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CHAPTER 11
ANALYSIS OF DATA FROM CENSORED SAMPLES

John R. Michael
DataProbe, Inc.

AND
William R. Schucany
Southern Methodist University

11.1 TNTRODUCTION

In this chapter we consider a variety of technigues which are appro-
priate as tests of fit when only a certain portion of the random sample
from a continuous underlying distribution is available. The censoring or
deletion of observations can occur in several ways. The type or manner of
censoring determines the appropriate method of analysis.

The most common and simple censoring schemes involve a planned limit
either to the magnitude of the variables or to the number of order statis-
tics which can be observed. These are called singly Type 1 and Type 2
censored data, respectively. The number of small (or large) order statis-
tics which will bebobserved in Type 1 censoring is a random variable. 1In
life testing applications it is quite common for an experiment to produce &
Type 1 right censored sample by having n items placed on test and recording
the values 0 < Y(li eens € Y(r) of the failure times which are observed up
to a fixed test time. (In this chapter observations will be referred to as
Y, rather than X, since in plotting techniques we shall wish to plet obser-

vations on the vertical, or y-axis). Data arising from such a procedure



are occasionally also referred to as being truncated. If the life test is
planned to continue until a fixed number, r, of failures occur, then tﬁe
resulting failure data are Type 2 right censored. As another example, if
~ one records only the 10 largest independent competitive bids on an oil

lease, the observed sample is singly Type 2 censored on the left. Types 1

and 2 censoring are sometimes referred to as time censoring and failure

censoring respectively.

In the more complicated situation in which the variables are subject

to different censoring limits the sample is said to be multiply censored.

If the different censoring limits are preplanned, as would result from
Placing items on a life test at different starting times with a single

 fixed termination time for the test, the data are progressively censored

(Type 1). Samples which are ﬁrogressively censored (Type 2) occur less

often in practice but could result, again in life testing, if the units are
put on test at the same time and then selected fixed numbers of (randoﬁly
chosen) unfailed items are removed from test immediately after different
pre-planned numberé of failures have occurred.

The unplanned type of censored data which arises most often in

- practice is randomly time censored or arbitrary right censored data. The

larger values (again usually in life testing) are not observed due to
random censoring times which are statistically independent of the variable
of interest (usually failure times). If some of the units are accidentally
lost, destroyed or.removed from the‘study prior to the measurement of the

variable (failure time) and if these independent censoring times are



recorded then the data can still be analyzed for goodness of fit. 1In
certain situations competing modes of failure will produce randomly
censored data (see Example 11.2.3.2.) Combinations of multiply right and
left censored data can also arise in practice (see Section 11.2.4)

The graphical technique of examining probability plots (Chapter 2)
adapts quite easily to the censored samplevsituation. Subjective im-
pressions should be formed with somewhat more caution than in the complete
sample case, but the computational aspects are essentially unchanged.
Probability plots are discussed in Section 11.2.

When the null distribution is completely specified, the probability
integral transformation (see Section 4.2.3) may be employed to reduce the
problem to a test for uniformity. Section 11.3 presents a number of
examples of standard EDF (Chapter 4) goodness-of-fit statistics which have
been modified in a straight-forward fashion to accommodate a censored
uniform sample. Adaptations for correlation (Chapter 5) and spacings
(Chapter 8) statistics are also discussed. For Type 2 censore& samples a
transformation of the uniform order statistics is described which makes it
possible to analyze the data as if it were a complete random sample.

In testing fit, it is a common situation for the null hypothesis to be
composite; the hypothesized parent population is not completely specified,
but only the form F(x|6) of the cumulative distribution function (cdf) is
given. Here ¢ is an indexing parameter; it may be a vector of several
components, some known and some unknown. One very nétural approach which

has been taken in the complete sample case is to replace the unknown



components in 8 by efficient estimators (for example, the m.l.e.8§) and

then to calculate a statistic based on F(x|0§) as if it uére the completely
specified distribution function. This has been done, for example, in many
of the tests in Chapters 4 and 5. Censoring presents an extra complication
for this approach #imply because of increased complexity of efficient
éstimatora of 6. A variety of resulta for the composite hypothesis problem
are examined in the final Section 11.4. Adaptations of the chi-square
procedure are not covered in this chapter. For some disgcussion on this
topic, see Section 3.4.2.

11.2. PROBABILITY PLOTS.

Probability plotting has been described in Chapter 2 as a valuable
technigue for assessing goodness of fit with complete samples. This
extends naturélly to incomplete samples for most types of censoring. Even
in the case of multiple censoring a probability plot can often be con-
structed quickly using only ordinary graph paper and a hand calculator.

In_Section 11.2.1, the construction of probability plots for complete
samples 1s reviewed. The method is extended to singly-censored samples in
Section 11.2.2, to multiply right-censored saﬁples in Section 11.2.3, and
to other types of censoring in Sections 11.2.4-11.2.6. An easy-to use
summary of the steps required in constructing a probability plot is given

in Section 11.2.7.




11.2.]1 Complete Samples

Let Y ’Y(n) be a complete ordered random sample of size n

(1),Y(2),...
and let F(y|u,0) be the corresponding cdf where p and ¢ are unknown
location and scale parameters respectively. (Note that p and ¢ are not
neéessarily the mean and standard deviation.) When there is no ambiguity
F(y{u,0) will be shortened to F(-) or F.

Since u and 0 are location and scale parameters, we can write (as was

done in Formula (2.9))

F@Wm)-@(%#)scu>, (11.1)

where Z = (Y-pu)/o is referred to as the standardized variable and G(z),
also referred to as G(+) or G, is the cdf of the standardized random
variable. Using obvious notation, it follows that, using E for expectation

or mean,

E{Y(i)} - u 4 GE(Z(i)} =W+ om ,

where Z(i) is the ith order atatiétic from the standardized distribution,

and m is E{Z Similarly, for 0 S Py < i ,

Wt
pi-th quantile of F(y;u,0) = p + o {pi-th quantile of G(z)}
=u+o 6!,

where G-1 is the inverse function of G.



We can regard Y( as an estimate of its mean, or of the pi-th

i)
quantile of F(y;u,0), where Py is an appropriate probability. In con-
struc;ing a probability plot we could plot the Y(i) on the y-axis versus
m, on the x-axis. if the sample is in fact from»F(y;p,o) then the
points will tend to fall on a straight line with intercept p and slope ¢.

Hbithl st our distributional assumption by wvisually judging the degree

of 1ihe§rity of the plotted points. Methods based on regression and
correlation are discussed in Chapter 5.

It should be noted that if the null hypothesis is simple, that is, the
values of all distributional parameters are specified beforehand, we can
plot the Y(i) against their hypothesized means and then judge whether the
plotted ﬁoints fall near a straight line with intercept 0 and slope 1.

A drawback to using means of order statistics is that they are
often difficult to compute. .Quantiles, on the other hand, are easy to
compute as long as F is eésy to invert. A plot of the sample quantiles

Y(i) versus theoretical quantiles of G is a probability plot as defined in

Chapter 2; it is also called a quantile-guan;ile or Q-Q plot (Wilk and
Gnanadesikan, 1968). Héwever, tﬁe plo;s will be different from thosé in
Chapter 2 where the observations were plotted on the horizontal or x-axis;
here they are plotted on the vertical ér y-axis. Special probability
plotting paper is available for many families of distributions, but as was

stated in Chapter 2 no special graph paper is required if F can be inverted



in closed form or if standard quantiles are available from tables or
approximations. Often a scientific calculator and ordinary graph paper is
all that are needed.

Table 11.1 lists the cdf's of some common families of distributions
along with the formulas regquired to conetrﬁct probability plots. The
reader is referred to Chapter 2 for further discussion of these distri-

butions. In this context the Py will be referred to as quantile prob-

abilities.

