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CHAPTER 11 

ANALYSIS OF DATA FROM CENSORED SAHPLES 

John R. Mchael 
Dataprobe, Inc. 

AND 

William R. Schucany 
Southern Methodist University 

11.1 INTRODUCTION 

In this chapter we consider a variety of techniques which are appro- 

priate as tests of fit when only a certain portion of the random sample 

from a continuous underlying distribution is available. The censoring or 

deletion of observations can occur in several ways. The type or manner of 

censoring determines the appropriate method of analysis. 

The most common and simple censoring schemes involve a planned limit 

either to the magnitude of the variables or to the number of order statis- 

tics which can be observed. These are called singly Type 1 and Type 2 

censored data, respectively. The number of small (or large) order statis- 

tics which will be observed in Type 1 censoring is a random variable. In 

life testing applications it is quite c m o n  for an experiment to produce a 

Type 1 right censored sample by having n items placed on test and recording 

the values 0 < Y 
(1) * - * *  < '(r) of the failure times which are observed up 

to a fixed test time. (In this chapter observations will be referred to as 

Y, rather than X, since in plotting techniques we shall wish to plot obser- 

vations on the vertical, or y-axis). Data arising from such a procedure 



are occasionally also referred to as being truncated. If the life test is 

planned to continue until a fixed number, r, of failures occur, then the 

resulting failure data are Type 2 right censored. As another example, if 

one records only the 10 largest independent competitive bids on an oil 

lease, the observed sample is singly Type 2 ceneored on the left. Types 1 

and 2 censoring are sometimes referred to as time cexhsoring and failure 

censoring respectively. 

In the more complicated situation in which the variables are subject 

to different censoring limits the sample is said to be multiply censored. 

If the different censoring limits are preplanned, as would result from 

placing items on a life test at different starting times with a single 

fixed termination time for the test, the data are progressively ceneored 

(Type 1). Samples which are progressively censored (Type 2) occur less 

often in practice but could result, again in life testing, if the units are 

put on test at the same time and then selected fixed numbera of (randomly 

chosen) unfailed items are removed from test immediately after different 

pre-planned numbers of failures have occurred. 

The unplanned type of censored data which arises most often in 

practice is randomly time censored or arbitrary right censored data. The 

larger values (again usually in life testing) are not observed due to 

random censoring times which are statistically independent of the variable 

of interest (usually failure times). If some of the units are accidentally 

lost, destroyed or removed from the study prior to the measurement of the 

variable (failure time) and if these independent censoring times are 



recorded then the data can still be analyzed for goodness of fit. In 

certain situations competing modes of failure will produce randomly 

censored data (see Example 11.2.3.2.) combinations of multiply right and 

left censored data can also arise in practice (see Section 11.2.4) 

The graphical technique of examining probability plots (Chapter 2) 

adapts quite easily to the censored sample situation. Subjective im- 

pressions should be formed with somewhat more caution than in the complete 

sample case, but the computational aspects are essentially unchanged. 

Probability plots are discussed in Section 11.2. 

When the null distribution is completely specified, the probability 

integral transformation (see Section 4.2.3) may be employed to reduce the 

problem to a test for uniformity. Section 11.3 presents a number of 

examples of standard EDF (Chapter 4) goodness-of-fit statistics which have 

been modified in a straight-forward fashion to accommodate a censored 

uniform sample. Adaptations for correlation (Chapter 5) and spacings 

(Chapter 8) statistics are also discussed. For Type 2 censored samples a 

transformation of the uniform order statistics is described which makes it 

possible to analyze the data as if it were a complete random sample. 

In testing fit, it is a common situation for the null hypothesis to be 

composite;,the hypothesized parent population is not completely specified, 
t. 

but only the form F(x(0) of the cumulative di.stribution function (cdf) is 
-, 

given. Rere 8 is an indexing parameter; it may be a vector of several 

components, some known and some unknown. One very natural approach which 

has been taken in the complete sample case is to replace the unknown 



components in 8 by efficient estimators (for example, the m.l.e.8) and 

then to calculate a statistic based on F(xl8) as if it were the completely 

specified distribution function. This has been done, for example, in many 

of the tests in Chapters 4 and 5. Censoring presents an extra complication 

for this approach simply because of increased complexity of efficient 

estimatora of 8. A variety of resulta for the composite hypothesis problem 

are examined in the final Section 11.4. Adaptations of the chi-square 

procedure are not covered in this chapter. For some discuesion on this 

topic, see Section 3.4.2. 

