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ABSTRACT 

Generalizations of least square$ diagnostic techniques are 

presented for a class of penalized least squares estimators. 

Efficient computation of these diagnostics is afforded by expressions 

which relate coefficient estimates and residuals from fits to sub- 
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cases of smoothing splines and ridge regression. 
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REGRESSION DIAGNOSTICS AND APPROXIMATE INFERENCE PROCEDURES 

FOR PENALIZED LEAST SQUARE3 ESTIMATORS 

R. L. Eubank and Re F. Gunst 

1. INTRODUCTION 

Regression diagnost ics  a r e  an i n t e g r a l  component of compre- 

hensive regression modeling e f f o r t s ,  i n  la rge  pare because of 

recent  t heo re t i ca l  advances which lead  to  computational e f f ic iency .  

With few exceptions (a  notable one being Pregibon (1981)) these 

advances have been r e s t r i c t e d  t o  ordinary l e a s t  squares (OLS) e s t i -  

mation f o r  l i n e a r  models. I n  t h i s  paper diagnost ic  techniques a r e  

extended to  a c l a s s  of penalized l e a s t  squares est imators  which 

include smoothing sp l ines  and r idge  regression est imators  a s  

spec i a l  cases. An addi t iona l  bene f i t  of these r e s u l t s  is the  

a b i l i t y  t o  e f f i c i e n t l y  compute jackknife confidence i n t e r v a l s  and 

o ther  i n f e r e n t i a l  s t a t i s t i c s  f o r  model parameters. 

Let y = ( ~ ~ , . ~ . ~ y  ) '  be a vector  of observed responses which n 

foffow the  model 

where TI = (ol,. ..,TI ) ' is a vec tor  of unknown constants  and n 

r ( E ~ ~ . ~ E  Y is a vector  of zero mean, uncorr3lated e r r o r s  with n 



2 common variance a . It is assumed that rl is to be approximated 

by a linear form XB where X is a known nxp matrix of rank p 5 n 

having ith row xi and B = (B1,. . . ,Bp) ' is a vector of parameters 
which is to be estimated. The class of estimators which are 

investigated in this article are those obtained as the solution to 

with Q denoting an arbitrary positive (semi-) definite matrix. 

For a given Q, X, and A, expression (1.2) has a unique solution: 

where 

C(X) = (xtx + X~)-~X' . (1.4) 
0 

The estimator B is termed a penalized least squares estimator of 
0 

0. Observe that when h = 0, B reduces to the OLS estimator 

0 

At the other extreme, if Q is positive definite B + as X + -. 
In many instances it is preferable to use a value of X between 

these two extremes and a variety of methods are available for esti- 

mating its value from data. For example, Golub, Heath and Wahba (1979) 

discuss generalized cross-validation (GCV) as well as other data- 

driven methods for-selecting A. 

It is often reasonable to make the stronger assumption that 

rl = XB under which model (1.1) becomes the linear regression model 

Y a X 8 + E .  (1 6 )  
0 

When this model holds and no further assumptions are made, B will 

be termed a generalized ridge regression estimator of 0; however, 



t h e  r e s u l t s  presented below a r e  of s u f f i c i e n t  gene ra l i t y  t o  inc lude  

cases  i n  which t h e  n .  r epresen t  va lues  from an unknown regress ion  
J 

funct ion,  n ,  which is  t o  be  es t imated nonparametrically. When 

appropr ia te ly  formulated (see  Sec t ion  5) t h e  smoothing s p l i n e  e s t i -  

mator of n i s  seen t o  be a s p e c i a l  c a se  of es t imator  (1.3). 

As  wi th  ordinary l e a s t  squares ,  t h e  penalized l e a s t  squares  

"hat matrix" (see Hoaglin and Welsch 1978) provides important 

d iagnos t ic  information about t h e  in f luence  of ind iv idua l  observa- 

t i o m  (yi,x') on t he  assoc ia ted  p r ed i c t i on  equation. The h a t  
i .. 

matrix corresponding t o  B is def ined  t o  be 

This  mat r ix  transforms t he  response vector  y t o  t he  vec tor  of 

" - 
f i t t e d  values ,  y = , y n ;  i-e.,  

: = H(X)y . 
The element h..(X) i s  a d i r e c t  measure of the  in f luence  of y on t h e  

IJ j 

f i t  t o  yi. I n  p a r t i c u l a r ,  t h e  " leverage value" hii(A) measures t h e  

in f luence  of yi on i ts  own pred ic t ion .  

