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Simulation of the SuperSAR Multi-Azimuth
Synthetic Aperture Radar Imaging System for
Precise Measurement of Three-Dimensional
Earth Surface Displacement
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Abstract—The SuperSAR imaging system, a novel multi-
azimuth synthetic aperture radar (SAR) system capable of detect-
ing Earth surface deformation in three dimensions from a single
satellite platform, has recently been proposed. In this paper, we
investigate the feasibility of detecting precise 3-D surface displace-
ment measurements with the SuperSAR imaging system using
a point target simulation. From this simulation, we establish
both a relationship between the interferometric SAR phase and
the across-track displacement and a relationship between the
multiple-aperture interferometry phase and the along-track dis-
placement based on the SuperSAR imaging geometry. The theo-
retical uncertainties of the SuperSAR measurement are analyzed
in the across- and along-track directions, and the theoretical ac-
curacy of the 3-D displacement measurement from the SuperSAR
system is also investigated according to both the decorrelation and
the squint and look angles. In the case that the interferometric
coherence is about 0.8 and that five effective looks are employed,
the theoretical 2-D measurement precision values are about 3.67
and 6.35 mm in the across- and along-track directions, respec-
tively, and the theoretical 3-D measurement precision values for
3-D displacement are about 4.05, 4.56, and 3.45 mm in the east,
north, and up directions, respectively. The result of this study
demonstrates that the SuperSAR imaging system is capable of
measuring the 3-D surface displacement in all directions with
subcentimeter precision.

Index Terms—Interferometric synthetic aperture radar
(InSAR), multiple-aperture interferometry (MAI), squint SAR,
SuperSAR.
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I. INTRODUCTION

S YNTHETIC aperture radar (SAR) interferometry (InSAR)
is a powerful technique for mapping Earth surface dis-
placements with meter- to decameter-scale spatial resolution
and with millimeter to centimeter measurement accuracy over
large areas (up to thousands of square kilometers). The InSAR
method has been successfully used for investigating many
signals of Earth surface deformation, including earthquakes
[1]-[3], volcanic activities [4]—[8], landslides [9]-[11], ground
subsidence [12]-[15], and glacier ice estimation [16]-[18].
However, the InSAR imaging geometry is allowed to only mea-
sure surface displacements in the line-of-sight (LOS) direction,
which is toward or away from the satellite.

The combination of multiple InSAR measurements from
ascending and descending orbits enables us to retrieve 2-D
displacements composed of both the ground range and up
components but cannot measure the along-track component.
For this reason, it is almost impossible for this method to
measure a precise 3-D surface displacement. The measurement
of 3-D surface displacement is essential for resolving model
parameters from earthquakes and volcanic activity, but neither
the conventional InSAR nor its combination methods can re-
solve the model parameters because there is a marked tradeoff
among the model parameters [4], [19].

Attempts to retrieve 3-D surface displacement data have in-
cluded the following methods using 1) azimuth offset fields cre-
ated by cross correlation of SAR amplitude images [20]-[23],
2) interferograms with different viewing geometries (ascending
and descending, left and right looking, different look angles)
[19], [24], and 3) a combination of the InSAR and Global Posi-
tioning System measurements [25]-[29]. The former method is
more suitable for estimating the north component of large dis-
placements that cause a significant decorrelation in the InSAR
technique rather than small displacements. The latter technique
also has largely reduced accuracy in the north component
at most areas except the polar regions because conventional
interferograms are created by using data acquired on near-polar
orbiting satellites. This issue results from the inherent difficulty
of measuring displacements in the along-track direction.

Bechor and Zebker [30] have developed a multiple-aperture
SAR interferometry (MAI) technique that achieves remarkable
improvement in along-track displacement measurements. This
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Fig. 1. SuperSAR imaging geometry. The SuperSAR system is an L-band
ScanSAR that can simultaneously acquire two SAR images from forward- and
backward-looking beams.

method can measure the along-track displacement with
measurement accuracy of several centimeters using a MAI in-
terferogram created by the forward- and backward-looking in-
terferograms using sub-aperture InSAR processing. Jung et al.
[31]-[33] have proposed a further improved method of MAI
processing, which is designed to enhance interferometric co-
herence and correct phase contributions from the flat-Earth
and topographic effects. The phase contributions are caused
by the perpendicular baseline difference between forward- and
backward-looking interferograms. This MAI method has been
successfully combined with conventional InNSAR methods to
retrieve a 3-D surface deformation. In addition, this method
has been used to correct an ionosphere-distorted SAR interfer-
ogram [34], [35].

