Constraints And Best Use Practice:

The Importance Of Texas Geothermal Electrical Energy Production

“Like A Phoenix Rising From Its Ashes”

Richard J. Erdlac, Jr.
The University of Texas of the Permian Basin
Center for Energy & Economic Diversification

Which well is for natural gas?
Which well is for geothermal?
* DOE grant of $194,458 to study deep Permian Basin geothermal energy (part of an anticipated 3-year Congressional appropriation) (#DE-FG36-05GO85023).

* State Energy Conservation Office grant of $40,000 to help study deep Permian Basin geothermal energy and to develop a state-wide geothermal program (#CM540).

In Texas, peak oil and gas hit in 1972.

“Your system is perfectly designed to give you the results you’re getting”.

W. Edwards Deming
U.S. Energy Usage –– Up...and UP!

Automotives – 9 million Bbl/ day
Trucks, Heavy Machinery, Power Plants – 11 million Bbl/ day

1 Petroleum products supplied is used as an approximation for consumption.

2 Crude oil and natural gas plant liquids production
World Oil Supply & Demand Are Close

So what of the future... for the oil and gas industry?
Yes, Virginia, there is a...
Geothermal Energy Industry Constraints

Only Three Variables Control All Constraints

<table>
<thead>
<tr>
<th>CONSTRAINTS TO GEOTHERMAL DEVELOPMENT</th>
<th>Natural (Geological / Geographical)</th>
<th>Technical</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>Landforms/Geography/Geology</td>
<td>Drilling (techniques-horizontal, radial patterns)</td>
<td>Economics (cost vs. profit; drilling costs)</td>
</tr>
<tr>
<td>Subsurface</td>
<td>Heat Resource Available</td>
<td>Heat Acquisition Methodologies</td>
<td>Perception</td>
</tr>
<tr>
<td></td>
<td>Reservoir Characteristics</td>
<td>Environmental Concerns (toxic & nontoxic minerals)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water as Transfer/Storage Agent</td>
<td>Data acquisition</td>
<td>Transmission</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Information/Technology Transfer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Politics (gov., people [advocacy groups])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ownership</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resource Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research</td>
<td></td>
</tr>
</tbody>
</table>
Many of these constraints do not exist in the Texas oil and gas industry.
Natural Variable

Surface – a non-issue; land very accessible.

Subsurface –
 ✓ Heat resource – known from O&G data.
 ✓ Reservoir characteristics – known from O&G data.
 ✓ Water availability – known from O&G data; total amount unknown as industry does not perforate wells for the purpose of producing water.

This knowledge greatly reduces risk for geothermal development as well as total cost.
Drilling – involved with pioneering oil/gas drilling techniques; nothing new needed for geothermal.

Pinnate drainage pattern horizontal drilling system pioneered by CDX Gas LLC for coal-bed methane extraction.

Joint venture between the DOE, NovaTek Engineering, and Grant Prideco. Decreases deep drilling time & cost through real time data transfer. Provide pipe and links. Twice cost of normal pipe. Size: 5”, 5 7/8”.
Heat acquisition – O&G industry knows how to move water, but will need to learn to generate electricity.

Ormat

And if Kinder Morgan can generate electricity at the Sac Rock field, so can other companies.

UTC Power

AND.....

PureCycle™ 200
200 kW net range
It Has Already Been Proven Once!

Sept 1989 - May 1990: Brazoria County, Texas

- Three heat exchangers at Pleasant Bayou
- Condensers at Pleasant Bayou
- Fire protection system at Pleasant Bayou

Comparison:
- Minimum rating 1.191
- Binary Cycle Turbine 541 kW
- Gas Engine 650 kW
- Parasitic Load -209 kW
- Capacity factor 80.2%
- (3-day plant outage & 4-wk turbine outage)
- Plant availability 97.5%

Compare with Ormat heat exchangers, Imperial Valley Geothermal
Environmental – O&G biggest problems have been solved through chemical inhibitors; highly toxic mineralization not of concern.

Data – huge amounts of subsurface data regarding temperature, seismic, porosity, permeability, reservoir imaging, etc. are all important for heat extraction.
Human Variable

Perception – O&G industry must think of hot water as an energy asset, not as a production liability; biggest hurdle to overcome.

- Waste water storage.
- Pit liner for produced water.
- Oil field water hauling.
Transmission – a huge infrastructure for transmission already exists. Transmission right of ways are important to maintain. Many existing right-of-ways may eventually double as electrical right-of-ways.

Electrical right-of-ways within existing oil fields can send electricity out.
It Is Time To Define Best Use Practice For Energy Resources

Oil, Gas, Coal, Nuclear, Biomass

Storable/Transportable Energy Resources

Use these for electricity...

Wind, Solar, Geothermal, Tidal, Hydroelectric

Non-Storable/Non-Transportable Energy Resources

Not these.

Oil, Gas, Coal, Biomass

Solid Energy Used For Product Development
Embrace A New Energy Future!

It Is Time!

Oil and Gas was derived from Geothermal heat.

You don’t find oil/gas unless you put the drill bit into the ground.

An oil – gas – geothermal triad gives added economic incentive to drill.

You can’t just think outside box. . . You must do outside the box.

“The future of the Texas oil and gas industry is tied to The future of a Texas geothermal industry.”