There is much discussion in the literature over the best choice of
guantile probabilities for Q-Q plots (see Kimball (1960) and Barmett
(1975)). A frequently used formula is given by P, = (i-c)/{(n=-2c+l), where
c is some constant satisfying 0 S ¢ € 1. The choices c=0 and c=0.5 (see
Chapter 2) are both poéular. Here we use c=0.3175 since the resulting
probabilities closely approximate medians of uniform (0,1) order statistics
(Filliben, 1975). This choice has the attractive invariance property that

if Py is the median of the ith

order statistic from the uniform (0,1)
distribution, then G-l(pi) is the median of Z(i) and F.l(pi) is the median
of Y(i), for any continuous F. Medians may also be preferréd ag measures
of central tendency sinée the distributions of most order statistics are

skewed. In the examples that follow we will adhere to the convention of

choosing ¢=0.3175 unless stated otherwise. Thus we will plot the points

-1
{G (Pi) s Y(i)} s ’ (11.2)



Distribution¥*

Uniform

Normal
Lognormal
Exponential
Extreme-value

Weibull

Laplace

Logistic

Cauchy

A Table 11.1
CDFs and Plotting Formulas for Selected
"Families of Distributions

F(y)

Abscissa
e Py
¢ [ ra ] °;l(pi)
T B A
l-exp[- [XﬁE ] loglll(l-pi)J
1-exp [—a#p | -k ] ] log{logl1/(1-p,) I}

=t

$ . expllﬁk]. ySp

log{logll/(l-Pi)J}

Ordinate

. Y(i)

Y1)

logi¥ 4y}

Y1)

Y1)

108(Y(i))

(1)

1-4 exp [— XEE], y>u \ log{1/(2-2p,)], p 2}

1/ [1+exp - [zgkl ] loglp,/(1-p,)]

++ % . arctan (152] tanf{® - (Pi'%)]

Y1)

Y1)

*Support of each distribution is (-—@(y<®) except for the uniform (p<y<pt+o),
~ lognormal. (y>0), exponential (y>p), and Weibull (y>0).



where p; = (1i-0.3175)/(n+0.365). The particular choice of'quantile pro-
babilities is not crucial since for any reasonably large sample different
choices will have little effect on'the appearance of the main body of the
plot. There may be some noticeable differences, however, for extreme order
statistics from lbng-tailed distributions. (The reader should note that in
Chapter 2 the Py of (11.2) was symbolized by Fn(y), the empirical distri-
bution function.)

E 11.2.1.1. Uncensored Normal Example. Data for this example consist of

the first 40 values from the NOR data set which were simulated from the
normal distribution with p=100 and o0=10. A normal probability plot is
shown in Figure 11.1. The normal distribution provides a good fit to the
data. Note that the intercept and slope of a straight line drawn through
the points provide estimates of the theoretical mean and standard devia-
tion. (The reader should compare Figure 11.1 to Figure 2.15 where the full
NOR data set is plotted with X and Y axes interchanged from Figure 11.1.)

11.2.2 Singly-Censored Samples.

The method of the previous section can be applied directly in any
situation where the data consist of some khoﬁn subset of order statistics
from a random sample. This is because the available Y(i) are still sample
quantiles from the complete sample and appropriate quantiles of G can be
calculated as before. Although only a portion of the observations from the
hypothetical complete sample can be plotted, the plotted positions of the

uncensored points are the same as when the complete sample is available.
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Figure 11,1

Normal Probability Plot of the First L0 Observations
from the NOR Data Set
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The only difference is that points corresponding to censored observations
do not appear. The simple example of this is the case of a singly-censored

sample.

E 11.2.2.1. Right-censored Normal Example. Data for this example consist

of the smallest 20 values among the first 40 values listed in the NOR data
set. A normal probability plot is shoﬁn in Figure 11.2. This plot is
merely an enlargement of the lower portion of the plot shown in Figure
11.1.

The plotting procedure is the same for Type 1 as for Type 2 singly-
censored samples; however, with Type 1 censoring there is one additional
piece of information, namely the censoring time, that can be represented
graphically. Suppose we observe the r smallest observations from a random
sample of size n. For a location and scale family we plot the points
(G;l(pi), Y(i)) for i=l1,2,...,r. Now suppose that the censoring is Type 1
and that the observations are all those that are less than some predeter-
mined value t; thus Y(r+1) must be greater than t. This additional informa-
tion can be given by plotting the point {G_l(pr+1),t} with a symbol such as
an arrow pointing Qp, thus indic#ting the range of possible values for
Nelson (1973) illustrates this technique.

Y(r+1)'
11.2.3 Multiply Right-Censored Samples

The method of probability plotting extends easily to multiply right-
censored samples; however, the computation of quantile probabilities is
more complicated. For ease of explanation we will first consider the

special case of progressive Type 1 censoring, but the methodology can be




ORDERED OBSERVATIONS

Figure 11.2

Normal Probability Plot of the Smallest 20 of the
First 40 values listed in the NOR Data Set
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applied to any multiply right-censored sample. Suppose we place n units on
test, using several different starting times, and terminate the experiment
at time t. Now let Y(l) < Y(Z) € ... £ Y(n) denote the ordered lifetimes
of the n units, some of which are failure times and some of which may be
censoring times. If we observe r failures, then (n-r) units are still
operating at time t. In this case the observed time to failure Y(i) does
not necessarily represent the ith largest observation from the hypothetical
complete sample, and Y(i) cannot be regarded as a sample quantile from the
complete sample {unless Y(l)’Y(Z)""'Y(n) are all failure times).

We still wish to plot the r failure times against theoretical quan-
tiles from G. The guestion now becomes, what proportion of the population

falls below Y ) or equivalently, what is the value of F(Y(i)lp,u). Kaplan

(i
and Meier (1958) discuss the maximum likelihood nonparametric estimator of
F for the case of a multiply right-censored (Type 1) sample. If S is the
sat of subscripts corresponding to those units which fail during the

course of the experiment, then the Kaplan-Meier (K~M) estimator is given

by

& -] = _n=j_
g-Mp () = 1 n-]41
jes
jey <y
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(This estimator is undefined for y > Y(n) if Y(n) is not a failure time).
In the case of a complete sample the K-M estimator reduces to the familiar
EDF‘Fn(y) = (the number of Y(j) € y)/n, discussed in Chapter 4. The
estimated probability at the point Yi provided by the Kaplan-Meier esti-

mator is given by

py(R-M) = 1 ~ I I;??{T (11.3)

jes
jsi

for ieS. Hérd‘(1960) and Johnson (1964) propose the similar quantile

probabilities
-J) = 1 - I I n-j+l
pi(H J) 1 n—j+2 (11.4)
jes

st

for 1eS. TImplicit in the work of Nelson (1972) are the quantile pro-

babilities

pi(N) = 1 - I | exp [ - n_1+1 (11.5)
jes
jsi

for ieS. Nelson refers to his method as (cumulative) hazard plottimg, but
it is equivalent to probability plotting with the above special choice of

quantile probabilities. An algebraic comparison reveals that pi(K-H) >
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pi(N) > pi(H-J) for all ieS. For ; discussion of the properties of the
Kaplan-Meier estimator see Peterson (1977). Results by Breslow and Crowley
(1974) apply to the Kaplan-Meier estimator and the estimator implicit in
the work of Nelson. See Gaver and Miller (1983) for a discussion of the

| jackknife technique for approximate confidence intervals in this setting.
For a complete sample the formulas (11.3),.(11.4) and (11.5) for quantile

probabilities reduce to i/n, i/{(n+l1) and 11 - exp(-si)j , respectively,

where B, = Eﬁsl(n-j+1)-l. The choice of probabilities given by
e 1 _ D-ctl n-j-c+l
pi(c) 1 - afzen I I n-j-c+2 - (11:6)
jes
jsi

reduces fo (i-c)/(n~2c+1) with a complete sample. As a special case,

_ pi(c) = pi(H—J) when c=0. In the examples that follow we will remain
consistent with Section 11.2.1 and use (11.6) with c=0.3175 unless stated
otherwise. Again for purposes of assessing goodness of fit the particular
formulation for quantile probabilities is of little consequence.

