REGRESSION DIAGNOSTICS AND APPROXIMATE INFERENCE
PROCEDURES FOR PENALIZED LEAST SQUARES ESTIMATORS

by
Richard F. Gunst and Randall L. Eubank

Technical Report No. SMU/DS/TR--181
Department of Statistics —— NASA Contract

September 1983

Research sponsored by the National Aeronautics Space
Administration - Contract No. NASA NCC 9-9

This document has been approved for public
release and sale; its distribution is unlimited.

Department of Statistics
Southern Methodist University
Dallas, Texas 75275



REGRESSION DIAGNOSTICS AND APPROXIMATE INFERENCE PROCEDURES

FOR PENALIZED LEAST SQUARES ESTIMATORS

R. L. Eubank and R. F. Gunst¥*

ABSTRACT

Generalizations of least squares$ diagnostic techmiques are
presented for a class of penalized least squares estimators.
Efficient computation of these diagnostics is afforded by gxpressions
which relate coefficient estimates and residuals from fits to sub-
sets of the data to the corresponding quantities from a fit to the
complete-data set. From these expressions approximate confidence
intervals and test statistics can be obtained using jackknife and
bootstrap procedures. Applications are discussed for the special

cases of smoothing splines and ridge regression.

KEY WORDS

Bootstrap confidence intervals; Jackknife confidence intervals;
" Leverage values; Ridge regression; Smoothing splines; Studentized

residuals,



AUTHOR'S FOOTNOTE

* R. L, Eubank is Assistant Professor and R. F. Gunst is Associate
Professor and Chairman, Department of Statistics, Southern Methodist
University. This research was supported in part by Office of Naval
Research Contract No. N0OOQl4-82-K-0207 and by the National Aero-
nautics and Space Administration under Contract No. NCC 9-9. The
authors would ‘like to thank Mr. Tom Carmody for furnishing Figure

1 and Dr. Paul Speckman for helpful discussions on the material in

this manuscript.



REGRESSION DIAGNOSTICS AND APPROXIMATE INFERENCE PROCEDURES

FOR PENALIZED LEAST SQUARES ESTIMATORS

R. L. Eubank and R. F. Gunst

1. INTRODUCTION

Regression diagnostics are an integral component of compre-
hensive regression modeling efforts, in large part because of
recent theoretical advances which lead to computational efficiency.
With few exceptions (a notable one bging Pregibon (1981)) these
advances have been restricted to ordinary least squares (OLS) esti-
mation for linear models. In this paper diagnostic techniques are
extended to a class of penalized least squares estimators which
include smoothing splines and ridge regression estimators as
special cases. An additional benefit of these results is the
ability to efficiently compute jackknife confidence intervals and
other inferential statistics for model parameters.

let y = (yl,...,yn)' be a vector of observed responses which
follow the model

y=n+e, (1.1)
where n = (nl,...,nn)' is a vector of unknown constants and

! .
£ = (sl,...,en) is a vector of zero mean, uncorralated errors with



common variance 02. It is assumed that n is to be approximated
by a linear form XB where X is a known nxp matrix of rank p < n
having ith row xi and B = (Bl,...,Bp)' is a vector of parameters
which is to be estimated. The class of estimators which are
investigated in this article are those obtained as the solution to
min{z?_ (y,-x!8)% + 8'Q8}, A >0, (1.2)
g 4=173 73 -
with Q denoting an arbitrary positive (semi-) definite matrix.
For a given Q, X, and A, expression (1.2) has a unique solution:
8 =CNy , (1.3)
where
cy) = (X'x + Q) 1k’ . (1.4)

-

The estimator B is termed a penalized least squares estimator of

B. Observe that when A = 0, B reduces to the OLS estimator

8= (x'%) X'y .

At the other extreme, if Q is positive defiﬁite g +0 as A > =,
In many instances it is preferable to use a value of A between
these two extremes and a variety of methods are available for esti-
mating its value from data. For example, Golub, Heath and Wahba>(l979)
discuss generalized cross-validation (GCV) as well as other data-
driven methods for selecting A.