This  study of t h e  es t imator  c l a s s  (1.3) begins wi th  a deriva- 

t i o n  of some of t he  p roper t i es  of H(X) i n  Sect ion 2. I n  Sec t ion  3 

techniques a r e  presented f o r  computing es t imates  and f i t t e d  va lues  

when observat ions  a r e  de l e t ed  from t h e  da t a  set. The r e s u l t s  of 

t h i s  s e c t i o n  a r e  appl ied,  i n  Sec t ion  4,  t o  ob ta in  approximate 

in fe rence  procedures f o r  t h e  parameter vec tor  B and t o  der ive  diag- 

n o s t i c  measures f o r  de t ec t i ng  i n f l u e n t i a l  observations.  Spec i f i c  

app l i c a t i ons  t o  nonparametric es t imat ion  by smoothing s p l i n e s  

and t o  r i dge  regress ion  e s t ima to r s  a r e  d e t a i l e d  i n  Sec t ion  5. Con- 



cluding remarks a r e  made i n  Sect ion 6 .  

2. LEVERAGE VALUES FOR PENALIZED LEAST SQUARES 

I n  t h i s  s ec t i on  c e r t a i n  p rope r t i e s  of the  h a t  matr ix  H(X) w i l l  

be  derived. It w i l l  be seen t h a t  t h e  c h a r a c t e r i s t i c s  of i t s  elements 

a r e  c l o se ly  r e l a t ed  t o  those  of the  h a t  matrix H f o r  t he  corresponding 

OLS est imator :  

Since H i n  equation (2.1) is  a (orthogonal) p ro jec t ion  opera to r ,  

t he  fc l lowing proper t i es  a r e  e a s i l y  proven: 

i i i )  h = 1  hij = 0,  i # j . 
i j 

When X contains  a constant  column, somewhat sharper  r e s u l t s  a r e  

provided by 

-1 i ) '  n 2 hii ( 1 

i i )  - (n-1) n-I 2 hij q 1, i + j 
i i i )  

hii = 1  < q h  = 0 ,  i # j .  i j 

Extreme rows of X r e s u l t  i n  l a r g e  leverage values.  The rough 

cu tof f  of hii > 2p/n suggested by Hoaglin and Welsch (1978) is  

o f t e n  used t o  i d e n t i f y  such rows. Note from i i i )  and i i i ) '  t h a t ,  
A A 

as hii + 1, hij + 0, i # j and yi = x!9 + yi, i nd i ca t i ng  t h a t  an 
1 

observat ion with a l a r g e  leverage value w i l l  tend t o  dominate i ts 

own f i t .  

For X > 0, H(X) is  no longer  a p r o j e c t i o n  matrix. The fol lowing 



theorem establishes bounds for the elements of H(X) as a function 

of the corresponding elements of H, thereby providing an analog 

of properties i) and i.i) in equation (2.2). 

Theorem 2.1. The elements of H(X) satisfy 

where d is the smallest eigenvalue of (x'x)-'Q. 
1 

Proof. Using the spectral decomposition (eg. Kshirsagar 1972, 

Chapter 7) of X write X = UL~/~Z', where L = diag(Ll,. . ., 
LP) 

is a diagonal matrix containing the nonzero eigenvalues of XX' (and 

X'X) in ascending order, and U = [ul, .... u ] and Z are the corre- 
P 

sponding matrices of eigenvectors of XX' and X'X, respectively. 

H(A) can now be expressed as 

-1/2 -1 
H(A) = U(I + AL-~/~z'QzL ) U' . (2.6) 

0 -1/2 
Let 0 5 dl 5 d2 - c . .. c d denote the eigenvalues of L-~'~z'QzL - P 
(which are also the eigenvalues of (x'x)-~Q). Using r = [yl,. . . .y 1 

F 

to denote the corresponding matrix of eigenvectors, individual elements 

of H(A) can now be represented as 

Application of the Cauchy-Schwarz inequality in equation (2.7) alang 

C t h  the ordering of the d completes the proof. r 

Theorem 2.1 and its proof have several important consequences. 

First, it furnishes tighter bounds for the elements of H(A) than 

the inequalities in equation (2.2) ; i.e., 



I n  add i t ion ,  from equat ion (2.7),  i t  is apparent t h a t  hii(X) is 

monotonically decreas ing wi th  X from h (0) = hii t o  hii (-1. Note 
ii 

t h a t  i n  general  hii(w) > 0 u n l e s s  dl > 0; when dl > 0, hii(w) = 0. 

