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THE STABILIZED PROBABILITY PLOT

By John R. Michael

Department of Statistics, Southern Methodist University

SUMMARY

The stabilized probability plot or SP plot is introduced. An attractive
feature of the SP plot that enhances its interpretability is that the vari-
ances of the plotted points are approximately equal. This prompts the defini-
tion of a new and‘powerful goodness-of-fit statistic DSp which, analogous to
the standard Kolmogorov-Smirnov statistic D, is defined to be the maximum
deviation of the plotted points from their theoretical values. Using either
D or DSP it is shown how to construct acceptance regions for QQ, PP, .and SP
plots. Acceptance regions can help remove much of the subjectivity from the

interpretation of these probability plots.

Some Key Words: Goodness-of- fit; Graphical methods; Kolmogorov-Smirnov
statistic; Percent-Percent plot; Quantile-Quantile plot; Variance
stabilizing transformation.
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1. INTRODUCTION

Let y; S vy S vvv Sy, be the realization of an ordered random sample

of size n from the distribution F. A quantile-quantile plot or QQ plot for

a continuous hypothesized location-scale distribution FO{(y-u)/c} is construct-
ed by plotting each sample quantile y; versus a corresponding theoretical
standard quantile xi=FO-](ti), where t is an appropriate cumulative propor-

tion. We will choose t. = (i-.5)/n. Similarly, a percent-percent plot or PP

plot is constructed by plotting each probability-integral-transformed value
u, = FO{(yi-u)/c} versus theuniform quantile t,. If u and o are unknown, they
are replaced by maximum likelihood estimates. See Wilk & Gnanadesikan (1968)
for a discussion of QQ and PP plots.

A common occurrance with QQ plots is that certain points, determined by
F, are much more variable than others. For example, when F is normal the
points nearest the middle of the plot have the smallest variances. The
opposite is true for PP plots when FO = F, regardless of the form of F. A
transformation is now described which stabilizes the variances of the plotted
points. This enhances the interpretability of the plot and prompts the def-
inition of a new and powerful graphical goodness-of-fit test.

2. THE STABILIZED PROBABILITY PLOT

When F = FO and u and ¢ are known, M, can be regarded as the realization
of a uniform order statistic. |f parameters are efficiently estimated, this
is true asymptotically. The arc sine transformation can be used to stabilize
the variance of a uniform order statistic just as it does for a binomial
random variable.

-
Suppose we let S = (2/m)arcsin(U®) where U has the uniform (0,1) distri-

bution. Then the probability density function of S is given by (n/2)sin(ns)
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for 0 < s < 1. This distribution will be termed the sine distribution
since the density function is proportional to a half-cycle of a sine
wave. The sine distribution has the interesting property than its order
statistics have the same asymptotic variance: if S; <5, < ... < S is an
ordered random sample from the sine distribution, then as n+« and i/n > p
the asymptotic variance of nSi is 1/w2, independent of p.

The stabilized probability plot or SP plot is now defined as the
plot of each s,=(2/n) arcsin (ui%) versus r; = (2/7) arcsin (ti%)- If

F0 = F and u and o are known, r; is the mode of Si' Plotting formulas

are summarized in Table 1.

Table 1

Formulas for Constructing Probability Plots

type plot abcissa ordinate
0 x; = Fy 1(i-.5)/n} v;
PP t; = (i-.5)/n u; = FO{(yi-u)/c}

N r

(2/m)arcsin [[(i-.5)/n1?1s; = (2/m)arcsinlFE(y;-u)/o}]

3. A NEW GOODNESS-OF-FIT STATISTIC
The standard Kolmogorov-Smirnov statistic can be expressed as

D= max|t1—u1| + .5/n. Analogous to D we now define the statistic
1<i<n

DSp = max |ri-si|which can be used to test the hypothesis that F = F,.
T<i<n

Exact critical points for DS for testing a simple hypothesis were

computed using a recursive a1gor1zhm described by Noe (1972). These
critical points are given in Table 2 for selected values of n < 100.
Note the peculiar lack of monotonicity in n forvn < 3 and each o # .10.