It is often reasonable to make the stronger assumption that
n = XB under which model (1.1) becomes the linear regression model

y=X8+¢ . (1.8

When this model holds and no further assumptions are made, E will

be termed a generalized ridge regression estimator of 8; however,



the results presented below are of sufficient generality to include
cases in which the nj represent values from an unknown regression
function, n, which is to be estimated nonparametrically. When
appropriately formulated (see Section 5) the smoothing spline esti-
mator of n is seen to be a special case of estimator (1.3).

As with ordinary least squares, the penalized least squares
"hat matrix" (see Hoaglin and Welsch 1978) provides important
diagnostic information about the influence of individual observa-
tions (yi,xi) on the associated prediction equation. The hat
matrix corresponding to E is defined to be

E()) = {hij(x)} = XC(}) . (1.7)

This matrix transforms the response vector y to the vector of
fitted values, y = (;l,...,§n)‘; i.e.,
: y = Ey .
The element hij(k) is a direct measure of the influence of yj on the
fit to y;. In particular, the "leverage value" hii(k) measures the
influence of y; on its own prediction.

This study of the estimator class (1.3) begins with a deriva-
tion of some of the properties of H(A) in Section 2. In Section 3
techniques are presented for computing estimates and fitted values
when observations are'deleted from the data set. The results of
this section are applied, in Section &, to obtain approximate
inference procedures for the parameter.vector B and to derive diag-
nostic measures for detecting influential observations. Specific
applications to nomparametric estimation by smoothing splines

and to ridge regression estimators are detailed in Section 5. Con=-



cluding remarks are made in Section 6.

2. LEVERAGE VALUES FOR PENALIZED LEAST SQUARES

In this section certain properties of the hat matrix H(A) will
be derived. It will be seen that the characteristics of its elements
are closely related to those of the hat matrix H for the corresponding
OLS estimator:

H = {h,} = x@'x k. (2.1)
Since H in equation (2.1) is a (orthogonal) projection operator,
the fcllowing properties are easily proven:

1) 0<h, <1

i) -l<h <1, 143 (2.2)

iii) hij =1 = hij =0, 1#j.
When X contains a constant column, somewhat sharper results are
provided by

i)' n " <h,, <1

i)' =(a-1n"T < hy <1, 1#] (2.3)

iii)! hii =1 <= hij =0, 14#3.
Extreme rows of X result in large leverage values. The rough
cutoff of hii > 2p/n suggested by Hoaglin and Welsch (1978) is
often used to identify such rows. Note from iii) and iii)' that,
as hii -+ 1, hij >0, 1 #3 and ;i = xig -+ y;» indicating that an
observation with a large leverage value will tend to dominate its

own fit.

For X > 0, H(A) 1is no longer aprojection matrix. The following



theorem establishes bounds for the elements of H(A) as a function
of the corresponding elements of H, thereby providing an analog
of properties i) and ii) in equation (2.2).

Theorem 2.1l. The elements of H(A) satisfy

1/2

-1
|hij(k)|.§ (1 +Ady) “{hy b, .} (2.4)

1i75]
where d, is the smallest eigenvalue of (X'X)-lQ.
Proof. Using the spectral decomposition (eg. Kshirsagar 1972,

Chapter 7) of X write X = ULl/2

Z‘, where L = diag(ll,...,zp)
is a diagonal matrix containing the nonzero eigenvalues of XX' (and
X'X) in ascending order, and U = [ul,...,up] and Z are the corre-
sponding matrices of eigenvectors of XX' and X'X, respectively.
H(A) can now be expressed as
H(A) = U + xL“l/zz'QZL“l/z)'lu' . (2.6)
-1/2

L2121,

Let O :_dl §_d2 < eee < dp denote the eigenvalues of L
(which are also the eigenvalues of (X'X)ulQ). Using ' = [Yl,...,Yp]
to denote the corresponding matrix of eigenvectors, individual elements
of H(A) can now be represented as