E 11.2.3.1 Multiply Right-Censored Example.

Data for this example consist of the 100 observations from the WE2
data set which were simulated from the Weibull distribution with o=1 and
m=2. The data were censored as follows: obsgrvations among the first,
second, third, and fourth sets of 25 were recorded that were less than 1,
0.75, Q.SO, and 0.25, respectively. This type of progréssive Type 1

censoring could have occurred if four sets of 25 devices were placed on
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test at tiﬁes 0, 0.25, 0.50, and 0.75 with the experiment terminating at
time 1. The 100 values (censored and failed) were ranked from smallest to
largest. The 33 failute times are listed in Table 11.2 along with four
different choices of qﬁantile probabilities. Of the 67 censored devices,
‘23, 17, 17, and 10 devicés had censoring times of 0.25, 0.50, 0.75, and
1.00, respectively. One purpose qf this example is to show how close the
agreement can be for different choices of quantile probabilities. Note also
the relationship pi(K*M) > pi(N) > pi(H—J). A Weibull probability plot for
the data using pi(c) with ¢=0.3175 is shown in Figure 11.3.

The remarks made in Section 11.2.1 and Chapter 2 concerning the
interpretation of probability plots with complete tamples hold also for the
case of multiple censoring. However, in the case of a multiply right
censored sample, the effect of censoring is to increase the variability on
the right-hand side of the plot.

For Type 2 multiple right censoring consider the following simple
situation. We place n units on a life test and when the rth unit fails we
remove all but a fraction ¢ of thé remaining.working units. Ve then
observe the failure time of those units not removed. In this situation the
pi(c) values caﬁ be obtainéd from (11.6) where Y(l) < vos £ Y(r) are the
first r failure times, Y(r+1) - ,,, = Y(r+(n-t)(1-¢)) are the censoring
times of the removed items and Y(r+(n—r)(l-¢)+1)"'"Y(n) ate the failure
"times of the items that were not removed. The set S in formula (11.6)

consists of the indices of the first r failure times and the last (n-r)¢
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30
31
32
33
34
35
36
37
38
39
40
41
42
43
61
62
63
64
65
66
67
85
86
87
88
89
90

Progressively censored Data From the WE2 Data Set

Failure time

0.09
0.14
0.16
0.18
0.18
0.20
0.27
0.30
0.32
0.33
0.33
0.34
0.34
0.36
0.38
0.40
0.42
0.43
0.47
0.49
0.51
0.56
0.62
0.65
0.68
0.71
0.74
0.76
0.78
0.92
0.93
0.95
0.97

Table 11.2

Quantile Probabilities
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0.010
0.020
0.030
0.040
0.050
0.060
0.073
0.086
0.100
0.113
0.126
0.139
0.153
0.166
0.179
0.192
0.206
0.219
0.232
0.245
0.264
0.283

0.302

0.321
0.340
0.359
0.377
0.416
0.455
0.494
0.533
0.572
0.611

N
0.010
0.020
0.030
0.040
0.050
0.060
0.073
0.086
0.099
0.112
0.125
0.139
0.152
0.165
0.178
0.191
0.204
0.218
0.231
0.244
0.262
0.281
0.300
0.318
0.337
0.356
0.375
0.412
0.450
0.488
0.526
0.564
0.602

H-J

0.010
0.020
0.030
0.040
0.050
0.059
0.072
0.086
0.099
0.112
0.125
0.138
0.151
0.164
0.177
0.190

©0.203

0.216
0.229
0.242
0.261
0.279
0.298
0.316
0.335
0.353
0.372
0.409
0.446
0.483
0.520
0.556
0.593

c = 0.3175

0.007
0.017
0.027
0.037
0.047
0.057
0.070
0.083
0.096
0.109
0.122
0.136
0.149
0.162
0.175
0.188
0.201
0.215
0.228
0.241
0.260
0.278
0.297
0.316
0.334
0.353
0.371
0.409
0.447
0.485
0.522
0.560
0.598
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Figure 11,3

Weibull Probability Plot of Progressively Censored
Data from the WE2 Data Set
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faijlure times, and a probability plot can be drawn as described above.
More elaborate Type 2 multiply right-censored samples are handled in the
obvious manner.

E 11.2.3.2 Competing Modes Example.

Data for this example consist of the lifetimes, measured in milliomns
of operations, of 40 mechanical devices. The devices were placed on test
at different times, and 3 were still working at the end of the experiment.
fhe data are presented in Table 11.3. Only two modes of failure were
observed: either component A failed or component B failed. These two
components are identical in construction, but they are subject to different
stresses when the device is operated. Thus their life distributions need
not be identical. Quantile probabilities are given in Table 11.3 for the
device as a whole, component A, and component B under the columns headed
"device," "A," and "B," respectively. The data for the device are multiply
censored since the 35th, 36th and 40th ordered lifetimes are incomplete. In
addition, observations on component A are censored by failures of component
B and vice versa. This is an example of random censoring caused by
competing modes of failure.

Probability plots for the individual components were constructed using
several common life distributions. The lognormal distribution seemed to
offer the best fit. Lognormal probability plots are shown for components A
and B in Figure 11.4. The intercepts and slopes of the two lines suggested
by the plots appear to be different. This raises the possibility that,

while the life distributions of the two components may be of the same
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Time

1.151
1.170
1.248
1,331
1.381
1.499
1.508
1.534
1.577
1.584
1.667
1.695
1.710
1.955
1.965
2.013
2.051
2.076
2.109
2.116
2.119
2.135
2.197
2.199
2.227
2.250
2.254

2.261
2.349

2.369
2.547
2.548
2.738

- 2.79%

2.883
2.883
2.910
3.015
3.017
3.793

Life Data for Mechanical Device

Table 11.3

Quantile Probablities

Failure Mode

A B
v
v
v
Y
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
{Working)
(Working)
v
v
v

(Working)

Device

0.017
0.042
0.066
0.091
0.116
0.141
0.166
0.190

0.240
0.265
0.289
0.314
0.339
0.364
0.389
0.413
0.438
0.463
0.488
0.512
0.537
0.562
0.587
0.611
0.636
0.661
0.686
0.711
0.735
0.760
0.785
0.810

0.834

0.870
0.905
0.941

A

0.020

0.052
0.084

0.116

0.149

0.187
0.228
0.269
0.313
0.360
0.415
0.470
0.524
0.586

0.675
0.763

0.851

20
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0.017
0.042
0.066
0.091
0.116

0.141
0.167
0.192
0.218

0.246
0.276
0.305
0.334

0.365

0.396

0.430
0.466

0.505
0.544

0.597
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Lognormal Probability Plots for Components A and B

Figure 11.4
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famiiy, the distribution parameters may be different. A distracting
feature is the noticeable gap near the center of the plots. The natural
Atendency is to expect too much orderliness and to declare that something
unusual has occurred. But sﬁch anomalies frequently arise by chance and
should not be taken too seriously. The reader is referred to Hahn and
Shapiro (1967). page 264-265, for an gxampie of a plot in which the same
unusual féature has arisgn by chance.