Although centimeter-level accuracy can be achieved by the
MALI technique, it is much lower than the millimeter-level ac-
curacy of the conventional InSAR. The discrepancy of accuracy
values between LOS and along-track displacements measured
from InSAR and MAI methods is not allowed to retrieve perfect
3-D surface displacements. To surmount this limitation, the
SuperSAR imaging system has been proposed, which is a
novel multi-azimuth SAR system that is capable of detecting
Earth surface deformation in three dimensions [36], [37]. Using
InSAR and MALI, this system is capable of simultaneously
measuring surface displacement perpendicular and parallel, re-
spectively, to the satellite ground track. As shown in Fig. 1, the
SuperSAR system can obtain forward- and backward-looking
SAR images simultaneously. Thus, key elements in the design
of the sensor are to generate multiple beam, which is achieved
through phased-array antenna. SuperSAR is an L-band
ScanSAR system having the wavelength of about 23.8 cm and
acquires the VV- and HH-polarized SAR images from forward-
and backward-looking beams, respectively. Thus, the phase
center of each polarization would not be different because each
beam does not illuminate the same scatterer. The incidence
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angle of SuperSAR are in the range of about 30° and 50°,
and the squint angles of SuperSAR are in about 30° and —30°
in forward- and backward-looking directions, respectively. The
revisit time of the SuperSAR system is 13 days. In order to
monitor all actively deforming regions, the importance of ob-
taining measurements in three dimensions has been highlighted.
Only SuperSAR system has the ability to achieve 1 mm/year
accuracy over 100 km in all three dimensions after five years
of observation [37]. Consequently, the SuperSAR is allowed to
map strain accumulating around faults that are responsible for
95% of damaging onshore earthquakes.

In this paper, we simulate the SuperSAR imaging system
for performance analysis of 3-D surface displacement mea-
surement. For the mathematical derivations of the SuperSAR
measurements, we establish the following: a relationship be-
tween the InSAR phase and the across-track displacement and
a relationship between the MAI phase and the along-track dis-
placement from the SuperSAR imaging geometry. Moreover,
the theoretical uncertainties of the SuperSAR measurement are
analyzed in the across- and along-track directions, and the
theoretical accuracy of 3-D displacement measurement from
the SuperSAR system is also investigated according to both the
decorrelation and the squint and look angles. For analysis of the
SuperSAR system measurement performance, the raw data are
simulated to provide a static point target. From this simulation,
it is demonstrated that the SuperSAR imaging system can
measure 2-D and 3-D surface displacements with subcentimeter
precision in all directions.

II. METHODS

The SuperSAR is a novel multi-azimuth SAR system that is
able to detect precise Earth surface deformation in three dimen-
sions. This system can obtain forward- and backward-looking
SAR images simultaneously from the squint angles of about 30°
and —30°. On the contrary, the conventional SAR systems get
a single SAR image, and then, the forward- and backward-
looking SAR images are generated by means of split-beam SAR
processing. Hence, its squint angle is very small, and the mea-
sured surface displacement parallel to the satellite ground track
has very low accuracy compared with the one perpendicular to the
satellite ground track. Unlike the conventional SAR systems, the
SuperSAR system can measure precise surface displacements
perpendicular and parallel to the satellite ground track simulta-
neously due to the large difference between the squint angles
of the forward- and backward-looking SAR images.

In this section, we establish 1) a relationship between the
InSAR phase and the across-track displacement and 2) a re-
lationship between the MAI phase and the along-track dis-
placement from the SuperSAR imaging geometry. Additionally,
theoretical measurement uncertainties of the across- and along-
track displacements are analyzed. Moreover, the theoretical
accuracy of the 3-D displacement measurement is derived with
respect to both the decorrelation and the squint and look angles.