. - P -1 = 11! .
hij(x) ):r___lbirbjr(l+xdr) R bkr U Yo 2.7)

Application of the Cauchy-Schwarz inequality in equation (2.7) along

with the ordering of the dr completes the proof. (-

Theorem 2.1 and its proof have several important consequences.
First, it furnishes tighter bounds for the elements of H(A) than
the inequalities in equation (2.2); i.e.,

£ 0<h, () < @+t

, -1 -1 (2.8)
i) =@+ 4D < h () < A +MPT, LF]



In addition, from equation (2.7), it is apparent that hii(k) is

monotonically decreasing with A from hii(o) =h,,

to h..(»). Note
ii ii

that in general hii(@) > 0 unless dl > 0; when dl > 0, hii(@) = 0.
Since hij(k) is continuous in A, standard results from calculus can
be used to show that for A sufficiently small (large) hij(k) will
have the same sign as hij (hij(m)) provided that hij #0 (hij(w)#O).

Two important special cases occur when (i) O = d1 = L. = dm

< dm+_l < eee j_dp and (ii) Q = I. These special cases have appli-
cations to smoothing splines and ridge regression, respectively,
which will be explored in Section 5. The important details are
summarized in the following two corollaries.

Corollary 1. Suppose 0 = dl = ,,., = dm < dm+l < aes j_dp and

m

define hij(m) = Zr=lbirbjr’ where the bkr are as in equation (2.7).
Then
b, (=) + Ad) " B b2 <h () < h () + (IAd_ )L T b2
ii P gy T id — ii mt+l remt1 it
(2.9)

Corollary 2. If 8 = (X'X + u)"lx'y then

-1 1/2
Ihij(x)l < 2,0 ) hy by

where Ep is the largest eigenvalue of X'X. The upper bound for
the ith leverage value, viz. lp(lp+k)—l, is obtained when x3=l;/225

where ZP is the eigenvector corresponding to zp.

3. DELETING OBSERVATIONS FROM AN ESTIMATOR

The development of exact tests and interval estimates for B

~

using the penalized least squares estimator B is a difficult, and



as yet unresolved, problem. In contrast, approximate techniques
based on nonparametric procedures such as the jackknife and boot-
strap are easy to propose but their practicality depends on the
ability to efficiently perform the necessary calculations. In this
section a simple method of deleting observations from E is derived
which requires no refitting of the data. This is found, in Section
4, to make the use of inference techniques such as jackknife confi-
dence regions for B a practical alternative and to allow a general-
ization of several types of regression diagnostic measures to the
penalized least squares setting.

For q < n-p let J = {jl,...,jq} be a subset of the indices

)]

{1,...,n} and let g represent the coefficient estimates obtained

using only those (y

3

~ a partial characterization of

s xé) with j ¢ J. The following theorem provides
E(J).

Theorem 3.1. Let E[J](wj ,...,wj ) solve

2 1 21
min{ & (y.,-x!8)° + L (w.~x!8)° + Ap'Q8} (3.1)
8 j¢1 3 jeg 3 3
and define ;iJ) = xig(J), i=1,.,.,0, Then,
5“1(59),...,;35”) -3, (3.2)
q

(1

Theorem 3.1 has the consequence that B can be obtained by

applying C(A) to a '"mew data vector" wherein yj has been replaced

by y§J> for all jeJ. This would seem to presuppose knowledge of

B(J); however, such is not the case and in many cases of interest

it is possible to compute the y;J) without explicit computation of

B(J). This property follows by application of the next theorem.
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Theorem 3.2. The values §j , jeJ, satisfy the linear equation

system

(D M G)) -
Vi " TyegPi (VY5 Vi = Iyeqhyy (MY;

= Jﬁ IJ(A)y , 1eJ . (3.3)

Proof of Theorems 3.1-3.2, Set wJ = y( ). Proof of Theorem 3.1

is provided by the following inequalities:

g0 ! 13(0y2 RCRE 1500y2 50 5 (D
12 (I),2 “(I)’ ~(J) _otay2 '
= Lour vy BT A AR QBT < Iy (v mxiB) T + ABTQE
< Tigg(rymxs 8y + Lieg®ymx] '8)2 + A8'qs .

