( 4 )  

Sample: X 
( 3) Y( 3)  

X Y 
( 3 )  ( 4 )  

X  
( 3 )  Y ( 4 )  X(3 )  

X 
( 3 )  Y ( l )  

X  
( 4 )  Y ( 2 )  

X  Y 
( 4 )  ( 1 )  

X  
( 4 )  X(4 )  Y(3 )  

X 
( 4 )  Y ( 3 )  

Rank corr: - .4 -. 4  -. 2  -.2 0 

Prob. : 1 / 22 1 / 2 2  3 / 2 2  3 /22  3 / 2 2  

Rank Corr: 0 - 2  . 2  . 4  .4  

Prob. 3 / 2 2  3/  22 3 / 2 2  1 / 22 1 / 22 



The pdf f*(x,y) can be calculated as follows. Each pair (X 
(i).9Y(j> 

) has 

joint distribution gij(x,y) gi(x)gj (y) , where gi(x) is the distribution 

of the ith order statistic of a sample of size 4 from a uniform (0,1), 

namely a beta distribution with parameters i and 5-i. The desired pdf is a 

mixture of the 10 situations itemized above, 

which simplifies to f*(x,y) = E w g (x,y) = C w .g (x)g.(y) , 
1 ij ij 1 i ~ i  J 

where the weights w are 
ij 

In the case of true independence f(x,y) can also be represented as a 

weighted sum of g (x,y), with all w = 1/16. It can easily be shown 
i j i j 

using the binomial formula that the 16-term sum simplifies to f(x,y) = 

I (0,1)(~)~(0,1) (y). 
In general, for the independence case, the w weights 

i j 
2 

are w = l/n , while the RRS procedure gives different w ' a ,  say w* . 
i j i j i j 

It should be possible to write the w* 's as functions of n. This could 
i j 

be of some value since one might consider the quantity T = maxlw -w* ( 
ij ij 



-w* )2 and study the rate at which T vanishes as n gets large. or PP(wij ij 

At this time no such expression for the explicit dependence of the w* on 
ij 

n is known. 

After much algebra (eventually verified by REDUCE) it can be shown 

that all of these polynomials (products and sums of beta densities) 

simplify to 

Four specific transformations were studied to make comparisons of 

exact moments and derived distributions. The expressions for the densities 

differ substantially in form. Consider the four transformations 

and the associated pdf of Z will be denoted by f (z) or fT(z) when 
i i 

the X,Y pairs are by RS or RRS, respectively. 

1. Product 

~(x'Y) = xy 



True Independence: 

f l ( z )  - - F n ~ f ~ , ~ )  ( z )  

Var(Z) = 71144 = .04861 

Restr ic ted  Pairing: 

1  2  
f r ( z )  - i1(18 + 1802 - 198z2 - 8bnz + 108zFnz + 1082 f in . ) - I  

( 0 , 1 ) ( ~ )  

191 3 Var(Z*) a 3m = -04831 

2 .  Sum - 

g2(x ,y )  X+Y 

True Independence: 

Restr ic ted  Pairing: 

f2*W = P ( ~ ) I ( ~ , ~ )  ( 2 )  + L ~ P ( ~ ) - P ( z )  J I [ , , ~ ) ( Z )  

3 5 
~ ( 2 )  a (40. + 90z2 - 1502 + 90z4 - 181 ) I55  

3. Maximum 

g3(x ,y)  = ~ a x i x , ~ !  



True Independence: 

Restricted Pairing: 

2 3 5 
f?(z) (162 + 542 - 1562 + 180r4- 72. )/11.1 

(0,1)(~) 

4. Asymmetric 

g4(x,y) = 2x + 3 ~ 3 7  

True Independence: 

Restricted Pairing: 



Figures 2 through 5 display two pdfs for transformations 1 through 4, 

respectively. In each case the graphs of the two densities exhibit small 

differences between the distributions under RS and RRS. Changing to the 

cdf domain, a comparison of upper tail probabilities for g (X,Y) = XY is 1 

given below. 