A. Point Scatterer Response for Squint-Mode SAR

The response from a static point scatterer located at slant range
rs and azimuth time ¢ = 0 for an azimuth antenna weighting
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Fig. 2. Squint SAR data acquisition geometry for the SuperSAR imaging
system.

a(-) with transmitted signal envelope so(:) is given by the
following equation [38], [39]:

23@”)

s(m,t;1s) = alt;rs) - so (7’ -
c

exp <_z-4;R(t;rs)) (1)

where t is the time along the radar flight path, 7 is the delay
time in the slant-range direction, c is the speed of light, and A
is the radar wavelength (see Fig. 2). The transmitted signal is

so (7= L) — e lm (7- 23(”” @

Cc c

where k is the chirp slope, and the time-varying distance from
the radar to the scatterer is given by

R(t;1s) = /12 + V(re)2t2 — 2,V (ry)tsiny(ry)  (3)

where V(r;) and v(rs) are the range-dependent effective plat-
form velocity and squint angle, respectively (see Fig. 2).

Using a Taylor expansion, the slant-range distance can be
approximated by

V(rs)? cos? y(rs) ﬁ

R(t;rs) mrs — V(rs)siny(rs) -t + r

2
“4)

The phase of the return signal can then be written as follows:

6(t) = exp (—i4)7\rR(t; rs))

e d it
= exp § —i—Ts

% exp {m <2V(r>sm(r> o

A
2V (rs)?cos? y(ry) t2
)
o Am ) £2
= exp{—z/\rs}exp{z%r (fDC(TS) b+ fr(rs) - 2)}
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Fig. 3. Variation in the slant-range distance with respect to the across-track
displacement (Ar) and the along-track displacement (Ax).

where fpc is the Doppler centroid, and fr is the Doppler rate.
Based on (5), we can define the squint angle from the Doppler
centroid as follows:

~(rs) =sin”! < A

2V (rs)

ch(Ts)) ~ (6)

The azimuth resolution R, is defined from (5) as

l
2 cos? v

~
~

(N

az

where [ is the effective azimuth antenna length.

B. Measurement of 2-D Displacement

Fig. 3 shows the across-track (Ar) and along-track
(Az) components of the slant-range displacement from the
SuperSAR forward-looking data acquisition geometry. As
shown in Fig. 3(a), slant-range distance 7s(Ar) [including the
across-track displacement (Ar)] can be defined using the law
of cosines and is given by

Fo(AT) = /72 + Ar2 + 2A7 - 1, COS 7. (8)
The Taylor expansion of (8) is

sin? 5

Ts(Ar) =rs + cosy - Ar + (AP +- . (9)

Ts
For the SuperSAR system, the value of sin?v/r, is 3.94 x
1077 m~! when v =30°. and r; = 635 km. Thus, we can
assume sin?~v/r, ~ 0, and then, 74(Ar) can be approxi-
mated as

Ts(Ar) = s+ cosy - Ar. (10)

Slant-range distance 7;(Ax) [including the along-track dis-

placement (Az)] can also be approximated as follows [as

shown in Fig. 3(b)]:

7s(Az) =1y +siny - Ax (11)

where the approximation enables us to assume cos®y/rs =

1.2 x 1075 m~! as zero. Obtained from the squint SAR geom-
etry, interferometric phase A¢ can be defined by

4

A¢ = —; (s —74) (12)

where r, and T4 are the slant-range distances of the master

and slave SAR acquisitions, respectively. If the across- and
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along-track components of the slant-range displacement are
assumed, A¢ can be rewritten as
47 .
Agp = 7(6p+Arcosv+Axsmfy) (13)
where dp is the slant-range difference caused by the baseline B
defined as [40]
0p=—Bsin (0 — a) (14)
where B is the baseline, and 6 and « are the look angle and
baseline orientation, respectively. d p relates to the flat-Earth and
topographic phases.
Phases A¢; and A¢y, of the forward- and backward-looking
interferograms can be defined as

Apy = 4; [-Bysin(0y — ay) + Arcosyy + Az sinyy]
(15)
Ady = 47” [~(By + AB) -sin(0; — ay + A0 — Aa)
+ Arcosyp + Az sin ) (16)

where By, 0, oy, and ¢ are the baseline, look angle, baseline
orientation, and squint angle of forward-looking acquisition,
respectively; 3 is the squint angle of backward-looking acqui-
sition; and A B, A6, and A« are the differences in the baseline,
look angle, and baseline orientation, respectively, between the
forward- and backward-looking pairs. For spaceborne SAR
systems, if the absolute values of the Doppler centroids for
the forward- and backward-looking acquisitions are similar,
the look-angle difference would be small; consequently, |A§ —
Acq| is negligible. A¢y, can then be approximated as