"[J]

To verify equation (3.3) note that x B ,...,Wj ) is linear

1 q
in wa, jeJ, and can, therefore, be written as

(A)(w —y ) . (3.4)

]

1o [J] - o'
xiB (wa ,...,Wj )} = xiB + I,

1 q EJ ij

Letting wﬁ = x é( ) gives the desired result.

To illustrate uses for Theorem 3,1-3,2 confine attention, for
the moment, to the instance q = 1, J = {j} for some j ¢ {1,...,n}.
To distinguish this important special case the notation

glil - 5 (3.5)

and
;i[j] = x! rgldl (3.6)

is utilized. Application of Theorem 3.2 to this special case yields

[J]

the following expression for Y3

SL3l _ o o -
Y3 (Yj hjj(k)yj)/(l hjj(k)). 3.7



This relationship explicitly demonstrates the ability to obtain
each of the y}J] without refitting the model.

The term "deleted residual' will be used to designate the

difference yj -y

§J]. Equation (3.7) provides an efficient compu-

tational form for the deleted residual; viz.,

i

_-‘[j]: P, A i =
e y yj ej/(l hjj( 3, j=11l,e..,n, (3.8)

(31 =73
where ej is the jth residual from the fit to the entire data set:

e. =y -yj’ j =l,ao-’no (3.9)

Substituting equation (3.8) into equation (3.2) yields

E[J] = E - cj()\)e[j]’ i=1...,m, (3.10)

where cj(A) is the jth column of C(A).

Formulas (3.8) and (3.10) include as special cases the equi-
valent expressions for ordinary least squares, A = 0 (e.g., Beckman
and Trussel 1974; Hoaglin and Welsch 1978). In the case of smoothing
splines equation (3.8) was established by Craven and Wahbg (1979)

using a method of proof similar to the one employed.here.

4. INFERENCE AND DIAGNOSTICS

Equation (3.8) provides a fundamental expression for the
derivation of approximate confidence intervals to complement the

point estimator B., Define the jth vector of pseudo-values by

b, = a8 - (n=1)pld]

=8 + (n-l)cj(k)e[j] . (4.1)

-~ ]

Then the jackknife estimator of B based on B is b = n-12?=lbj
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and the variance-covariance matrix of B or b can be estimated by

~=n ~—~~—~' Rl
V=10 -b)(b, ~b)!/a(e-1) . (4.2)

For a linear functiomal a'f, an approximate 100(1-a)7% confidence

interval is provided by

(a'\‘;a)l/2 or a'g +2Z (a'?ra)l/2 (4.3)

.
a'g +2 /2

af2

2 is the 100(1-a/2) percentage point of the standard normal

distribution (critical values from a Student's t distribution with

where Z
a/

n~1l degrees of freedom could be used in place of Za/Z in expression
(4.3)). Notice that the interval estimates (4.3) can be computed
using information available entirely from the original fit. When

A = 0, equations (4.1)-(4.2) reduce to formulae given in Miller (1974),

Hinkley (1977a), and Efron (1982, Chapter 3) for jackknifing 8.
Diagnostic measures which parallel those utilized for ordinary
least squares can also be derived as a result of (3.8) and (3.10). To

. ‘ . 2 . .
do so first note that a naturdl estimator of ¢ associated with the

penalized least squares estimator B is

“2 _ n
=i

ei/tr(I—H(A)) (4.4)

where tr denotes the matrix trace. This estimator reduces to the

usual estimator of 02 associated with B, namely 02 = 22=le§/(n-p),

when A = 0. The estimator (4.4) has been found to be quite effective
for spline smoothing by Wahba (1983). Studentized (deleted)
residuals can then be defined as

- _ 1/2
t e,/a 411k, () (4.5)

(31

where d%j] is the estimator (4.4) computed from the reduced data set
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wherein (yj,xg) has been excluded. An explicit formula for B%j] is

=2 _ 3 (e. +h,.(Ve,. )2 rera-a o) (4.6)
[31 75,1 ij [7]
1#3
with
gop it ij ij
i#j

S[3]

To prove formulas (4.6)-(4.7) observe that y;~~ can be written as
zr#jair e The caoefficients a, can be deduced from equation (3.2)

and used to establish equation (4.7). The form of the numerator
follows easily from expression (3.10).