For the composite case of normality with both u and o unknown, critical

points were estimated using Monte Carlo methods. For selected values of



TABLE 2

Critical Points For cm

p
Simple Test of Uniformity Composite Test of Normality

n 50 .25 =10 -05 01 < 250 25 =10 -05 =01

] .167 .270 .356 .399 455

2 .198 .273 .353 .4o6 495

3 .195 .260 .333 .377 46 143 .212 .249 .261 271

4 .188 .248 311 .351 430 164 .208 242 272 .316

5 .180 .235 .292 .329 .403 .104 .129 . 154 .168 .198

6 173 .224 .277 .31 .380 .102 .126 .149 .163 .193

7 .167 .215 .264 .296 .361 .099 .122 144 .158 .188

8 161 .206 .252 .283 .3h4 .097 119 .140 .154 .182

9 .156 .198 242 271 .330 .095 116 .136 . 149 177
10 .152 .192 .233 .261 317 .093 113 .132 . 145 172
11 147 .186 .226 .252 .306 .091 .110 .129 RS .167
12 143 .180 .218 244 .296 .090 .108 .126 .138 .163
13 140 .175 212 .236 .286 .088 .106 .123 .135 .159
14 .137 .170 .206 .230 .278 .086 .104 .120 .132 .156
15 .133 .166 .201 .224 .270 .085 .102 .118 .129 .152
16 L131 .162 .196 218 .263 .083 .100 .116 127 .149
17 .128 .159 191 .213 .257 .082 .098 14 124 146
18 .125 .155 .187 .208 .251 .081 .096 112 .122 . 1h4
19 .123 .152 .183 .203 .245 .080 .095 .110 .120 L4
20 121 .149 .179 .199 .240 .079 .093 .108 .118 .139
21 119 146 .176 .195 .235 .078 .092 .107 17 .137
22 17 144 172 191 .230 .077 .091 .105 .115 .135
23 .115 L4 .169 .188 .226 .076 .089 .104 113 .133
24 113 .139 .166 . 185 .222 .075 .088 .102 112 131
25 11 .137 . 164 .181 217 .074 .087 .101 110 .129
30 104 .127 .152 .168 .201 .070 .082 .095 .104 .122
35 .098 .120 142 .157 .188 .066 .078 .090 .098 .115
Lo .093 13 .134 . 148 177 .064 .075 .086 .094 .110
45 .089 .108 .128 R .168 .061 .072 .083 .090 .106
50 .085 .103 122 134 .160 .059 .069 .080 .087 .102
60 .079 .095 113 124 . 148 .055 .065 .075 .082 .096
70 .074 .089 .105 .116 .137 .052 .062 .071 .077 .091
80 .070 .084 .099 .109 .129 .050 .059 .068 .074 .087
90 .067 .080 .097 .103 .122 .0L48 .056 .065 .070 .084
100 .064 .076 .090 .098 .116 .046 .054 .062 .068 .081



n < 100, 10,000 independent samples were generated, the statistic DSP calcu-
lated, and the appropriate sample quantiles recorded. Estimated critical
points, smoothed for n > 5, are also given in Table 2.

L. ACCEPTANCE REGIONS USING D AND DSp

Both D and DS measure the maximum deviation of plotted points from
their theoretical values. Therefore acceptance regions are easily constructed
using the appropriate critical points. Formulas are given in Table 3 for
three types of plots for each of the two statistics. Of coufse for a partiu-
lar statistic the tests provided by the three acceptance regions are equivalent.
One can perform a graphical goodness-of-fit test at the a-level of significance
by simply looking to see if all the points fall inside the 100(1-a)% acceptance
region.

TABLE 3

Formulas for Constructing 100(1-a)% Acceptance Regions on Probability Plots
Using ao-level Critical Points d and dSp for D and Dsp’ Respectively

type plot statistic lines defining acceptance region
a D y =+ o Fy{Fy(x) £ (d = .5/n)}
PP D u=ti(d--5/n).
Sp D s = (’,}2/1r)arcsin[{s.in2(1rr‘/2) + (d-.5/n) Y]
QQ D | =+ F—1(sinz[arcqin{F%(x)}+wd /21)
sp y=u 0 ; 0\ =""sp
L2 sy |
PP Dep u = sin“{arcsin(t®) + ndsp/2}
SP s=r+d

Dsp — "sp
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5. POWER COMPARISONS

The power comparisons here parallel those reported by Stephens (1974).
For testing a simple null hypothesis at the .10 level of significance, exact
power for D and Dsp was computed using the recursive algorithm of Noe (1972).
Following Stephens (1974), three families of alternative distributions were
chosen, denoted A, B, and C, each parameterized by k. For k = 1 each distri-
bution is uniform and as k increases each distribution becomes increasingly
"monuniform'". For k > | family A has more probability near 0 than the uniform
distribution, B has more probability near .5, and C has more probability near
0 and 1,

Percentage power is shown in Table & for D and Dsp for three choices of
k and three different sample sizes. For D the critical points .369, .265,
and .189 were adapted from Miller (1956). For DSp the critical points .233,
.179, and .13k were taken from Table 2. Compared to D, the performance of
Dsp is slightly better for family A, much better for family B, and somewhat
worse for family C. The power figures for Dsp can also be compared to those
for other statistics reported by Stephens (1974) in his Table 3. The power
of DSp is relatively good for families A and B, but poor for family C. Thus
when testing a simple null hypothesis the statistic DSp is an improvement over
D, but not as good overall as, say, the Watson statistic U2 as reported by
Stephens (197h4). The disadvantage of a statistic such as U2 is that its

acceptance region cannot be represented graphically on a probability plot.
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TABLE 4