Since h..(X) is  continuous i n  A ,  s tandard r e s u l t s  from ca lcu lus  can 
1J 

be used t o  show t h a t  f o r  X s u f f i c i e n t l y  s m a l l  ( l a r g e )  h . . (X)  w i l l  
1J 

have t h e  same s i g n  as h (h .  . (a)  ) provided t h a t  hij # 0 (hij (w) #0) . 
i j  i j  

Two important s p e c i a l  c a s e s  occur when ( i )  0 = dl = ... * dm 

< del ... d and ( i i )  Q = I. These s p e c i a l  cases  have app l i -  
P 

c a t i o n s  t o  smoothing s p l i n e s  and r i d g e  regress ion ,  r e s p e c t i v e l y ,  

which w i l l  be explored i n  Sec t ion  5. The important d e t a i l s  are 

summarized i n  t h e  fol lowing two c o r o l l a r i e s .  

Corol lary  1. Suppose 0 = - dl - ... = dm c d < ... < d and mtl  - - P 
m b b where t h e  bkr a r e  as i n  equa t ion  (2.7). de f ine  h (a)  = Er=l ir jr7 i j  

Then 

" 
Corol lary  2. I f  B = (X'X + X I ) - ~ X ' ~  then 

where L is t h e  l a r g e s t  e igenvalue  o f  X'X. The upper bound f o r  
P 

-1 t h e  i t h  leverage value ,  v i z .  I ( I  +A) , is obta ined when x ~ = ! L ~ ' ~ z  ' 
P P J P  P 

where z is the  e igenvector  corresponding t o  L . 
P P 

3. DELETING OBSERVATIONS FROM AN ESTIMATOR 

The development of exac t  t e s t s  and i n t e r v a l  e s t imates  f o r  B 
" 

using t h e  penal ized l e a s c  squares  es t imator  B is a d i f f i c u l t ,  and 



a s  y e t  unresolved, problem. I n  con t r a s t ,  approximate techniques 

based on nonparametric procedures such a s  t he  jackknife  and boot- 

s t r a p  a r e  easy t o  propose b u t  t h e i r  p r a c t i c a l i t y  depends on t h e  

a b i l i t y  t o  e f f i c i e n t l y  perform t h e  necessary ca l cu l a t i ons .  I n  t h i s  

- 
s ec t i on  a simple method of d e l e t i n g  observat ions  from B is  der ived 

which r equ i r e s  no r e f i t t i n g  of t h e  data .  This is found, i n  Sect ion 

4, t o  make t he  use  of in fe rence  techniques such as jackkni fe  confi-  

dence regions  f o r  a p r a c t i c a l  a l t e r n a t i v e  and t o  a l low a general-  

i z a t i o n  of s eve ra l  types of regress ion  d iagnos t ic  measures t o  t he  

penalized l e a s t  squares  s e t t i n g .  

For q 2 n-p l e t  J = { jl,. ', j 1 be a subse t  of t he  i nd i ce s  
'4 

-(J> (1 ,  ..., n) and l e t  B r ep r e sen t  t he  c o e f f i c i e n t  es t imates  obtained 

us ing  only those (y x!) wi th  j d J. The following theorem provides 
j '  J 

-(J)  a p a r t i a l  cha r ac t e r i z a t i on  of fl . 
Theorem 3.1. Let ziJ1 (w , . . . w ) so lve  

a j 1 :* 

and def ine  jy) = x;i(J) , i = 1,. . . ,n. Then, 

Theorem 3.1 has  t h e  consequence t h a t  a ( J )  can be obtained by 

applying C(X) t o  a "new d a t a  vector"  wherein y has been replaced 
j 

by ;lJ) f o r  a l l  jrJ. This  would seem t o  presuppose knowledge of  
J 

i ( J ) ;  however, such is  no t  t h e  case and i n  many cases  o f  i n t e r e s t  

i t  is  poss ib le  t o  compute t h e  ;(J) without e x p l i c i t  computation of 
j 

i ( J ) .  This  proper ty  fol lows by app l i c a t i on  of t h e  next  theorem. 



- (J) Theorem 3.2. The values  y , ~ E J ,  s a t i s f y  t he  l i n e a r  equat ion 
j 

system 

Proof of Theorems 3.1-3.2. Se t  w j  = y j  -(J)  , Proof of Theorem 3.1 

is provided by t he  following i nequa l i t i e s :  

To ve r i f y  equation (3.3) no te  t h a t  x ; ~ [ ~ ] ( w  . ) i s  l i n e a r  
j 1 j q 

i n  w , ~ E J ,  and can, t he r e fo r e ,  be w r i t t e n  a s  
j 

Le t t i ng  W. = x! z(J) q ives  t h e  des i red  . r e s u l t .  
J J  

To i l l u s t r a t e  uses f o r  Theorem 3.1-3.2 conf ine a t t e n t i o n ,  f o r  

the  moment, t o  t he  i n s t ance  q = 1, J = { j )  f o r  some j E { l ,  ..., n). 