The studentized residuals along with formulas (4.6)-(4.7) are
generalizations of relations which hold when A = 0 (e.g., Gunst and
Mason 1980, Chapter 7). These residuals provide a scaled measure
of how the fit to yj changes when its value is not used to estimate
8. They can, therefore, be used to detect overly influential data
values. The value of t[j] might be compared to values from a Student's
t distribution with approximately tr(I—H[j](A)) degrees of freedom.
Simulation results discussed in Section 5 indicate that Student's t
critical values provide a reasonably good approximation for 5% cutoff
values for the t[j]' Through similar considerations a variety of
other diagnostic measures can also be suggested. One such example
is

DFFITS, = (v, - x}853 N/ /2

1
(31 By

. _ 1/2 .
[hjj(x)/(l hjj(x))] t[j] s 3 = Lyeee,m,

(see Velleman and Welsch 1981 or Belsley, Kuh and Welsch 1980).



Deleting q > 2 observations is somewhat more complicated than
the case q = 1. When q > 2 it is no longer obvious that equations
(3.3) always uniquely determine the ;§J).A This will be true if
and only if (I—H(k))J, the submatrix of I-H(A) corresponding to those
indices in J, has rank q. For example, when q = 2, J = {i,j} this
condition is equivalent to (l—hii(k))(l—hjj(k)) - hij(k)2 # 0.
Instances where this is not satisfied would seem rare in practice.

Now suppose that one obtains m random samples of q indices

each, Jl,...,Jm, by sampling with replacement from {l,...,n}. A

bootstrap estimator of the variance—-covariance matrix of B8 is pro-~

vided by
: “(3) - 1) -
w-—z‘;‘=l(s -g¥) (B~ -B%)'/(m-1) - (4.8)
&
where B* = m Z?*ls . If the matrices (I—H(X))J all have rank q,
T

W can be computed using equations (3.2)-(3.3) and its elements can
then be used to obtain bootstrap analogs of the jackknife confidence
intervals (4.3). A similar approach when all possible subsets of
size q are used leads to the development of grouped jackknife inter-
val estimates of B (see Efrom 1982, Chapter 2).

To conclude note that when A = O Theorems 3.1 - 3.2 can be
used to establish "leave-gq—out" identities such as equation (7)
of Draper and John (1981). It is, therefore, possible to generalize
leave-q-out diagnostics such as those discussed in Gentleman and
Wilk (1975a, b) and Draper and John (1978, 198l) to the case of

penalized least squares estimation,

12



5. EXAMPLES

In this section the application of results in Sections 3 and
4 to the special cases of smoothing splines and ridge regression
will be illustrated.
5.1 Smoothing Splines

Suppose n is a smoqth response function and that nj = n(tj),
0 j_tl < 440 < tn-i 1, in model (l.1l). For n > m the smoothing
spline estimator of n, denoted by ;, is obtained by minimizing

n

Fi=1 Y5

- £(e? + Afre® () 24e (5.1)
0

over all functions f having m-l1l absolutely continuous derivatives
and a square integrable mth derivative. Schoenberg (1964) proposed
this type of nonparametric estimator for n and showed that n was a

. : .
spline function of order 2m with knots at the t General dis-

j.
cussions of smoothing splines can be found in Wahba (1977), Wegman
and Wright (1983) and Eubank (1983).