11.2. PROBABILITY PLOTS. 

Probability plotting has been described in Chapter 2 as a valuable 

technique for assessing goodness of fit with complete samples. This 

extends naturally to incomplete samples for most types of censoring. Even 

in the case of multiple censoring a probability plot can often be con- 

structed quickly using only ordinary graph paper and a hand calculator. 

In Section 11.2.1, the construction of probability plots for complete 

samples is reviewed. The method is extended to singly-censored samples in 

Section 11.2.2, to multiply right-censored samples in Section 11.2.3, and 

to other types of censoring in Sections 11.2.4-11.2.6. An easy-to use 

sunmary of the steps required in constructing a probability plot is given 

in Section 11.2.7. 



11.2.1 Complete Samples 

Let Y(1)~y(2).- .J(n) be a complete ordered random sample of size n 

and let P(y(p,a) be the corresponding cdf where p and a are unknown 

location and scale parameters respectively. (Note that p and a are not 

necessarily the mean and standard deviation.) When there is no ambiguity 

F(ylp,u) will be shortened to F(-) or F. 

Since p and a are location and scale parameters, we can write (as was 

done in Formula (2.9)) 

where Z = (Y-p)/~ is referred to as the standardized variable and G(z), 

also referred to as G(-) or G, is the cdf of the standardized random 

variable. Using obvious notation, it follows that, using E for expectation 

or mean, 

where Z is the ith order statistic from the standardized distribution, 
(i) 

and mi is E(Z(i)}. Similarly, for 0 5 pi S 1 , 

p.-th quantile of F(y:p,a) - p + a (pi-th quantile of G(z) 1 
1 - p + a [G-'(P~)J , - 

where G-' is the inverse function of G. 



We can regard Y(i) as an estimate of its mean, or of the pi-th 

wantile of F(y;)r,a), where pi is an appropriate probability. In con- 

structing a probability plot we could plot the Y on the y-axis versus 
(i) 

m on the x-axis. If the sample is in fact from F(y;p,a) then the i 

points will tend to fall on a straight line with intercept )r and elope a. 

We then test our distributional assumption by visually judging the degree ,. ,. ~ZC" 

of linearity of the plotted points. Methods based on regression and 

correlation are discussed in Chapter 5. 

It should be noted that if the null hypothesis is simple, that is, the 

values of all distributional parameters are specified beforehand, we can 

plot the Y against their hypothesized means and then judge whether the ($1 
plotted points fall near a straight line with intercept 0 and slope 1. 

A drawback to using means of order statistics is that they are 

often difficult to compute. Quantiles, on the other hand, are easy to 

compute as long as F is easy to invert. A plot of the sample quantiles 

Y(i) versus theoretical quantiles of G is a probability plot as defined in 

Chapter 2; it is also called a quantile-quantile or Q-Q plot (Wilk and 

Gnanadesikan, 1968). However, the plots will be different from those in 

Chapter 2 vhere the observations were plotted on the horizontal or x-axis; 

here they are plotted on the vertical or y-axis. Special probability 

plotting paper is available for many families of distributions, but as was 
* 

stated in Chapter 2 no special graph paper is required if F can be inverted 



in closed form or if standard quantiles are available from tables or 

approximations. Often a scientific calculator and ordinary graph paper is 

all that are needed. 

Table 11.1 lists the cdf's of some common families of distributions 

along with the formulas required to construct probability plots. The 

reader is referred to Chapter 2 for further discussion of these distri- 

butions. In this context the p will be referred to as quantile prob- 
i 

abilities. 

There is much discussion in the literature over the best choice of 

quantile probabilities for Q-Q plots (see Kimball (1960) and Barnett 

(1975)). A frequently used formula is given by pi = (i-c)/(n-2c+l), where 

c is some constant satisfying 0 5 c 5 1. The choices c-0 and c-0.5 (see 

Chapter 2)  are both popular. Here we use c-0.3175 since the resulting 

probabilities closely approximate medians of uniform (0,l) order statistics 

(Filliben, 1975). This choice has the attractive invariance property that 

if pi is the median of the ith order statistic from the uniform (0,l) 

distribution, then G-'(~ ) is the median of Z(i) and 91(pi) is the median i 

of Y(i), for any continuous F. Medians may also be preferred as measures 

k. of central tendency since the distributions of most order statistics are 

skewed. In the examples that follow we will adhere to the convention of - 
choosing c=0.3175 unless stated otherwise. Thus we will plot the points 