To d i s t i ngu i sh  t h i s  important s p e c i a l  case  t h e  no t a t i on  

';[jl = ';(J) (3.5) 

and 

i s  u t i l i z e d .  Appl icat ion of Theorem 3.2 t o  t h i s  s p e c i a l  c a se  y i e l d s  

" [ j l .  t h e  following express ion f o r  y 
j .  



This r e l a t i onsh ip  e x p l i c i t l y  demonstrates t h e  a b i l i t y  t o  ob t a in  

each of t he  4'' without  r e f i t t i n g  t h e  model. 

The t e n  "deleted res idua l"  w i l l  be used t o  des igna te  t he  

d i f fe rence  y " I .  Equation (3.7) provides an e f f i c i e n t  compu- 
j ' Yj  

t a t i o n a l  form f o r  t h e  de l e t ed  r e s idua l ;  viz. ,  

where e. is the  j t h  r e s i d u a l  from t h e  f i t  t o  t h e  e n t i r e  d a t a  set: 
3 

0 

Subs t i t u t i ng  equat ion (3.8) i n t o  equation (3.2) y i e l d s  

where c .  (A) is t h e  j t h  column of  C(X) . 
J 

Formulas (3.8) and (3.10) include as s p e c i a l  cases  t h e  equi- 

va len t  express ions  f o r  ordinary l e a s t  squares,  X = 0 (e.g., Beckman 

and Trusse l  1974; Hoaglin and Welsch 1978). I n  t h e  case  of  smoothing 

sp l i ne s  equation (3.8) w a s  e s t ab l i shed  by Craven and TSahba (1979) 

using a method of proof similar t o  t h e  one employed here.  

4. INFERENCE M?D DIAGNOSTICS 

Equation (3.8) provides a fundamental express ion f o r  t h e  

der iva t ion  of approximate confidence i n t e r v a l s  t o  complement t h e  
0 

poin t  es t imator  0. Define t he  j t h  vec tor  of pseudo-values by 

a m 

Then t h e  jackknife  es t imator  of 0 based on 0 is b = n -1 n " 
"j,lbj 



- - 
and the variance-covariance matrix of 0 or b can be estimated by 

For a linear funltional a' 0, an approximate 100 (1-a) % confidence 

interval is provided by 

where Z is the 100(1-a/2) percentage point of the standard normal 
a/ 2 

distribution (critical values from a Student's t distribution with 

n-1 degrees of freedom could be used in place of Z in expression 
a/ 2 

(4.3)). Notice that the interval estimates (4.3) can be computed 

using information available entirely from the original fit. When 

X = 0, equations (4.1)-(4.2) reduce to formulae given in Miller (19741, 
.. 

Hinkley (1977a), and Efron (1982, Chapter 3) for jackknifing B .  

Diagnostic measures which parallel those utilized for ordinary 

least squares can also be derived as a result of (3.8) and (3.10). To 

do so first note that a naturgl estimator of a2 associated with the 
M 

penalized least squares estimator 0 is 

where tr denotes the matrix trace. This estimator reduces to the 

2 A "2 n 2 
usual estimator of u associated with 0, namely o = Zi=l e./(n-p), I 

when X = 0. The estimator (4.4) has been found to be quite effective 

for spline smoothing by Wahba (1983). Studentized (deleted) 

residuals can then be defined as 

where uL is the estimator (4.4) computed from the reduced data set 
[j I 



- 2  is wherein (y.  ,XI) has been excluded. An e x p l i c i t  formula f o r  u 
J J  [j 1 

with 

To prove formulas (4.6)-(4.7) observe t h a t  ;? can be w r i t t e n  a s  

a.  Y The c o e f f i c i e n t s  air can be deduced from equat ion (3.2) 
'r#j l r  r e  

and used t o  e s t a b l i s h  equat ion (4.7). The form of t h e  numerator 

follows e a s i l y  from express ion ( 3  . lo) . 
The s tuden t ized  r e s idua l s  along wi th  formulas (4.6)- (4.7) a r e  

genera l i za t ions  of r e l a t i o n s  which hold when A = 0 (e.g., Gunst and 

Mason 1980, Chapter 7). These r e s idua l s  provide a s ca l ed  measure 

of how t h e  f i t  t o  y changes when its value is no t  used t o  es t imate  
0 

j 

B, They can, t he r e fo r e ,  be used t o  de t ec t  over ly  i n f l u e n t i a l  da t a  

values,  The va lue  of t might be compared t o  va lues  from a s tuden t ' s  
[j I 

t d i s t r i b u t i o n  wi th  approximately tr(1-H [j (A) ) degrees of freedom. 