Demmler and Reinsch (1975) (see also Speckman 1983) develop

a basis for spline smoothing which consists of functiomus xl,...,xn

.and constants 0 = Qp = eee = Q< Q0 < eee < Q) which satisfy

n
Ppapky (£, (£) = 6y (5.2)
and
1 (m) (m) , .
£ x, ()%™ (0)dt = q 8, , (5.3)

where Gij is the Kronecker delta. They show that the minimizer

of criterion (5.1) is necessarily of the form

-— n .
£(t) = T, 18y, (0) ; (5.4)

13




hence, it sufficies to minimize criterion (5.1) over functions of
this type. Substituting £(t) from (5.4) into (5.1) and invoking

the relationships in equation (5.3) gives the equivalent criterion

min{z?_l<yj x (t, N2+ Az s 1} - (5.5)

g I r-l T
Comparison with (1.2) reveals this to be a special case of penalized
least squares estimation with p = n, xg = (xl(tj),...,xn(tj)) and

Q = diag (ql,...,qn). Therefore,

B = D(MX'y (5.6)

na+ag™h.

where D(A) = diag((l + Aql)
The hat matrix corresponding to the estimator (5.6) is

H(QA) = XD(X)X';moreover, since X'X = I the eigenvalues of (X’X)-lQ

are simply the qj. Applying Corollary 1 of Section 2

the following bounds are obtained for h 1)

by + (1 + Aqn) lgn e 1%, CEg ) <h, () <h (=

# L+ A, D7 Thep®e (t, ) (5.7)

where h (m) = zr—l

that hii(w) is the ith leverage value for regression on polynomials of

order m. Equation (5.7) therefore establishes a connection between
the leverage values for spline smoothing and those for polynomial
regression. These results generalize to multivariate "Thin Plate"
of Laplacian smoothing splines (e.g., Wahba 1981; Wahba and Wendle-
berger 1980; and Wendelberger 1981) where the hii(k) may be parti-
larly useful in the detection of sensitive points in the design.

To illustrate the behaviour of some of the diagnostic and

14

x (t ) It follows from Demmler and Reinsch (1975)
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inferential methods proposed in Section 4, a small scale simula-
tion was conducted, Data sets were gemerated from model (1.1) with

n, = n(t;) = 4.26{exp(-3.25ti)—4exp(-6.5ti)+3exp(-9.75ti)},

L, = (i~1)/n, n=80,

and normal errors with ¢ values of .05, .1, .2 and .4. This
function is a rescaled version of one studied by Wahba and Wold (1975).
The basic experiment was replicated r = 50 times (i.e., 50 data sets
of size 80) with each replicate being "treated" by all four values
of g. A cubic smoothing spline (m = 2) was fitted to each data set
with A selected via GCY.

Approximate 957 jackknife confidence intervals for the Nys
centered at ;i’ were computed by taking ai = (Xl(ti)""’xn(ti))
in equation (4.3). The proportion of times the true function value
was contained in its interval e;timate was recorded along with the
value of 52 and the proportion of times lt[j]l exceeded the 5% (two~
tailed) critical value for the Student t distribution. Summary
statistics for the simulation are given in Table 1l. A typical
example of these results, for ¢ = ,1, appears in Figure 1,

[Insert Table 1, Figure 1]

The empirical confidence levels in Table 1 are somewhat lower
than might be desired. However, bf using 99% rather than 957 inter-
vals, confidence levels in excess of 947 were obtained in all cases.
This is typical of simulations performed with other funétion types

and other configurations for the values of r, n, and ¢. These

results will appear elsewhere. As illustrated in Table 1, the
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Student's t approximation to t[j] and the estimator 02 performed
well.
5.2 Ridge Regression

Ridge regression estimators (Hoerl and Kennard 1970; Marquardt
1970) are solutions to the criterion function (1.2) when (i) only
the nonconstant predictor variables from model (1.l) are included
in X, (ii) the predictor variables are standardized so that X'X is
in correlation form, and (iii) Q= I. Much controversy persists over
automated selection of A, the effect of standardization on ridge
estimation, and the assumptions underlying the wvalidity of the
ridge estimator (e.g., Draper and Van Nostrand 1979; Smith and
Campbell 1980, with discussion). In order to demomstrate the
application of the results of Section 2-4, assume that for a
«specific regression analysi; the criticisms noted above are
satisfactorily answered and that a ridge regression analysis is
deemed appropriate.