Ay = 4777 [= (By + AB) - sin (05 — ay)

+Arcosvy, + Azxsiny] . (17)

InSAR phase ¢rusar is defined by adding the phases of the
forward- and backward-looking interferograms, as given by
Ay + Ady

2

4 AB

2 (- A2 )ty

Ar(cosys+cosyy)
+ 2 2

PISAR =

Ax(sin vy +siny)

(18)

If the absolute values of the Doppler centroids for the
forward- and backward-looking acquisitions are similar, vy +
v, will be approximately 0, and phase ¢r,sar can then be
approximated as

47 ABY\ .
PISAR ~ BY { — (Bf + 2) sin (0 — ay)

+ Arcos (W) ] (19)
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After correcting the flat-Earth and topographic phases for the
baseline and baseline difference, across-track displacement Ar
can be defined by

Ay — A PInSAR 20)
- 4
o8 ( ot _ o0 ) T
and rewritten as
Ar=), - DInSAR 21

47

where \; is the adjusted radar wavelength, which is defined
using (6) as follows:

A
A= ——2 @2
L- 4A2, ncziop

where A,, is the azimuth cell spacing, which is defined as
V/PRF, where PRF is the pulse repetition frequency. nﬁop is
defined by

(23)

2 _
ndop = —TNdop, f - Ndop,b

where ngop, f and ngop,» are the Doppler ambiguity numbers of
forward- and backward-looking acquisitions, which are repre-
sented by real values (and not integers) and are defined as

Jocp
PRF

foa,s
PRF

Ndop,f = Ndop,b = (24)

MALI phase ¢\t can be defined by subtracting the phases of
the forward- and backward-looking interferograms, as given by

dMAL = Agy — Agy
_n

) [ABsin(0; — ay) + Ar(cosyy — cos )

+ Az(sinyy — sin %)} (25)

and approximated by
4
OMAT ~ Tﬂ [ABsin (65 — ay) + Az(sinyy —sin~y,)] .
(26)

After correcting the flat-Earth and topographic phases for the
baseline and baseline difference, the along-track displacement
can be defined as

Ag — A Pmar _ 2V ~ PmaAl
sinyp —siny, 47 foo,f — focy  4m
(27)
and can be rewritten using (4) as follows:
Ag =1, - PMAI (28)
2w

where [ is the adjusted synthetic antenna length for squint SAR
geometry, which is defined by

A,
Andop

(29)

S

where Angop is defined by ndep,f — Mdop,b-
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Fig. 4. Variation in the standard deviations of across- and along-track displacements with respect to decorrelation using squint angles of (a) 15°, (b) 30°, and
(c) 45°, where parameters of V' = 7589 m/s, PRF = 2300 Hz, and A = 23.79 cm are used.

C. Measurement Uncertainty of 2-D Displacement

Measurement uncertainty of the across-track displacement
(o) can be calculated from (21) as

As
47

o = 04, InSAR (30
where 04 1msar is the standard deviation of the SuperSAR’s
InSAR phase. The measurement uncertainty of the along-track

displacement (o) is also calculated from (28) and is given by

l

S
Oy = - * 0¢ MAI

o (€29

where o4 var is the standard deviation of the SuperSAR’s
MALI phase.

The standard deviations of o4 msar and oy nar can be
defined based on [31] as

1 /1-72

0, InSAR = N (32)
1 /1—+2
Op MAT ~ vo— T (33)

VNL

respectively, where Ny, is the effective number of looks for
forward- or backward-looking interferograms, and . is the
total correlation, which is defined in [41] as

Ve

_ |’Yspatial,temporal|

1+ SNR! 34

Ve
where SNR is the system’s signal-to-noise ratio.
The equivalent measurement uncertainty for across- and
along-track displacements can be computed by
As ls
— -0 n = — -0 .
Ip COISAR = oo 0 MAI
As defined by (32) and (33), the standard deviation of the
MALI phase is at least twice as large as the standard deviation of
the InSAR phase because of the effective number of looks [31].
Equation (35) can then be rewritten as

(35)

lo = Ao /4. (36)