Percentage Power When Testing For Uniformity On The

Unit Interval: o = .10

n=10 n=20 n=40

family k D Dsp D Dsp D Dsp
1.5 25 26 Lo 43 66 68

A 2.0 53 55 81 83 98 99
3.0 90 91 100 100 - 100 100

1.5 9 14 13 27 23 L9

B 2.0 12 24 27 56 60 91
3.0 24 50 67 93 -~ 99 100

1.5 19 16 25 19 36 27

C 2.0 31 27 46 39 73 65
3.0 53 51 82 78 99 98

For testing the composite hypothesis of normality at the .05 level of
significance with both p and ¢ unknown, power was estimated using Monte
Carlo methods. Percentage power is shown in Table 5 for twelve alternative
distributions and three different sample sizes. For D the critical points
.262, .192, and .159 were calculated from Stephens (1974). For DSP the
critical points .145, .118, and .104 were taken from Table 2. Each pair
of entries for D and Dsp in Table 5 is based on a different set of 1000
independent samples and represents the percentage of samples that were
observed to be significant. |In most instances DSp can be seen to be more
powerful than D. The power figures for DSp can be compared to those of
other statistics reported by Stephens (1974) in his Table 5. The sta-
tistic Dsp is bettered only by the Anderson-Darling Statistic A2 and the
Shapiro-Wilk statistic W. Even in these cases the differences in power
are not great. Again the reader is reminded that the acceptance regions
for statistics such as A2 and W cannot be represented graphically on a

probability plot.
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TABLE 5

Estimated Percentage Power when Testing for
Normality; u and ¢ Unknown; o = .05

n=10 n=20 n=30
Distribution D D D D D D

sp sp sp
Chi-squared (1) 58 65 89 99 98 100
Exponential 33 35 60 81 80 98
Chi-squared (3) 25 24 ) 61 61 85
Chi-squared (4) 20 20 32 45 48 73
Chi-squared (10) 12 11 16 18 23 30
Lognormal L7 L8 79 91 93 99
Uniform 8 7 - 14 15 22
Laplace 13 13 20 23 30 31
Student-t (1) 59 60 86 87 93 93
Student-t (3) 19 18 27 31 35 38
Student-t (4) 12 13 17 20 19 22
Student-t (6) 9 9 9 11 11 14

6. AN ILLUSTRATION WITH DISCUSSION

We now illustrate the different types of plots and acceptance regions
using a sample of size 20 to test the composite null hypothesis of normality.
The actual sample values are 2.6, 2.7, 2.9, 3.0, 3.0, 3.1, 3.2, 3.4, 3.7, 3.7, 3.9,
Lo, 4.2, 4.3, 4.3, 4.8, 4.8, 5.3, 6.6, and 7.6. The maximum likelihood esti-
mates for u and o are 4.055 and 1.259 respectively. Figure 1 shows QQ, PP,
and SP plots of the data along with 95 percent acceptance regions using both
D and Dsp'

The sample was selected from one of several samples simulated from the
exponential distribution with location and scale parameters 2.5 and 1.0
respectively. Thus the correct decision here is to reject the hypothesis
of normality. Note that we can indeed reject the null hypothesis at the
.05 level of significance if we use Dsp’ but we cannot do so if we use D.

This illustrates the increase in power over D that DSp provides when testing
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an exponential distribution for normality. From Table 5 in-the previous section
we see that the estimated percentage powers for D and Dsp in this situation
are 60 and 81 respectively.

The SP plot and the PP plot share many desirable features. The abcissas
of the points depend only upon the sample size and not upon the hypothesized
distribution. The points always fall within the unit square and are never
bunched closely together as with QQ plots for certain distributions. Plots
using different hypothesized distributions can be juxtaposed and the fits
easily compared. Once familiar with SP or PP plots, the user need not reorient
himself to plots that appear markedly different for different distributions,
as can QQ plots.

The SP plot enjoys two advantages over traditional probability plots.
The SP plot is easier to interpret since the variances of the ordinates
are approximately equal. Also, the acceptance region based upon Dsp can
be added to the plot by simply drawing two straight lines. Alternatively,
the observed value of Dsp can be read directly from the plot.

7. RELATED METHODS

It is well known that the standard Kolmogorov-Smirnov statistic D for
testing a simple null hypothesis can be used to construct a distribution-
free confidence band for F. Letting d be the a-level critical point and
Fn be the familiar empirical cumulative distribution function, then a
100(1-a)% confidence band for F is given by F *d. Note that such a
confidence band is different in nature from the acceptance regions for
probability plots discussed in Section 4, although there is a corre--

spondence: the confidence band contains F, if and only if the acceptance

0
region contains all the plotted points. Bickel & Doksum (1977, page 383)
discuss this technique and its extension to the case of the normal distri-

bution with unspecified parameters. Iman (1982) constructs acceptance
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