If.the life distributions for components A and B are independent and
lognormal, then the life of the device is distributed as the minimum of two
lognormal random variables. For illustration we assume the equality of

parameters. The cdf of the device is then given by

F(y|§,o) -1 - { 1-8 [ log(y)-p ] }2 f

°
A probability plot for this distribution is constructed by plotting the

points
wla - Vi-p,) . log(¥ )} ' (11.7)

Such a plot is shown in Figure 11.5. If it is desired to fit different
sets of parameters to the individual components, we can aiways estimate
them using, say, the method of maximum likelihood. The estimated cdf of the
device, howevef, would then be difficult to invert. One way around this is
Ito estimate the probability integralntransformation with.F(.lﬁl,ﬁz,al,az)
and plot the F(yilﬁ l,az,al,az) versus the Py- This approach is

described more fully in Section 11.3. Note finally that the derivation of
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special theoretical quantiles given in (11.7) would not have been necessary
if we had modeled the lifetimes of the components as exponential, extreme-
value, or Weibull random variables. This is because the minimum of any
number of independent identically distributed random variables from one of
these families is also of the same family.

Although the development in the last example iz somewhat speculative
in nature, it does serve to illustrate the versatility and usefulness of
probability plotting, as well as its subjective and limited interpreta-
bility.

11.2.4 Other Types of Multiple Censoring

There are other more complicated types of multiple censoring which can
-arise in practice. A few of these will be discussed below. The thought to
keep in mind is that a meaningfﬁl probability plot can always be con-
structed as long as the parent cdf can be estimated.

Occasionally, data arise which are multiply left-censored. If the

observations are all multiplied by -1 then the resulting values can be
viewed as being multiply right censored. We can now determine guantile
probabilities using fhe formulas-of Section 11.2.3. In terms of the
subscripts of the original observations, the probabilities pi(c)

given by the formula

o DmCtl j-c '
py(e) = S Toes1 l ]j-c+1 ’ (11.8)

jes
j2i
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reduce to (i-c)/(n-2c+l) with complete samples.
A more complicated situation can occur when the data are both multiglx

right- and multiply left-censored. If all of the left-cemnsored obser~

vations are not less than all of the right-censored observations, then
qﬁaﬁtile probabilities can no longer be calculated using a simple formula.
fj-But appropriate probabilities can still be determined as long as the cdf

can be:estimated nonparametrically. Turnbull (1976) shows how to calculate

the maximum likelihood nonparametric estimate of the cdf when the data are
arbitrarily right and left-censored, grouped and truncated.

Quantal response data occurs when each observation is either right or

left-censored. In the following example the sample size is so small that

firm inferences cannot be drawn; however, the example does show how quantal
response data can arise, and does serve to illustrate how to construct a
probability plot with such data.

E11.2.4.]1 Quantal Response Example.

It 18 desired to investigate the nature of the disttibution.of the
shelf life of a certain electronic set. A total of 47 sets are ipvolved in
the study. After f(i) days on thé shelf the 1th set is éested and is found
‘to be either good or bad. The set is never observed again. Thus a good
set constitutes a right censored dbservation whereas a bad set constitutes
a left censored observation. The number of days on the shelf at the timés
of test are as follows with failures indicated by an asterisk: 20,22,
23,25,26,27,28,29%,30,31,37,37,37,41,42,43,62,69,69,78,92,92,93,114,117,

124%,128%,130,136,151,211,226,231,242,244,244,244,244,245%,245,245,250,
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259%,259,287,317, and 340 days. Using the recursive algorithm given by
Turnbull (1976), the maximum likelihood nonparametric estimate of the cdf

is found to be

0 ~® <y < 28
undefined 28 £y 29 ,
.056 29 <y < 117 ,
undefined 117 s y S 124
F (y) = .143 124 ¢y < 244
undefined 244 €y S 245 ,
.222 245 <y < 340 ,
undefined 380 S y ¢ =

Four values of y were selected for purposes of probability plotting: 28.5,
120.5, 244.5, and 340. The first three are the midpoints of the three
closed intervals which are assigned probability, and the last is the
largest value for which Fn(y) is defined. The four probabilities used are
0.028, 0.099, 0.127, and 0.222. The first three are the midpoints of the
jumps and the fourth is equai to ?n(340). Pfobability plots are shown in
Figure 11.5 for four famiiies commonly used to model lifetimes. The
lognormal, gamma (with origin O and shape near 1) and Weibuli distributions
all appear to fit the data well. These results are not inconsistent since
the gamma distribution described (exponential distribution with origin
zero) is a member of the Weibull family, and the lower portions of the

Weibull and lognormal cdfs are very similar.
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Probability Plots for the Shelf Life of Electronic Sets
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Any conclusions, however, are highly tentative because of the small
sample size and the severity of the censoring. If we use a jackknife
technique or the theory of m.l.e. (see Turnbull, 1976) to estimate the
variances of probabilities assigned to each of the four intervals, it then
_appears tﬂat none of the models considered in Figure 11.5 can be soundly
rejected.

Grouping is perhaps the most common form of censorihg encountered in

practice. Each grouped observation is both right and left-censéred.

Quahtile probabilities can be calculated using the formula for a complete
sample. One approach to constructing a probability plot is to répresent
each observation with the endpoint (or midpoint) of the interval in which
it falls. The resulting plot will have a stairstep appearance with the
number of steps equal to the number of groups. One advantage of this
approach is that the sample size is eQident. A simplification is to plot
only one peint per group.

11.2.5 Proportional Hazards

A quasi-nonparametric method for analyzing survival data was proposed
by Cox (1972,1975). The method is parametrié in that it is assumed that
the hazard functions for the observations are all proportional. But the
method is nonparametric in that no prior restrictions are placed on the-
form of the hazards (and hence the cdfs). The cdf for a particular
observation is estimated using all the data. This estimate then provides
the appropriate quantile probabilities for purposes of probability

plotting.
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The Weibull (or exponential) family is the only family for which it
makes sense to construct a probability plot after having assumed the
proportional hazards model. This is because, for the Weibull family, a
multiplicative change in the hazard function is equivalent to a change in
the scale parameter. Thus it does not matter which cdf is estimated since
the rggulting prongility plots will differ only in the labeling of their
axes, and not in the degree of linearity of the plotted points.

11.2.6 Superpoéition of Renewal Processes

Finally, a very different situation will be described which perhaps
stretches the definition of the term "censoring."” Suppose we have n units
that all begin operation at the same time. If a unit fails, it is in-
stantly replaced with a new unit. It is éssumed that the lifetimes of the
original and replacement units are independent and identically distributed .
with cdf F. The exact times of failures are known but not the identities
of the failed units. Except for thé first fa;lure, then, we cannot be sure
for the ages of the failed u#its. We thus observe a superposition of
renewal processes. The failure times are not censored here, but the
identities and thefefore the ageé of the failed units are censored in a
sense,

Trindade‘and Haugh (1979) describe a metho& for the nonparametric
estimation of F in the above situatioﬁ. The renewal function, M, is
estimated using a straightforward nonparametric method. The parent cdf is
then estimated by éxploiting the relationship of F to M through the

fundamental renewal equation. For any particular set of points in time,
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the estimate of F provides appropriate probabilities for determining
Eorreaponding theoretical standard quantiles for purposes of probability
plotting. Again we will emphasize that a meaningful probability plot can
always be constructed as long as the parent CDF can be estimated using a
nonparametric method.

11.2.7 Summary of Steps in Constructing a Probability Plot

Below are given the steps required in constructing a probability plot
with uncensored, singly-censored, multiply right-censored, and multiply
left~censored data. The user must provide a value of the constant c with
0<csl. The values ¢=0.3175 and c¢=.5 are popular.

A. Let Y(I)’Y(Z)""’Y(n) denote n ordered observations, some of which
may be censored, and let S be the set of subscripts corresponding to
the observations in the ordered list that are not censored.

B. Determine quantile.probabilitiés for each ieS using one of the

following formulas:

(i~c)/(n=2c+l) , for complete or singly-censored samples, .

n-c+l n-j-c+l
n—2ctl I I n—j-c+2 ° for multiply right - censored samples,
jes

Jsi
(11.9)

n—c+1 1-c _
n-20+1 I | ~—41 » for multiply left - censored samples.

jes .
j2i '
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C. Enter Table 11.1 and find the line corresponding to the hypothesized
family of distributions. Plot the entry under "abscissa" versus the
entry under "ordinate" for each ieS.