Assuming that ngop, f = Tidop and Ndoep,b = —Tdop, (36) can
be rewritten using (22) and (29) as follows:
A AV
= =2——. 37
1= Az, P

To satisfy (36), gop is

Ay,
'Fldop:\[2 .

v
=V2——.
A \[)\-PRF

= (38)
The Doppler centroid for the equivalent measurement uncer-
tainty can then be defined as
- Vv
foc =2 T (39)

Consequently, the squint angle for equivalent measurement
uncertainty 7 is

(40)

This result means that the equivalent measurement uncer-
tainty of the across- and along-track displacements can be
achieved using forward- and backward-looking squint angles
of 45° and —45°, respectively. With respect to decorrelation and
squint angle, theoretical standard deviations of the across- and
along-track displacements are shown in Fig. 4. The standard
deviation of the along-track displacement is about four times
larger than the standard deviation of the across-track displace-
ment when a squint angle of 15° is used; conversely, the stan-
dard deviations of the along- and across-track displacements are
identical when the squint angle is 45°.

D. Measurement and Uncertainty in 3-D Displacement

Three-dimensional displacement can be retrieved by two
InSAR and two MALI phases obtained from two SuperSAR
images of ascending and descending pairs [4]. Following
the notation given in [19], let d = (dm,dy,dz)T be the 3-D
displacement vector in a local (east, north, up) reference
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Fig. 5. Variation in the standard deviations of the east, north, and up components of the 3-D displacement with respect to decorrelation using look angles of
(a)—(c) 30° and (d)—(f) 40°. For this calculation, system parameters of V' = 7589 m/s, PRF = 2300 Hz, A = 23.79 cm, and ¢ = —10 and —170° for ascending

and descending acquisitions, respectively, are used.

frame and u = (u, u,, u,)T be the unit across- or along-track
displacement vectors expressed in the same local reference
frame. If w is the along-track deformation vector, then u =
(—sin o, — cos a, 0) T, where « is the satellite track angle north
of the across-track vector; if « is the unit across-track defor-
mation vector, then u = (—sinf - cos, sin 6 - sin a, cos §) T,
where 0 is the radar incidence from vertical. The deformation r
measured from an InSAR or MAI is then given by
r=—uTd. (41)

Assuming we produce a total of two InSAR and two MAI ob-
servations, we then obtain R = (1,72, 73,74)T. The weighted

least squares solution (d ) for d is defined as follows:

5 -1
d=—(UTs,'U) - (UTSE'R) (42)
where X' is the covariance matrix for errors in the ob-
served displacement observations, and U is given by U =
(w1, u2,u3,us)T. The covariance matrix for the estimated vec-
tor components is
-1
.= (UTSR'U) . (43)
The square root of the diagonal terms of X, gives the
standard deviations in the estimates of the east, north, and up
components of the 3-D displacement.
Fig. 5 shows the theoretical standard deviation of the 3-D
displacement in the east, north, and up directions with respect

to both the decorrelation and the squint and look angles.
The values in Fig. 5(a)—(f) are calculated from look angles
of 30° and 40°, respectively. Parameters of V = 7589 m/s,
PRF = 2300 Hz, A = 23.79 cm, and o« = —10 and —170° for
ascending and descending acquisitions, respectively, are used.
The parameters are given by the L-band SuperSAR system.
The measurement uncertainty for the north component is larger
than the measurement uncertainty for the east component when
the squint angle is 15°, whereas the measurement uncertainty
is smaller for the north than for the east component when
the squint angle is 45°, as shown in Fig. 5. Generally, the
measurement of the vertical component is more precise than the
measurement of the horizontal component. When a squint angle
of 30° is imposed, the precision of the vertical component is
about 1.7 times more precise than the precision of the horizontal
component, whereas the precision values of the east and north
components in the horizontal direction are almost identical.
The findings mean that a squint angle of 30° is recommended
for obtaining the same precision values for the east and north
components in polar-orbiting satellites. Moreover, it is not
relevant to the radar wavelength because both the across- and
along-track displacements are proportional to the wavelength,
as known in (20) and (28). Of course, if a shorter wavelength
(e.g., X- or C-band) is used for the SuperSAR system, the
measurement uncertainty must be lower than L-band. However,
expected problems would be temporal decorrelation. Therefore,
an L-band SAR sensor would be adequate for the SuperSAR
system in order to preserve low temporal decorrelation.
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TABLE I
SUPERSAR SYSTEM PARAMETERS USED FOR SIMULATION
Parameters Values
Pulse Duration Time (ps) 50.0
Chirp Bandwidth (MHz) 35
Sampling Frequency (MHz) 37.1
Pulse Repetition Frequency (Hz) 2300
Carrier Frequency (GHz) 1.260
Effective Azimuth Antenna
Dimension (m) 70
Satellite’s Altitude (km) 550
Satellite’s Velocity (m/s) 7589
Look Angle (deg.) 30
Squint Angle (deg.) 30
Ascending -10
Track angle (deg.)
Descending 190
Baseline (m) 0