Ridge regression diagnostics can be obtained from the results
of Sections 2-4 under the conditions-stated above; however; the
efficient computational expressions for deleted estimators (i.e.,
g[j] and E(J)) and deleted residuals (i.e., e[j]) are exact oniy
if the reduced X matrix is not restandardized when rows are deleted.
Hinkley (1977a) noted a similar restriction when he cautioned against
obtaining (least squares) jackknife estimates of the constant term
of a regression model using centered predictor wvariables., Since
the major benefits of centering and standardization cited by
Marquardt (1980) are essentially maintained when one (or a small

number) of the rows of the standardizéd X matrix is (are) deleted,
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only the original matrix of predictor variables is standardized
in the following example.

Gunst and Mason (1980, Appendix A) contains a data set on the
gross national product (GNP) of 49 countries of the world along with
the six additional socioceconomic indices: an infant death rate (INFD),
a physician/population ratio (PHYS), population density (DENS), pop=-
ulation density measured in terms of agricultural land area (AGDS),

a literacy measure (LIT), and an index of higher education (HIED).
Table 2 displays'regression diagnostics for the fit of Ln(GNP) by
the six socioeconomic indices.

[Insert Table 2]

The relatively small value of A(0,08) which was chosen for this
illustration has little effect on the bounds for ridge leverage values
. given by ;orollary 2 since 26/(26+0.08)=0,97. With the exception of
Malta, least squares leverage values which exceed 2(p+l)/n = 0.286
are also large with the ridge estimator using the analogous bound
2(tr[H(A\)]+1)/n = 0.271. Although the ridge DFFITS values appear to
be slightly more unifor; than those of least squares (e.g., none of
the former are greater than 1.0 in magnitude), four of the five

1/2

observations which exceed 2{(p+l)/n} " “=0.756 for least squares also

exceed 2{(tr[I:I(A)]+1)/n]'l/2

=0,736 for ridge regression--Malta is again
the exception-—and a similar comment can be made about the t[jl'

Malta is obviously affecting.the two estim;tion procedures
differently. It has high leverage and is influential on the least
squares fit but has neither high leverage nor an influential impact

on the ridge regression fit. A scatterplot of DENS and AGDS reveals

that Malta lies well off the concentrated linear scatter (r = 0.97)
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between these two variates. Thus by lessening the effect of the
strong pairwise correlation between DENS and AGDS on the estima-
tion of the regression coefficients, the ridge estimator is also
lessening the influence of Malta on the fit. Although the other
least squares and ridge diagnostics identify equally important
characteristics of this data set, comparison of the two sets of
diagnostics has provided important insight about Malta which might
have gone unappreciated had only the least squares diagnostics
been examined.

Table 3 displays least squares, ridge (A = .08), and jack-
knifed ridge (g)'coefficient estimates and confidence intervals.
The purpose of presenting the ridge and jackknifed ridge estimates
is to highlight typical characteristics of these estimators, not
to draw definitive conclusions relative to this data set. Note
in particular that, while similar, the ridge and jackknifed ridge
estimates are somewhat different. In addition, both of these
latter two estimators produce jackkmnife confidence intervals
(using expressions (4.3)) which are shorter than least squares.

In view of the simulation results in Section 5.1, it might be
advisable to adjust these confidence intervals (not done here)
by using a larger Student t critical point. If one uses 99%
nominal coverage, the ridge confidence interwval for the coeffi-
cient of DENS includes the origin,

Obviously a more complete analysis of this data set is needed

in order to resolve questions which remain about influential observa-

tions and the significance of the predictor variables. Any thorough



analysis must incorporate prior knowledge about the regression
coefficients and information concerning the intended use of the
conclusions which are to be drawn from the fitted model. These
toplecs are beyond the scope of this paper; nevertheless, this

example illustrates some important characteristics of penalized

Jeast squares diagnostics and approximate inference procedures.