11.3 TESTING A SIMPLE NULL HYPOQTHESIS.

For this section it is assumed that the hypothesis of interest is HO:

led population has the completely specified absolutely continuous

cdf F(y As in other Chapters, this situations 1s called Case 0. For most
of the discussion the data at hand will consist of a singly right-censored
sample (Type 1 or Type 2), that is, the set of r smallest order statistics

R The probability integral transformationlv(i) -

Y
1) (r)°
F(Y(i)),inl,...,r, can be applied, and an equivalent test of fit is that

the U . £ U(r) are the r smallest order statistics of a random

(1 *
sample of size n from the uniform (0,1) distribution. If the data are Type
.1 censored at y = y* and if t = F(y*), then r is a random variable giving
the number of order statistics for the uniform random sample which are less
than t; if the data are Type 2 censored, then r is fixed in advance.

Many of.the'methods which have been discussed in earlier Chaptgrs have
been adapted to accéﬁmodate censéring of both types. These include
censored versions of EDF statistics (Section 4.7), correlation~type tests
(Section 5.3) and tests based on épacings {Section 8.9). Later we examine
procgdures in which the ofder statistics U(i)gitl,...,r, are transformed to-
new values which under HO are dietribute& as a complete uniform sample.

Then any of the mény tests for uniformity for a complete sample (Chapter 8)

may be applied to the transformed values.
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11.3.1 EDF Statistics.

In Chapter 4, censored versions of EDF statistics were introduced. We
will now illustrate the use of these statistics by applying them directly
to a censored sample.

E11.3.1.1 Exponential Example. This is an example is of Type 1

censoring. Barr and Davidson (1973) give the smallest 7 observations in a
Type 1 censored sample of size n=20. The hypothesized null distribution is
the exponential distribution F(y) = 1 - exp(-y/10), y>0, with a censoring

value at y¥=2.2, Table 11.4 gives the values Y )’ with the values U(i)

(i
given by U(i) = F{Y(i)} , i=1,...,7. The Type 1 censoring value for u is

then t=F(2.2)=0.1975. The Z ) values shown here are first discussed in

(i
Section 11.3.3.3.

Table 11.4

Hypothetical Survival Data and Transformed Observations

1 Yy V(1) 2(1)

1 1 .00995 ~ .03979
2 .2 .01980 .07918
3 .3 .02955 .11815
4 N .03921 | .15681
5 .7 .06761 . .27038
6 1.0 .09516 .38056

7 1.4 .13064 .52245
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In Section 4.7.2. the Kolmogorov-Smirnov statistics .D and D
17t,n 2 r,n
for censored data of Types 1 and 2, respectively, are defined; it is also
shown how these may be transformed and referred to the asymptotic distribu-
- tion tabulated in Table 4.3.1. Alternatively, the exact tables for finite
n, given by Barr and Davidson (1973) may be used. Working from the values

U ,, of Table 11.4, the statistic .D_ _ is found to be 7/20 - 0.131 =

(1) 17t,n

0.219,j§ith t = 0.1975 and n = 20. Direct interpoiation in the tables of
Barr and Davidson gives the approximate significance level p=0.11.
Alternatively, use of the formulas of Dufour and Maag (1978) (Section 4.7)
yields -the modified statistic D: -‘4.472 (0.219)+ 0.19/4.472 = 1.022.
Reference to the asymptotic points in Table 4.3.1 then gives a p-value of
approximately.O.IO. If the data had been Type 2 censored, the formulas
would give a modified statistic Dt = 1.033 with p-value approximately
0.095. Percentage points of the asymptotic distribution are derived and

+

D + D » under Type 1 right
1

tabled for the Kuiper Statistic, vt,n "1 t,n 712 e,n

censoring by Koziol (1980a).

In Section 4.7.3 two types of Cramér-von Mises statistics for

censored data are given. The firét type 1is dénoted by lwzt,n for right
censored data of Type 1. The second is for Type 2 censoring. Both were
derived by Pettit and Stephens (i976a,b) by adapting the complete-sample
definitions of these statistics. For the U(i) of Table 11.4, we have

= 0.104 and _A? = 1.214. Referring to Table 4.3.2 with t =

WZ
17 0.2,20 17 0.2,20
0.2 gives p-values 0.008 and 0.005, respectively. If the data are treated
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as Type 2 ¢ d, the test statistics b W = 0.057 d _A*

yp ensores e test statistics become W', ), and ,A*, 4
= 0.863; referring to Table 4.3.3 with p = r/n = .35 gives approximate
p-values of 0.25 and 0.08.

E1l1.3.1.2. Uniform Example. This is an example of Type 2 censoring.

Consider the first n=25 values from the UNI data set, rescaled to the unit
interval. Suppose that the smallest r=15 values from this set are
available and are to be tested for fit as uniform order statistics. The
observed value of 2Dr,n = 0.216 and (J;)an,n = 1,08; then D¥ (Sectiqn
4.5) 158 1.08 + .24/5 = 1.128 and reference to the tabulated asymptotic
distribution gives a é-value of 0.1296.

The p-value may also be computed from the formula for the asymptotic
distribution given by Schey (1977) and quoted in Section 4.7.2. The value
of t = 15/25 = 0,60; this gives At = 2,041, Bt = 0,408 in the notation of
Section 4.7.2., and then Gt(1.128) is 0.9362. The observed significance

level for the two-sided test is then approximately 2(1-0.936) = 0.128.

Comment A. Use of the Censoring Information.

When the observations U(i) are to be tegted for uniformity, the value
of t, or of r (whichever is given) is important, in addition to the values
U(i)' Thus, for example, in Table 11.4, there are 7 observations out of ZQ
below t = 0.1975, a number larger than expected. If the sample had been

Type 2 censored, we could observe that the largest observation U(7) is

0.131,.much smaller than the expected value 0.333. These facts are
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implicitly used in calculating the EDF statistics. Also, the value of U(r)’
although not the value of t, is used in the censored version of spacings
statistics (Section 8.9).

Comment B. Random Censoring.

Extensions of EDF statistics to situations involving randomly censored
data generally involve a Kaplan4Meier estimator for the true distribution
function., For versions of the Kolhogorov-SmirnoQ, Kuiper, and Cramér-von
Mises see Koziol (1980b), Nair (1981) or Fleming et al (1980), who obtain
asymptotic distributions and examine the adequacy of small sample approxi-
mations.

11.3.2. Correlation_Statistics.

The statistics in this class, as discussed in Chapter 5, basically
focus upon the strength of the pattern of linear association which is
present in probability plots (see Chapter 2 and Section 11.2). Suppose all
the observations U(i) are known between U(s) and U(r)' These may be plotted

against m, = i/(n+l), i=s,...r, and the coefficient R{X,m) may be cal-

i
culated as described in Section 5.1.2. Because R2 is scale-free,>the value
.: obtained 15 the PamgHgs if theYU<i) were correlated with i, from lvto

r-s+1. The U are a Subset of order statistics from {(0,1) and will

(1)
themselves be uniform between limits which may or may not be known. In

either case, the distribution of R® so calculated is the same under By, as
that of R?! for a full sample of size r-s+l. Thus Table 5.1 may be used to

make a test. The weakness in this test procedure is that it does not make

use of any Type 1 censoring values. 1In Chapter 5 it is shown how this may
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be overcome: by including the censoring limits in the observed sample. The
value of R! calculated from ;hese valuee will have the same null distri-
bution as R?! calculated from a complete uniform sample of r-2+2, size so
that again Table 5.1 can be used.

El11.3.2.1. Exponential Example Revisited. For the r = 7 values of U(i) in

Table 11.4 the correlation coefficient R(X,m)=0.964, which yields T =
r(1-R?(X,m)) = 0.49. Reference to Table 5.1 shows that this value is not
significant even at the 50% level. If the endpoints s=0 and t=0.1975 are
included, then T=1.071, which is significant at the .20 level approxi-~
mately.