Simulation r e s u l t s  d iscussed i n  Sect ion 5 i n d i c a t e  t h a t  Student ' s  t 

c r i t i c a l  va lues  provide a reasonably good approximation f o r  5% cu tof f  

values  f o r  t he  t [ j l '  Through s i m i l a r  cons idera t ions  a v a r i e t y  of 

o the r  d iagnos t ic  measures can a l s o  be  suggested. One such example 

(see Velleman and Welsch 1981 o r  Bels ley,  Kuh and Welsch 1980). 



Deleting q - > 2 observations is somewhat more complicated than 

the case q = 1. When q - > 2 it is no longer obvious that equations 

(3.3) always uniquely determine the ;(J). This will be true if 
j 

and only if (I-H(X))J, the submatrix of I-H(X) corresponding to those 

indices in J, has rank q. For example, when q = 2, J = Ei,jl this 

2 
condition is equivalent to (1-hii (A)) (1-h. . (A) ) - h. . (A) # 0. 

J J  1J 

Instances where this is not satisfied would seem rare in practice. 

Now suppose that one obtains m random samples of q indices 

each, J1, ..., by sampling with replacement from Cl, ..., n). A 
Jm9 

" 
bootstrap estimator of the variance-covariance matrix of B is pro- 

vided by 

" -1 m " ( Jr) 
where B* = m ZrllB . If the matrices (I-H(X)) all have rank q, .. 

L 

W can be computed using equations (3.2)-(3.3) and its elements can 

then be used to obtain bootstrap analogs of the jackknife confidence 

intervals (4.3). A similar approach when all possible subsets of 

size q are used leads to the development of grouped jackknife inter- 

val estimates of 6 (see Efron 1982, Chapter 2). 

To conclude note that when X = 0 Theorems 3.1 - 3.2 can be 

used to establish "leave-q-out" identities such as equation (7) 

of Draper and John (1981). It is, therefore, possible to generalize 

leave-q-out diagnostics such as those discussed in Gentleman and 

Wilk (1975a, b) and Draper and John (1978, 1981) to the case of 

penalized least squares estimation. 



I n  t h i s  sec t ion  the applicat ion of r e s u l t s  i n  Sections 3 and 

4 to  the  spec ia l  cases of smoothing sp l ines  and r idge  regression 

w i l l  be i l l u s t r a t e d .  

5.1 Smoothing Splines 

Suppose n i s  a smooth response function and t h a t  n = n ( t j ) ,  
j 

0 2 tl < ... < t 5 1, i n  model (1.1). For n > m the  smoothing 
n - 

" 
sp l ine  estimator of n ,  denoted by n ,  i s  obtained by minimizing 

over a l l  functions f having m-1 absolutely continuous derivat ives 

and a square in tegrable  mth derivat ive.  Schoenberg (1964) proposed - 
t h i s  type of nonparametric estimator for  TI and showed tha t  n was a 

e 
sp l ine  function of order 2m with knots a t  t he  t General dis- 

1 - 
cussions of smoothing sp l ines  can be found i n  Wahba (1977), Wegman 

and Wright (19&3) and Eubarrk (1983). 

D e d e r  and Reinsch (1975) (see a l so  Speckman 1983) develop 

a bas i s  fo r  sp l ine  smoothing which cons is t s  of functions xl, ..., x n 

.and constants 0 = - - q1 - -- - 'Im < qmtl < ... < qn which s a t i s f y  

and 

where 6 i s  the  Kronecker del ta .  They show t h a t  t he  minimizer 
i j 

of c r i t e r i o n  (5, l )  is necessari ly  of the  form 



hence, it sufficies to minimize criterion (5.1) over functions of 

this type. Substituting f(t) from (5.4) into (5.1) and invoking 

the relationships in equation (5.3) gives the equivalent criterion 

Comparison with (1.2) reveals this to be a special case of penalized 

least squares estimation with P = n, x' = (x (t 1,. .. ,xn(t.)) and 
j 1 j J 

Q = diag (ql,. . . , qn) . Theref ore, 
- 
0 = D(X)X1y 

-1 where D(h) = diag((1 + hql)-l, ...,( 1 + hqn) ). 