Azimuth

(b)

Fig. 6. Simulated SAR raw data for a point target. (a) Forward-looking
acquisition. (b) Backward-looking acquisition.

III. SIMULATION RESULTS
A. Two-Dimensional Displacements

The measurement feasibility of the slant-range displacement
in across- and along-track directions has been tested using a
simulation of repeat-pass interferometric SuperSAR observa-
tions. For this simulation, two forward- and two backward-
looking raw signals have been simulated for a static point
target. The zero baseline is assumed to simplify the repeat-
pass SuperSAR imaging geometry. This simplification means
that the flat-Earth and topographic phases on the SuperSAR
interferograms can be ignored. Therefore, it can be assumed
that the SuperSAR interferometric phase results from surface

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 11, NOVEMBER 2015

0.1

0.08

0.06

0.04

0.02

Normalized Spectrum (%)

31,500 32,000 32,500 33,000
Doppler (Hz)

(@)
0.1

0.08

0.06

0.04

0.02

Normalized Spectrum (%)

-33,000 -32,500 -32,000 -31,500
Doppler (Hz)

(b)

Fig. 7. Normalized spectra of the simulated (a) forward- and (b) backward-
looking SAR raw data.
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case of normalized azimuth spectra for the simulated

deformation. The SuperSAR system parameters used in this
simulation are listed in Table I. This system can obtain forward-
and backward-looking SAR signals from two separate antennas
simultaneously.

Fig. 6 shows the simulated forward- and backward-looking
SAR raw data for a point target. The pixel sizes of the simulated
raw signals in the azimuth and range directions are 8780 and
5474, respectively. The range time delay between the first and
last azimuth lines for one target reaches about 3620 pixels
because of the large squint imaging geometry. The conventional
SAR focusing algorithm cannot be applied to an unmodified
high-squint-mode SAR system because this algorithm uses
some approximations. Although the conventional algorithm is
used, serious image degradation (such as defocusing) would
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Fig. 9. Simulated interferograms. (a) and (b) Forward- and backward-looking interferograms. (c) InSAR interferogram. (d) MAI interferogram. Across- and

along-track displacements of 3 cm are applied to this simulation.
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Fig. 10. Simulated interferograms. InSAR and MAI interferograms of (a) and (b) ascending orbit acquisitions (track angle of —10°) and (c) and (d) descending
orbit acquisitions (track angle of 190°). Ground surface displacements of 3, 3, and 2 cm in the east, north, and up directions are used for this simulation.

occur. This issue results from higher order range—azimuth
coupling terms and can be corrected using nonlinear frequency
modulation filtering or pulse methods [39]. The Doppler cen-
troids of the simulated forward- and backward-looking SAR
data are 32200 and —32200 Hz, respectively (see Fig. 7). Be-
cause the forward- and backward-looking single-look complex
(SLC) images are created from different portions of the Doppler
spectra, we cannot generate an interferogram from the SLC
images because these images do not have correlated spectral
contributions. However, the forward- and backward-looking
interferograms can be created from the forward- and backward-
looking repeat-pass interferometric pairs, respectively, only if
the interferometric pairs can preserve the correlated spectra.
These interferograms can be defined by the cross correlation
in the frequency domain between the master and slave SLC
images because these interferograms are created using complex
conjugate multiplication of the master SLC image with the
slave SLC image. This methodology means that the Fourier

transform of an interferogram is defined as a function of the
frequency shift. Therefore, the forward- and backward-looking
interferograms can preserve the correlated spectra, as shown
in Fig. 8.