11.3.3. Transformations to Enable Complete~Sample Tests.

11.3.3.1. Conditioning on the Censoring Values.

When all the values from U(s) to U(r)(s<r) are available, the test of ,
Ho: that these are a subset from an ordered uniform sample, can be changed
to a test fof a complete sample. There are several ways to do this. The
simplest method is as follows. For Type 1 censoring suppose the lower
censoring value is A and the upper'censoring.value is B, and let R = B-A;

0

complete ordered uniform sample on the unit interval and can be so tested.

then under H, the values V(i) = (U(i)-A)/R, i=1,...,r~s+1, will be a

For Type 2 censoring, under Ho the values U(s+1),...,U(r_1) wi}l be
distributed as a complete ordered sample from the uniform distribution
between limits A=U and B=U . The transformation V =

(s) (r) (1)
- = x Kxya]— ~p
(U(s+i) U(s))/R’ can be made for i=l,...,n¥, where n¥=r-1-3 and R=B~-A;

the V(i), i=l,...,n* can then be tested for uniformity between O and 1.
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E11.3.3.1. Exponential Example Again. Consider, again, the data of Table

11.4. The upper (Type 1) censoring value is t=0.1975; thus we can first
transform the V(i) és V(i) - U(i)IO.1975 and then test the V(i) for

uniformity between O and 1. The V are then 0.050, 0.100, 0.150, 0.199,

(1)
10.342, 0.482 and 0.661. The EDF statistics are D' = 0.375, D™ = 0.050, D =
- 0.375, V = 0.426, W = 0.413, U¢ = 0.085 and Az_i 2.107. Referencerto Case
0 taﬁleé (Table 4.2.1) gives p-values of 0.21 for D, 0.07 for W2 and 0.08
for A2.

11.3.3.2. Handling Blocks of Nissing Observations.

Suppose censoring occurs in a uniform sample other than at the ends;

for example, U(r) and U might be known, but the g-1 observations in

(r+q)

between are not known. A spacing U U(r) is called a g-spacing. Now

(r+q)~
suppose that S is a g-spacing covering unknown observations, and let its
length be d. Keepping in mind the exchangeability of uniform spacings
(see Chapter B) we exchange S with the set of all spacings to the right of
S. Under Ho the new sample U(l)’U(Z)"'"U(r)’ufr+1)"'"U?n-q+1)’
where.U%j) - U(j+q) - d, for j=r+l,...,n-q+l, will be distributed as an

The process may

ordered uniform sample which is fight-censored at U:-q+1'

be repeated if there is more than one such spacing. The method can be used
only if it is known how many values are missing iﬁ the spacings. Thus a
uniform (0,1) sample with known blocks of missing observations can be
transformed to behave like a right (or left) censored sample. Techniques

for this simpler kind of censoring can then be used. .
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E 11.3.3.2.1. Example from Chapter 4. In Table 4.5.3, a set of 15 values

for Z is given which are distributed uniformly om (0,1) under the null
hypothesis that the original set X (also given there) is exponential.
Suppose the four values 0.237, 0.252, 0.252, 0.381 are lost from the set
Zf. Then 0.434 - 0.229 is a 5-spacing of length d = 0,205, We subtract
d from all the values of Z starting with .446 to obtain 0.113, 0.189,
0.229, 0.241, (= 0.446 - d), 0.298, 0.317, 0.578; 0.757, 0.774, 0.778,

(= 0.993 - d), 0.795 (=1.0-d). These 11 values can be analyzed as being
right censored (Type 2) at70.795; and thus can be tested by any of the
methods of Section 11.3.1. Alternatively, they can be transformed to be a
complete sample, as in Section 11.3.3.1 above, or by another method to be

described after the next example.

E11.3.3.2.2. Exponential Example Modified. These various techniques may be

combined to handle blocks of missing observations within, say, right—
censored data. Thus suppose the values in the U-set of Table 11.4, which
are Type 1 right censored at t = 0.1975, are, in fact, the values U(l)’

y? U ~ that is, values U(S)’ U(G)’ U(7),

Y2y Y(3)° Payr Yesy Yooy Paao
constitute a block of missing observations. First the set of U's may be
transformed to a uniform sample as deacribed in Section 11.3.3.1 above to
give a new set V(i) = U(i)/0.1975; The values are those given in Example
E11.3.3.1.1, but they now represent the order statistics with indices
1,2,3,4,8,9,10. There is thus a 4-spacing of length d = 0.342 - 0.199 =
0.143 between V(a) and V(8). Following the steps of this section, new

values V¥ are found to be st) =V(9) - 0.143 = 0.339, V?G) = 0.518,
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V?7) = 1.~'d = 0.857. These 7 values are to be treated as a right-
censored sample of size 7, now of Type 2, with n.-v10. (The 7 given values
Plus the 3 missing in the 4-spacing). Since the lower end-point of the
distribution is known to be zero, the values 0.050, 0.100, 0.150, 0.199,
0.339, 0.518 can be divided by 0.857 an& fhen fested for uniformity on the
unit interval.

11.3.3.3. More Powerful Transformations. A disadvantage of the above

method of transforming to a complete sample for Type 2 censoring is that
the resplting test examines the values of the U(i) relative to U(s) and
U(r) but takes no account of whether these values themselves are too large
or too small. (See Comment A in Section 11.3.1).

Michael and Schucany (1979) propose a modification of the above
technique by which a subset of r uniform U(0,1) order statistics can be
transformed montonically to behave like a compiete U(0,1) sample of size r
from the U(0,1) distribution. For definiteness the result is presented
here in terms of right censorship, hqwever,_the tecﬁnique can be applied to
aéy kind of Type 2 censoring. .For example, a é-apacing representing a
block (gq-1) missing observations.in a sample‘size of size n can be shrunk
to a l-spacing in a "complete" sample of size n-q+l. The relative spacings
between consecutive order statisfics are not affected by this trans~
formation.

Let U(l)’U(Z)""’U(r) be the smallest.r order statistics from a
random sgmple of size n from the uniform (0,1) distribution, and let B(¥%)

denote the cdf of U(r)' which is known to have the Beta (r,n-r+l) distri-
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bution (see Section 8.8.2). If z(l),z(z),...,z(t) are defined by

(11.10)

Z = U

W " Y% ¢ PeaVay) o

1/rx

i=1,...,r, are distributed

where hr n(x) = {Bk(x)} /x, then the 2

(1)’
like a complete uniform (0,1) sample of size r. The proof is straight-
fofward by change of variable.

The computations for the transformation are easily performed on a
scientific calculator since the beta cdf can be expressed as the binomial
sum

n
Bw = 3 (D o'(-w™} .
i=mr

Any standard goodness-of~fit test for uniformity (Chapter 8) may now be -
applied to the transformed observations. The Anderson-Darling statistic is
recommended because of its sensitivity to departures from uniformity in the
tails of the distribution. The reason why this is important is best
presented by 1llustration.

E11.3.3.1 Artifical Uniform Right-Censored Sample. Three artificial but

informative examples of the transformation are shown in Figure 11.6 where
the smallest 5 of 9 observations are plotted both before and after the

transformation. In each example the values of the U(i) were artificially
chosen to satisfy U(i)/U(S) » i/5 = E(U(i)/U(S)IU(S)). The values for U(S)

were chosen to be .500, .103, and .897 which correspond, respectively,.to
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the .500, .001, and .999 quantiles of the beta (5,5) distribution, which is
the null distribution of U(5) when testing the hypothesis of uniformity for

the U Note the manner in which small and large values of U(S) affect

1)’
the appearance of the transformed points. Smali values of U(S) lead tQ
}small values for Z(S) which, in turn, wi;l inflate most reasonébly
fotmulaj:ed_goodnesa-of-fit'statisticsf But if Z(S) is lgrge, the departure
from uniformity may appear less pronounced ; however, Z(S) will be very

close to 1 and this will inflate a statistic like the Anderson-Darling

statistic which is sensitive to such an apparent departure from uniformity.