6. CONCLUDING REMARKS

The results of this paper generalize least squares regression
diagnostics and certain approximate inference procedures to a
class of (quadratic) penalized least squares estimators for linear
models. Theorems 3.1l and 3.2 proauce expressions for deleted esti-
mators and residuals which provide exact, computationally efficient,
calculation of quantities such as pseudo values and Studentized
residuals. These results have wide application, two specific
illustrations being nonparametric estimation with smoothing splines
and ridge regression.

Much research remains to be conducted regarding the properties
and usage of the procedures proposed in this paper. For example,
the jackknife confidence intervals do not achieve the nominal con=-
fidence level, although they are well-known to be insensitive to a
variety of unimodal error distributions. Corrections for the jack-
knife such as those proposed in Hinkley (1977b, 1978) may alleviate
cover;ge difficulties and the behavior of jackknife intervals under
nonnormal errors merits further investigation. Likewise, the sensi-~

tivity of jackknife confidence intervals to the choice of A warrants

19
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further study. For instance, in the ridge regression example
increasing A from 0.08 to 0.20 decreases the estimated standard
errors of the individual coefficients between 5 percent (HIED)
and 50 percent (AGDS). On the other hand, the Studentized
residuals and the estimator of 02 performed well in the simula-
tion in Section 5.1. Similarly, the ridge regression diagnostics
highlighted an important characteristic of the presence of Malta
which could have been overlooked if only the least squares dia-

gnostics were examined.
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TABLE 1.

Summary Statistics for the Simulation

Empirical Confidence  Empirical Significance Estimated
Levels Levels Variance
o] Average Std, Error Average Std. Error Avg. MSE
.05 .8838 .0084 .0508 .0025 .0023  2x10°"
.10 .8868 .0087 .0510 .0024 .0091 3x10°°
.20 .8863 .0102 .0493 .0021 .0366 5}:10-5
.40 .8843 .0149 .0490 .0023 .1490 6x10™"




TABLE 2. Regression Diagnostics for GNP Data, Selected Observations
Least Squares Ridge (A=.08)

Obsn. hjj t[.L] DFFITSj hjj (.08) t [11 DI"]‘:‘ITS:.L
BARBADOS .238 -2.026 -1.131 .137 -1.929 -,769
CANADA .042 2.011 .419 .039 2,111 423
HONG KONG 511 -.107 -.109 471 -.138 ~-.130
INDIA .558 1.337 1.502 .507 .903 .917
JAPAN .049 -2.799 -.633 .046 -2.743 -.602
LUXEMBOURG .084 2,356 .713 .077 2.391 .690
MALTA .688 1.506 2,236 .262 426 .254
SINGAPORE .632 562 .736 .516 .632 .653
TAIWAN .178 -2.401 -1,119 .129 =-2,475 -.953
U.S. +490 .804 . 187 447 .951 .855




TABLE 3. Coefficient Estimates and Nominal 95% (Individual)
Confidence Intexvals

Predictor Least Squares Ridge Regression  Jackknifed
Varlable Estimates (A = .08) Ridge

(a) Coefficient Estimates
INFD -1.870 -1.772 -1.695
PHYS 171 - 0,125 113
DENS ~1.094 - 410 - ,606
AGDS .862 151 453
LIT 2.298 1.985 2,163
HIED 1.454 1.411 1.662

(b) Confidence Intervals
INFD (-3.012,- .729) (-2.218,-1.326) (-2,142,-1.250)
PHYS (=1.192, 1.535) (-~ 524, .274) (- .286, .512)
DENS (=4.718, 2.530) (- .767,~ .053) (- .963,—- .249)
AGDS (-2.738, 4.462) (- .188, .490) ( o114, .792)
LIT ( .748 3.848) ( 1.408, 2.562) ( 1.586, 2.740)
HIED ( .528, 2.380) ( .994, 1.828) ( 1.245, 2.079)
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