The hat matrix corresponding to the estimator (5.6) is 
A -1 

H(X) = .M(X)xl; moreover, since X'X = I the eigenvalues of (x'x) Q 

are simply the q Applying Corollary 1 of Section 2 
j 

the following bounds are obtained for hii(X): 

2 where hii(-) = Cm x (t.) . It follows from Demler and Reinsch (1975) 
1 r 1 

that h..(-) is the ith leverage value for regression on polynomials of 
11 

order m. Equation (5.7) therefore establishes a connection between 

the leverage values for spline smoothing and those for polynomial 

regression. These results generalize to multivariate "Thin Plate" 

or Laplacian smoothing splines (e.g., Wahba 1981; Wahba and Wendle- 

berger 1980; and Wendelberger 1981) where the h (A) may be parti- 
ii 

larly useful in the detection of sensitive points in the design. 

To illustrate the behaviour.of some of the diagnostic and 



i n f e r e n t i a l  methods proposed i n  Sect ion 4, a small s c a l e  simula- 

t i o n  w a s  conducted. Data s e t s  were generated from model (1.1) wi th  

i = n(t i )  = 4.26Eexp (-3.25ti)-4exp (-6.5ti)+3exp (-9 .75ti) 1 ,  

ti 
= (i-1) In ,  n = 8 0 ,  

and normal e r r o r s  wi th  u values  of .05, .1, . 2  and .4. This 

funct ion i s  a r e sca l ed  vers ion  of one s t ud i ed  by Wahba and Wold (1975). 

The b a s i c  experiment w a s  r ep l i c a t ed  r = 50 times ( i .e . ,  50 d a t a  s e t s  

of s i z e  80) wi th  each r e p l i c a t e  being " t reated"  by a l l  four  values  

of a. A cubic  smoothing s p l i n e  (m = 2) was f i t t e d  t o  each da ta  s e t  

with A s e l ec t ed  v i a  GCV. 

Approximate 95% jackknife  confidence i n t e r v a l s  f o r  the  ni, 
" 

centered a t  ni, were computed by tak ing  a '  = (x  ( t  .), . ,xn(ti) 
i 1 1  

i n  equat ion (4.3). The proport ion of t i n e s  t h e  t r u e  funct ion value 
0 

w a s  contained i n  i ts  i n t e r v a l  es t imate  was recorded a long wi th  t he  

-2 value of u and the  proport ion of t i m e s  It I exceeded the  52 (two- 
[j I 

t a i l e d )  c r i t i c a l  value f o r  the  Student t d i s t r i b u t i o n .  Sumnary 

s t a t i s t i c s  f o r  t h e  s imulat ion a r e  given i n  Table 1. A t y p i c a l  

example of t he se  r e s u l t s ,  f o r  u = .I, appears i n  Figure 1. 

[ I n s e r t  Table 1, Figure 1 1  

The empi r ica l  confidence l e v e l s  i n  Table 1 a r e  somewhat lower 

than might be  des i red .  However, by using 99% r a t h e r  than 95% i n t e r -  

v a l s ,  confidence l e v e l s  i n  excess  of 942 were obtained i n  a l l  cases.  

This is t y p i c a l  of s imulat ions  performed wi th  o t h e r  func t ion  types 

and o the r  conf igura t ions  f o r  t h e  va lues  of r ,  n, and a .  These 

results w i l l  appear elsewhere. As i l l u s t r a t e d  i n  Table 1, t h e  



Student's t approximation to t and the estimator uL performed 
[j I 

well. 

5.2 Ridge Regression 

Ridge regression estimators (Hoerl and Kennard 1970; Marquardt 

1970) are solutions to the criterion function (1.2) when (i) only 

the nonconstant predictor variables from model (1.1) are included 

in X, (ii) the predictor variables are standardized so that X'X is 

in correlation form, and (iii) Q = I .  Much controversy persists over 

automated selection of A, the effect of standardization on ridge 

estimation, and the assumptions underlying the validity of the 

ridge estimator (e.~., Draper and Van Nostrand 1979; Smith and 

Campbell 1980, with discussion). In order to demonstrate the 

application of the results of Section 2-4, assume that for a 

specific regression analysis the criticisms noted above are 

satisfactorily answered and that a ridge regression analysis is 

deemed appropriate. 

Ridge regression diagnostics can be obtain~d from the results 

of Sections 2-4 under the conditions stated above; however, the 

efficient computational expressions for deleted estimators (i.e., 

[j and ;( J, ) and deleted residuals (i . e. , 
e[j~ 

) are exact only 

if the reduced X matrix is not restandardized when rows are deleted. 