8. u(s,g) = 500
u |=—=X-=-X=--X---X-=--X I
z | X X X X X |
" b, u(5,9) = ,103
u | XXXXX |
z |-==-X--—-X----X--—-X---=X !
e YU(s,9) = 897
u | X X X X X=- I
z | X X X X X|

Figure 11.6
Examples of the Transformation with r = 5, n = 9

E 11.3.3.3.2.Exponential Example. Consider again the values U(i)’

i=1,...,7 given in Table 11.4. Using the transformation above, we first

compute the scale factor h = h7’20(U(7)) as
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h = |B%(0.13064) 1177/0.13064 = 3.9991

where B¥(.) is the Beta (7,14) distribution. The values Z(i) - hU(i) are
given in Table 11.4. The Cramér-von Mises statistic, W¢, calculated from
the 7 values of Z(i) by the full-sample formulas (Equation 4.2) is 0.673,
and the Anderson-Darling statistic is A? = 3.404. These have approximate
p-values of 0.035 and 0.02. The Kolmogorov-Smirnov statistic is D = 0.47755
which has a p-value of approximately 0.056. The p-values using the
transformed Z-values are lower than those using the statistics directly
adapted for censoring (see Section 11.3.1).

COMMENT. This transformation technique for goodness-of-fit analysis of
censored samples has some advantages over the other procedures which have
been proposed for this problem. No new or additional tables of critical
points are required. Any subset of order statistics can be analyzed. The
power of the Anderson-Darling statistic based on the transformed sample
appears to_be generally greater than that of existing methods in the
presence of left or right censorship. A minor disadvantage is the slight
increase in computation to evaluate the scaling factor, hr,n(U(r))' The
technique cén be extended to all kinds of Type 2 censoring, even
progressive censoring. For details and asymptotic results see Michael and

Schucany (1979).
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11.4 TESTING A COMPOSITE HYPOTHESIS

In this section the hypothesis of interest is that the sampled
‘population has an absoclutely continuous cdf F(y|®), where 6 is a vector of
unknown (npisance) parameters. Typically the censored dﬁta at hand must be
a singly-censored sample if published tables of critical points are to be
,usqd. For more complicated types of censoring, such as multiple right
cénsoring, little work has been done. For a particulaf set of data, it may
be possible to modify a standard statistic and then estimate certain
percentiles, or the observed significance level, using simulatibn tech-
niques. When the censoring is Type 2, test statistics can often be
constructed which have parameter-free null distributions. When the
censoring is Type 1, statistics with asymptotically parameter-free dis-
tributions are a possibility.

11.4.1 Omniﬁus Tests

Turnbull and Weiss (1978) present an omnibus test for a composite null
hypothesis based on the generalized likelihood ratio statistic. Their
procedure is appropriate for discrete or grouped data and accommodates
multiple censoring by employing the Kaplan—Héier estimate to maximize the
alternative likelihood. 1In less complicated cases of Type 1 ér 2 censoring
several standard goodness—of-fit statistics have been modified to test a

composite null hypothesis.



43

11.4.1.1. EDF Statistics for Censored Data with Unknown Parameters

Modifications of EDF statistics which accommodate certain types of
censoring when the null hypothesis is simple were discugsed in Section
11.3.1.1. Similar modifications for use in testing normality with unknown
parameters, or exponentiality with unknown scale, are given in
Sections 4.8.4 and 4.9.6.

Ell.4.1.1.1 Normal Example The data consist of the smallest 20 values

among the first 40 values listed in the NOR data set. We wish to test that
the underlying distribution is normal. Gupta's estimates (Gupta, 1952)
here are {i = 98.233 and & = 9.444. Relevant calculations are given in
Table 11.5. The value of the Cramér-von Mises statistic is found to be,

using Section 4.7.3,

+ 0.02512 - ég (0.5 - 0.53741)3

Referring to Table 4.4.5, we find that the observed value is smaller
than the .15 point which, by interpolation, is approximately 0.03. The

value of A? is 0.233; which is significant at about the .10 level.

20,40
EDF Tests for exponentiality with an unknown scale parameter are set
out in Section 4.9. Note that use of the N transformation of Chapter 10
(see Section 10.5.6) converts a right-censorea exponential sample to a
complete sample of expomentials, with the same scale, aﬁd then any of the

tests of Chapter 10 can be used. This property is explored in a test based

on leaps, in Section 11.4.1.3 below.
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Steps in Calculating W! for the Smallest 20 Order Statistics Among
the First 40 Observations in the NOR Data Set

O ® NN DWW N

B M et et e et et el et b e
© VW 00 ~N e W N D

W

79.43
83.53
83.67
84.27
85.29
87.83
89.00
89.90
90.03
91.87
91.46
92.02
92.45
92.55
95.45
96.13
96.20
98.70
98.98
99.12

4-0.5

_40

0.0125
0.0375

- 0.0625

0.0875
0.1125
0.1375
0.1625
0.1875
0.2125
0.2375
0.2625
0.2875
0.3125
0.3375
0.3625
0.3875
0.4125
0.4375
0.4625
0.4875

>

V']
;"
N’

0.02323
0.05974
0.06152
0.06962
0.08525
0.13531
0.16411
0.18878
0.19252
0.21778
0.23662

0.25529
0.27014
0.27364

0.38411
0.41188
0.41477
0.51972
0.53152
0.53741

[o

i-0.5

(1) ~ n

0.00012
0.00049
0.00000
0.00032
0.00074
0.00000
0.00000
0.00000
0.00040
0.00039
0.00067
' 0.00104
0.00179
0.00408
0.00047
0.00059
0.00001
0.00676
0.00476
0.00249
0.02512

I
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11.4.1.2. Correlation Statistics.

Consider aéain the sample correlation coefficient between the Y(ij and
a set of constants Ki’ denoted, as in Chapter 5, by R(Y,K). Because R(Y,K)
is invariant with respect to a linear transformation of the Y(i)’ it
follows that its null distribution does not depend on location or scale
parameters of the distribution. This makes it a_useful statistic for
testing fit. Suppose F(y) is the cdf of Y for location parameter O and
scale parameter 1, and let F_l(-) be its inverse. Suitable sets of
constants are then Ki =m, where m, is the expected value of the i-th
order statistic of a sample of size n from F(y), or Ki - Hi = F-l(i/(n+1)).
The statistic Z = n}{l - R?(Y,K)} has been discussed in Chapter 5, and
percentage points have been given for censored versions of 2.

Chen (1984) presents a correlation statistic és an omnibus test for
the composite hypothesis of exponentiality in the presence of random
censoring. Asymptotic distributions are derived under a particular
censorship model, which is quite robust provided that less than 40% of the
observations are censored. |

E11.4.1.2.1. Normal'Example Revisited. Consider again the smallest 20

values among the first 40 values in the NOR data set. When testing for
normality using R(Y,K), we obtain Z = 0.035 which falls just below the .50
point. Thus on the basis of the statistic Z we cannot reject the hypothesis
of normality at the usual ievels. Another example of a correlation type

statistic is given in the next section.’
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11.4.1.3. Statistics Based on Spacings and on Leaps.' Spacings between

ordered uniforms were defined in Section 10.9.3. Similarly, spaces can be

defined between order statistics Y of a sample from any distribution. If

(1)
the distribution has no lower limit, the firgt spacing will be D1 =

Y(ZS -Y(l), and so on. Similarly leaps liican be defined by li = Di/E(Di);
see Se;tion 10.9. An important property of leaps is that, fqr continuous
distributions, they will (under regularity conditions which may exclude the
extremes) be asymﬁtotically independent, each with the exponential’
distribution with mean 1. Then, for distributions with unknown location
and scale parameters, a test for a distribution is reduced to a test for
exponentiality for the 1i (Section 10.9.4). We illustrate the techniquei
with an example given by Mann, Scheuer and Fertig (1973) who created a test
for the extreme~value distribution by using leaps. The test applies very
weli to right-censored data and can be adapted to a test for the Weibull

distribution. Both of thgse features are illustrated in the example.