Distribution* 

Dnif o m  

Normal 

Lognormal 

Exponential 

Extreme-value 

Weibull 

Laplace 

Logistic 

Ceuchy 

Table 11.1 
CDFs and Plotting Formulae for Selected 

Families of Distributions 

F(Y) Abscissa 

Y'P 
I-=.[- [ u 1 ] 

Ordinate 

*Support of each distribution is (-Wy<a) except for the uniform (p<y<p+o), 
lognormal (y>O), exponential (y>p), end Weibull (y>O). 



where p = (1-0.3175)/(n+0.365). The particular choice of quantile pro- 
i 

babilities is not crucial since for any reasonably large sample different 

choices will have little effect on the appearance of the main body of the 

plot. There may be some noticeable differences, however, for extreme order 

statistics from long-tailed distributions. (The reader should note that in 

Chapter 2 the pi of (11.2) was symbolized by Fn(y), the empirical distri- 

bution function.) 

E 11.2.1.1. Uncensored Normal Example. Data for this example consist of 

the first 40 values from the NOR data set which were simulated from the 

normal distribution with pn100 and a=10. A normal probability plot is 

shown in Figure 11.1. The normal distribution provides a good fit to the 

data. Note that the intercept and elope of a straight line drawn through 

the points provide estimates of the theoretical mean and standard devia- 

tion. (The reader should compare Figure 11.1 to Figure 2.15 where the full 

NOR data set is plotted with X and Y axes interchanged from Figure 11.1.) 

11.2.2 Singly-Censored Samples. 

The method of the previous section can be applied directly in any 

situation where the data consist of some known subset of order statistics 

from a random sample. This is because the available Y are still sample 
(i) 

quantiles from the complete sample and appropriate quantiles of G can be 

calculated as before. Although only a portion of the observations from the 

- 
hypothetical complete sample can be plotted, the plotted positions of the 

uncensored points are the same as when the complete sample is available. 



















































































for the complete sample Y 
t ~ ) * * * * * ~ ( n )  

. We will denote the ratio of maximum 

likelihoods by 

Cox (1961,1962) formulates a test of H1 versus H which is based upon 2 

the statistic 

where E is the expectation under the null hypothesis, HI. For complete 

samples the large sample distribution of T is approximated using maximum 

likelihood theory. Hoadley (1971) extends maximum likelihood theory to 

situations which include censoring. Thus valid approximations to the 

distribution of T are also possible with censored samples. 

For location-scale families with pdf 8 f ( - / a i  , Lehrnann 

(1959) shows that the uniformly most powerful invariant (under linear 

transformations) test is based upon the (Lehmann) ratio of integrals 

LRI = 11/12 , 

where 

The RML statistic and some modified versions are discussed in a series of 

papers: Antle (1972,1973,1975); Dumonceaux, Antle, and Baas (1973); 

Dumonceaux and Antle (1973); Klimko and Antle (1975);Kotz (1973). 

Percentage points are given for the null distribution of RML for com- 

parisons involving a number of different families of distributions. In some 

cases, the LRI and RML tests coincide. In others, the RML test is almost 



as powerful as the LRI test. The authors make use of the fact that the 

distribution of the RML statistic is parameter-free whenever the families 

to be compared are both location-scale families. This result appears to 

hold for any Type I1 censored sample. The only tables of critical points 

which have been constructed for use with censored samples appear in Antle 

(1975) and apply to the situation where one is testing the null hypothesis 

that the underlying distribution is Weibull (or extreme-value) against the 

alternate hypothesis of lognormality (or normality), and vice versa. 

E11.4.2.1. Lognormal vs. Weibull Example. We once more consider the 

smallest 20 values among the first 40 values listed in the NOR data set. We 

first exponentiated the data, and then proceded to test the lognormal 

against the Weibull family. An interactive procedure was used to determine 

the value of RML. Entries in Table IX of Antle (1975) must be compared to 

g ~ ~ ' ~ ~  which here was determined to be 1.063. This value is just above 

the 95 percent point and so we have the surprising result that we can 

reject the (true) hypothesis of normality in favor of the extreme-value 

distribution at the 0.05 level of significance. 

Finally, a somewhat different approach to this general problem 

deserves mention. Farewell and Prentice (1977) construct a three- 

parameter family of generalized gamma distributions which includes the 
'3 

- Weibull, lognormal and gaanna families as special cases. Likelihood ratio 

? 

tests using asymptotic likelihood results are recommended which can 

accommodate censoring as well as regression variables. 
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