Hinkley (1977a) noted a similar restriction when he cautioned against 

obtaining (least squares) jackknife estimates of the constant term 

of a regression model using centered predictor variables. Since 

the major benefits of centering and standardization cited by 

Marquardt (19S0) are essentially maintained when one (or a small 

number) of the rows of the standardized X matrix is (are) deleted, 



only t he  o r i g i n a l  matr ix  of p red ic to r  va r i ab l e s  i s  standardized 

i n  t he  following example. 

Gunst and Mason (1980, Appendix A) con ta ins  a da t a  s e t  on t h e  

gross na t i ona l  product (GN'P) of 49 count r ies  of t h e  world along with  

t he  s i x  a d d i t i o n a l  socioeconomic ind ices :  an i n f a n t  death  r a t e  (INFD), 

a physic ian/populat ion r a t i o  (PHYS), populat ion dens i ty  (DENS), pop- 

u l a t i o n  dens i t y  measured i n  terms' of a g r i c u l t u r a l  land a r ea  (AGDS), 

a l i t e r a c y  measure (.LIT), and an  index of higher  educat ion (HIED). 

Table 2 d i sp l ays  regress ion  d iagnos t ics  f o r  t h e  f i t  of ~ ( G N P )  by 

t h e  s i x  socioeconomic indices .  

[ I n s e r t  Table 23 

The r e l a t i v e l y  small  value of X(O .08) which was chosen f o r  t h i s  

i l l u s t r a t i o n  has  l i t t l e  e f f e c t  on t he  bounds f o r  r i dge  leverage values  
0 

given by Corol lary  2 s i nce  R6/(R6+0.08)=0.97. With t h e  except ion of 

Malta, l e a s t  squares  leverage values  which exceed 2 ( p t l ) / n  = 0.286 

a r e  a l s o  l a r g e  with  t h e  r i dge  es t imator  us ing t h e  analogous bound 

2(tr[H(X) ]+l) / n  = 0.271. Although t he  r i dge  DFFITS values  appear t o  

be s l i g h t l y  more uniform than those of l e a s t  squares  (e.g., none of 

t h e  former a r e  g r e a t e r  than 1.0 i n  magnitude), four  of t he  f i v e  

observat ions  which exceed 2{ (pi-1) /n}1/2=0.756 f o r  l e a s t  squares  a l s o  

exceed 2{ ( t r  [H(A) ]+I) /n1~/~=0 .736  f o r  r i dge  regression--Malta is  aga in  

t h e  exception-and a s i m i l a r  comment can be made about t h e  t E j l *  
Malta is obviously a f f e c t i n g  t he  two es t imat ion  procedures 

d i f f e r e n t l y .  It has high leverage  and is  i n f l u e n t i a l  on t h e  l e a s t  

squares  f i t  bu t  has  ne i t he r  high leverage nor  an  i n f l u e n t i a l  impact 

on t he  r i dge  regress ion  f i t .  A s c a t t e r p l o t  of DENS and AGDS r evea l s  

t h a t  Malta l i e s  w e l l  o f f  t h e  concentrated l i n e a r  s c a t t e r  ( r  = 0.97) 



between these two variates. Thus by lessening the effect of the 

strong pairwise correlation between DENS and AGDS on the estima- 

tion of the regression coefficients, the ridge estimator is also 

lessening the influence of Malta on the fit. Although the other 

least squares and ridge diagnostics identify equally important 

characteristics of this data set, comparison of the two sets of 

diagnostics has provided important insight about Malta which might 

have gone unappreciated had only the least squares diagnostics 

been examined. 

Table 3 displays least squares, ridge (A = .08), and jack- - 
knifed ridge (b) coefficient estimates and confidence intervals. 

The purpose of presenting the ridge and jackknifed ridge estimates 

is to highlight typical characteristics of these estimators, not 

to draw definitive conclusions relative to this data set. Note 

in particular that, while similar, the ridge and jackknifed ridge 

estimates are somewhat different. In addition, both of these 

latter two estinators produce jackknife confidence intervals 

(using expressions (4.3)) which are shorter than least squares. 

In view of the simulation results in Section 5.1, it night be 

advisable to adjust these confidence intervals (not done here) 

by using a larger Student t critical point. If one uses 99% 

nominal coverage, the ridge confidence interval for the coeffi- 

cient of DENS includes the origin. 

Obviously a more complete analysis of this data set is needed 

in order to resolve questions which remain about influential observa- 

tions and the significance of the predictor variables. Any thorough 



analysis  must incorporate p r io r  knowledge about the  regression 

coef f ic ien ts  and information concerning the intended use of the 

conclusions which a r e  to be drawn from the f i t t e d  model. These 

topics  a r e  beyond the scope of t h i s  paper; nevertheless,  t h i s  

example i l l u s t r a t e s  some important cha rac te r i s t i c s  of penalized 

l e a s t  squares diagnostics and' approximate inference procedures. 