E11.4.1,3.1 Weibull Example. The smallest 15 order statistics from a

sample of size of 22 are:15.5, 15.6, 16.5, 17.5, 19.5, 20.6, 22.8, 23.1,
23.5, 24.5, 26.5, 26.5, 32.7,33.8, 33.5. The null hypothesis here is that
the sample comes from a two—paraﬁeter Weibull distribution (Secfion
10.4.4); a three-parameter Weibull distribution is the alternative. The
steps in making the test are as follows. First find X(i) = log t(i)’
i=1,...,15, Ho then reduces to a hypothesis thgt the X(i) are from an

extreme-value distribution.(Equation 5.22) with unknown parameter.
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Suppose the W(i) are the order statistics of a sample of size 22 from
an extreme-value distribution with location O and scale 1; let m, = E(W(i)).

Define modified leaps li (see Section 10.9.4), as follows:

1; = {X(i+1) - x(i)}l(mi+1 - mi) , 1=1,...14;

then, under Ho, the 1i are (approximately i.i.d.) Exp(0,B), with B
unknown. The test statistic suggested by Mann, Scheuer and Fertig is S =

r-1l .,,er~1 .,
Lims 1478401 14

(r+2)/2 if r is even. The procedure can be regarded as applying the J

, where 8 = (r+1)/2 if r is odd and s =

transformation of Chapter 10 to the yalues li, to give a set of r-2
(approximate) Uniforms Uj; S is then the wmedian and has approximately the
Beta distribqtion B(p,q) with p = (r-1)/2, q = (r-1)/2, if r is.odd, and p
= (r-2)/2 and q = r{2 if r is even. Mann, Scheuer and Fertig give values
of LSRR from samples of size n=3 to n=25 for the calculation of 1!,
and percentage points of S. For the present data, with r=15 and s=8 the
value of S is given as 0.660; this is significant at about the 11% level.
Although an extreme leap is used here, Monte Carlo studies by the above
authors show that the Beta distribution for S is thained for quite low
values of n, and the technique might well be valuable applied to other
distributions with unknown location/scale parameters.

Mann and Fertig (1975) consider raties of other sums of leaps as well
as ratios of weighted sums of leaps, and describe how their approach can be

extended to progressively censored samples. We can use this example also

‘to illustrate the use of correlation statistics for the extreme value
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distribution. The test is for distribution (5.22), which has a short tail
to the right and a long left tail. The.r-IS values of X(i) are tested to
correlate with Hi = log|-log{l-i/(n+1)}], iwl,...15, n=22; then R=0,9446
and Z = n{1-R*(X,H)} = 1.616. Interpolation in Table 5.10, for n=22 and
p=rt/n = 0.68, shows Z to be significant at apﬁrbximaéely the 0.25 level.

It way be valuable to recognize a danger that exits in testing for the
extreme-value distribution. Forva full sample, it does not matter whether
one takes X = log t, where t is Weibull data; and tests that X is from
(5.22), or takes X'= -log t and tests that X' is from (5.21); the‘same
value of the correlation coefficient is obtainéd by both methodé, and both
recommendations are seen in the literature. However, for a censored
sample, it is important to follow the correct procedure: for right-
censored Weibull data, take X = log t and test for right-cénsored data from
(5.22) (as was done above), and for left-censored Weibull data, take X' =
-log t and test for right-censored data from (5.21). This second test for
Weibull is probably less.likely_to occur in practice,and the Mann-Scheuer-
Fertig test is not set up for this case, although it could be adapted.

Two tests for.the two—pa;améter exponenﬁial that can be used with
"doubly censored samples‘have been presented by Brain and Shapiro (1983).
These tests cdmbine the properties of spacings and of the correlation
statistic to have good sensitivity to alternatives with monotone and

nonmonotone hazard functions, respectively. Still other related work on
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statistics based on spacings may be found in Mehrotra (1982). Some
statistics based on modified leaps have also been studied by Tiku (1980,

11.4.2 Alternative Families of Distributions.

Typically when testing for goodness of fit we assume only that the
underlying cdf is absolutely continuous. Occasionally we may wish to limit
our choices to, say, two families of distributions. In particular we may

wish to test the composite null hypothesis

H : F(y) = F,(yle))
against the composite alternate hypothesis

HZ: F(y) = Fz(ylez) s
where 91 and 92 are unknown (nuisance) parameters. Because we have
narrowed the set of alternate distributions considerably, we should be able
to tailor tests to the specifie hypofﬁesis of interest which are more
powerful than omnibus goodness-of-fit tests. There have been several
approaches to this problem.

Let fi(yle) be the probability density function for family i, i=1,2.
We will denote by Li the sample likelihood under Hi after 0i has been

replaced with its maximum likelihood estimator, Bi. This maximized

likelihood is then

n ~

L, = I l £33y

i=1



50

for the complete sample Y(l)""'Y(n)' We willvdenote the ratio of maximum
likelihoods by
RML = L1/L2 .
Cox (1961,1962) formulates a test of Hl versus HZ which is based upon
the statistic
T = In(RML) - E|1n(RML)| ,

vhere E is the expectation under the null hypothesis, H For complete

1
samples the large samﬁle distribution of T is approximated using maximum
likelihood theory. Hoadley (1971) extends maximum likelihood theory to
situations which include censoring. Thus valid approximations to the
distribution of T are also possible with censored sapples.

For location-scale families with pdfs'u;lfi((y—pi)loi), Lehmann
(1959) shows that the uniformly most powerful invariant (under linear
transformations) test is based upon the (Lehhann) ratio of integrals

LRI = 11/12 s

where
- ° )
n- )
Ii = f f . v fi(vy1+u seee ,Vyn'l-u)dvdu.
.. 0

The RML statistic and some modified versions are discussed in a series of
papers: Antle (1972,1973,1975); Dumonceaux, Antle, and Haas (1973);
Dumonceaux and Antle (1973); Klimko and Antle.(1975);Kotz (1973).
Percentage points are given for the null distribution of RML for com-
parisons involving a number of different families of distributions. In some

cases, the LRI and RML tests coincide. In others,_the RML test is almost
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as powerful as the LRI test.r The authors make use of the fact that the
distribution of the RML statistic is parameter-free whenever the families
to be compared are both location-scale families. This result appears to
hold for any Type II censored sample. The only tables of critical points
which have been constructed for use with censored samples appear in Antle
(1975) and apply to the situation where one is testing the null hypothesis
that the underlying distribution is Weibull {or extreme-value) against the
alternate hypothesis of lognormality (or normality), and vice versa.

E11.4.2.1. Lognormal vs. Weibull Example. We once more consider the

smallest 20 values among the first 40 values listed in the NOR data set. We
first exponentiated the data, and then proceded to test the lognormal
against the Weibull family. An interactive procedure was used to determine
the value of RML. Entries in Table IX of Antle (1975) must be compared to
RHLllzo which ﬁere was determined to be 1.063. This wvalue is just above
the 95 percent point and so we have the surprising result that we can
reject the (true) hypothesis of normality in favor of the extreme-value
distribution at the 0.05 level of significance.

Finally, a somewhat differenf approach to this general problem
deserves mention. Farewell and Prentice (1977) construct a three-
paraméter family of generalized gamma distributions which includes the
Weibull, lognormal and gamma families as special cases. Likelihood ratio
tests using asymptotic likelihood results are recommended which can

accommodate censoring as well as regression variables.
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