RS RRS 
k P(Z > k) P(Z* > k) difference 

At any particular point k, P(Z* > k) is biased for P(Z > k) but the 

problem is not severe. It is not easy to obtain results for general n to 

investigate the bias as n grows. Moments of the distributions differ very 

little, with Var(Y*) i Var (Y) in all cases examined. 

In light of these results the natural line of investigation would seem 

to be to seek an upper bound on 

the maximum difference between the cdfe of the output Z = g(X,Y) produced 

by RS and RRS. For a single specific function, g, such a bound is not 

difficult to derive. TO' be of practical importance the value of A, that 

holds for a broad class of functions desired. In other words, if 

A = sup h 
g 



Pdf of Z = X . Y  

- True Independence .------ Restricted Pairing 

Figure 2 



Pdf of Z = X + Y 

- True Independence .--.--- Restricted Pairing 

I I I I I I I I I I 

Figure 3 



Pdf of Z = ~ax{X,Yt 

- 

- 

I 

- True Independence .------ Restricted Pairing 

I I I I I I I I I 

Figure 4 



Pdf of Z = 2X + Y 1 / 3  

- 

- 

- 

- True Independence .------ Restricted Pairing 

I I I 

Figure 5 



is small and I' contains a rich collection of transformations, then this 

could allay most concern about RRS as a methodology for estimating cdfs. 

The class of transformations examined is z = g(X,Y) = X + Y/c. This 

transformation is motivated by the following: consider the class of 

transformations that are well approximated by a first order Taylor series 

expansions,i.e., 

g(X,Y) 2 a. + a X + a2Y . 1 

Here we have 

The value of a is immaterial to the calculation of sup (FZ(z) - 
0 

Z 

F;(z)J, and al,a2 enter into the calculation only through their 

ratio. They affect the location only; not the magnitude. 

Four distinct cases arise depending on the size of (l/c( and the sign 

of c. These are: 

1) c e (-m,-1) 

2)  c E 1-1,O) 

3) c e  (0,l) 

4)  c E [l,m). 

Let 



then the distribution function of Z = X + l/cY is 

Case (I), c E (-a,-l), 

Case (2), c E [-l,O) 

1 
Z E: ( 4 ,~ )  

C 



Case 3, c E (0,l) 

Case 4 c E [ 1  ,a1 

Replace G with G* for the distribution function of Z*. 
i 1 

A plot of Ac = sup (F*(z,c)-F(z,c)( was obtained by numerical 
z 

methods for various values of c. Figure 6 indicates that sup s;p 
C 

JF*(z;c) - F(z;c)) occurs at ) c )  = 1 and that A + 0 as c + f or 0 2 .  
C 

Since Z + X and Z* + X as J c J  + it follows immediately that Ac + 0. For 

+ 
c + 0 , Z* + and Z + so F*(z) + 0 and F(z) + 0 and sup JF*(z) - 

2 

F(z)J + 0. Finally for c + 0-, Z* + -a, Z + - so F*(z) + 1 and F(z) + 1, 

thus SUP IF*(z> - F(z)J + 0. ~t c = 1  SII~JF*(Z) - F(z)J = 5 . 7 1  x 
z 

occurs at z = . 7 8  and 1.22. 



Maximum over all t of J~*(z;c)-~(z;c)J times lo3  as e function of c 

Figure 6 



In view of the analytical difficulties encountered with the first 

order Taylor series class it is not conjectured that the broader class of 

all quadratic response functions would lend itself to similar analysis. 

Comparable complexities arise in attempts to derive the exact distribution 

of any summary statistic for the entire RRS Monte Carlo run. This result 

would allow an examination of the issue of whether RRS truly produces a 

variance reduction uniformly over all types of statistics. 

Conclusion 

In the smallest of samples the maximum deviation of the cdf produced 

by RRS from that by RS is not large. Therefore in low correlation or 

independent cases, the biases for moderate size n appear to be 

inconsequential. At the same time it is difficult to demonstrate that the 

variance reduction that one obtains from RRS is worth the introduction 

of some bias. ' 
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