6 .  CONCLUDING REMARKS 

The r e s u l t s  of t h i s  paper generalize l e a s t  squares regression 

diagnost ics  and ce r t a in  approximate inference procedures t o  a 

c l a s s  of (quadratic) penalized l e a s t  squares estimators f o r  l i n e a r  

models. Theorems 3.1 and 3.2 produce expressions f o r  deleted e s t i -  

mators and res iduals  which provide exact,  computationally e f f i c i e n t ,  

ca lcu la t ion  of quant i t ies  such a s  pseudo values and Studentized 

residuals .  These r e s u l t s  have wide applicat ion,  two spec i f i c  

i l l u s t r a t i o n s  being nonparametric estimation with smoothing sp l ines  

and r idge  regression. 

Much research remains t o  be conducted regarding the proper t ies  

and usage of the procedures proposed i n  t h i s  paper. For example, 

the jackknife confidence in t e rva l s  do not  achieve the nominal con- 

fidence l e v e l ,  although they a r e  well-known t o  be insens i t ive  t o  a 

var ie ty  of unimodal e r ro r  d is t r ibut ions .  Corrections fo r  the jacic- 

knife  such as those proposed i n  Hinkley (1977b, 1978) may a l l e v i a t e  

coverage d i f f i c u l t i e s  and the behavior of jackknife in t e rva l s  under 

nonnonnal e r r o r s  meri ts  fur ther  invest igat ion.  Likewise, the sensi- 

t i v i t y  of jackknife confidence i n t e m a l s  t o  the choice of X warrants 



further study. For instance, in the ridge regression example 

increasing X from 0.08 to 0.20 decreases the estimated standard 

errors of the individual coefficients behieen 5 percent (HIED) 

and 50 percent (AGDS). On the other hand, the Studentized 

2 
residuals and the estimator of a performed well in the simula- 

tion in Section 5.1. Sinilarly, the ridge regression diagnostics 

highlighted an important characteristic of the presence of Malta 

which could have been overlooked if only the least squares dia- 

gnos tics were examined. 
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Tables 

1. Summary Statis-tics for the Simulation 

2. Regression Diagnostics for GNF Data, Selected Observations 

3. Coefficient Estimates and Nominal 95% (Individual) Confidence 

Intervals 

Figure 

1. Typical Jackknife Confidence Intervals, Spline Simulation 



TABLE 1. Summary Statistics for the Simulation 

Empirical Confidence Empirical Significance Estimated 
Levels Levels Variance 

u Average Std. Error Average Std. Error Avg. MSE 



TABLE 2. Regress ion  Diagnos t i c s  f o r  GNP Data, S e l e c t e d  Observat ions  

Leas t  Squares  Ridge (A=. 08) 

Obsn. h . .  DFFITS . h . .  (.08) 
t [ j ~  

DFFITS . 

BARBADOS .238 -2.026 -1:131 .I37 -1.929 -.769 

CANADA .042 2.011 .419 .039 2.111 .423 

HONG KONG .511 -.lo7 -.lo9 .471 -.I38 -.I30 

I N D I A  .558 1.337 1.502 .507 ,903 .917 

JAPAN .049 -2.799 -.633 .046 -2.743 -.602 

LUXEMBOURG .084 2.356 .713 ,077 2.391 .690 

MALTA .688 1.506 2.236 .262 .426 .254 

SINGAPORE .632 .562 .736 .516 .632 .653 

TAIWAN .I78 -2.401 -1.119 .I29 -2.475 -.953 

U.S. ,490 .804 .787 .447 .951 .a55 



TABLE 3. Coefficient Estimates and Nominal 95% (Individual) 
Confidence Intervals 

Predictor Least Squares Ridge Regression Jackknifed 
Variable Estimates (X = .08) Ridge 

(a) Coefficient Estimates 

INFD 
pms 
DENS 
AGDS 
LIT 
HIED 

(b) Confidence Intervals 

IIGD (-3.012,- .729) (-2.218 ,-I. 326) (-2.142 ,-I. 250) 
PHYS (-1.192, 1.535) (- .524, .274) (- .286, .512) 
DENS (-4.718, 2.530) (- -767,- -053) (- .963,- .249) 
AGDS (-2.738, 4.462) (- .188, ,490) ( .114, .792) 
LIT ( .748 3.848) ( 1,408, 2.562) ( 1,586, 2.740) 
HIED ( .528, 2.380) ( .994, 1.828) ( 1.245, 2.079) 
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