The InSAR interferogram is produced by multiplying the
forward- and backward-looking interferograms, and the MAI
interferogram is produced using complex conjugate multiplica-
tion of the forward-looking interferogram with the backward-
looking interferogram. Consequently, the InSAR and MAI
interferograms can be defined by convolution and cross cor-
relation in the frequency domain between the forward- and
backward-looking interferograms, respectively. Because the
forward- and backward-looking interferograms can have the
aforementioned correlated spectral contributions, we can create
coherent InNSAR and MAI interferograms from the SuperSAR
images.

We have simulated four sets of SAR raw data for a point
object that has displacements of 3 cm in both the across- and
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Fig. 11. Ground displacement estimated from the simulated interferograms. (a) East component. (b) North component. (c) Up component.

along-track directions. The four SAR raw data sets are two
forward- and two backward-looking SLC images acquired
from the master and slave observations, respectively. These
simulations are conducted using the SuperSAR system para-
meters (see Table I). Fig. 9(a) and (b) presents the simulated
forward- and backward-looking interferograms, respectively,
and Fig. 9(c) and (d) displays InSAR and MALI interferograms
estimated from the forward- and backward-looking interfer-
ograms of Fig. 9(a) and (b), respectively. The adjusted radar
wavelength and azimuth antenna lengths are about 27.56 and
11.78 cm, which are calculated from (22) and (29), respectively.
The displacement-induced phases of forward- and backward-
looking interferograms are about 2.17 and 0.57 rad, respec-
tively. These phase values correspond to about 4.75 and 1.25 cm
in forward- and backward-looking LOS directions, respectively.
The InSAR and MALI interferometric phases are about 1.37
and 1.60 rad, respectively, and correspond to 3.0 cm in both
the across- and along-track displacements, respectively. This
correspondence means that the SuperSAR imaging system,
which is the forward- and backward-looking squint-mode SAR
system, can precisely measure the 2-D displacement from the
integration of the InSAR and MAI methods. Assuming
that the interferometric coherence is about 0.8, the theoretical
measurement precision values from (30) and (31) are about 3.67
and 6.35 mm in the across- and along-track directions, re-
spectively, when there are five effective looks. These precision
values might be further improved by a factor of about 2 in
both the across- and along-track directions, respectively, when
an adaptive filter, such as the Goldstein filter [42], is applied.
This result indicates that the SuperSAR imaging system could
enable us to measure the 2-D surface displacement with
subcentimeter precision.

B. Three-Dimensional Displacements

The measurement feasibility of the 3-D displacement has
been tested using the simulation of repeat-pass interferometric
SuperSAR observations from ascending and descending orbits.

Four SAR raw data sets for the ascending and descending orbit
acquisitions have been simulated. Track angles of —10° and 190°
are used for the ascending and descending orbit acquisitions, res-
pectively (see Table I). The east (dx), north (dy), and up (dz)
components of 3-D displacement used for the simulation are 3.0,
3.0, and 2.0 cm, respectively. Two InSAR and two MAI interfer-
ograms are simulated from the eight SAR raw data sets and are
used to determine the east, north, and up components of the 3-D
displacement vector using (42). Fig. 10 presents two InSAR and
two MAI interferograms created from eight simulated SAR raw
data sets. The estimated ascending InSAR and MAI phases are
about 0.00 and 1.30 rad, respectively. These phases correspond
to about 0.00 and 2.43 cm in the across- and along-track direc-
tions, respectively. The estimated descending InSAR and MAI
phases are about —1.34 and —1.85 rad, respectively. These
phases correspond to about —2.95 and —3.48 cm in the across-
and along-track directions of the descending orbit acquisition,
respectively. Fig. 11 shows the east, north, and up components
of the 3-D displacement vector determined from the integration
of the ascending and descending InSAR and MAI observations.
The east, north, and up components of the estimated 3-D dis-
placement are 3.00, 3.00, and 2.00 cm, respectively. Assuming
that the interferometric coherence is about 0.8, the theoretical
measurement precision values of the 3-D displacement are about
4.05, 4.56, and 3.45 mm in the east, north, and up directions,
respectively, when there are five effective looks. The precision
of the vertical component is better than the precision of the
horizontal component, but the precision values of the horizontal
component are quite similar in the east and north directions.
The precision values might be further improved in all directions
if an adaptive filter, such as the Goldstein filter, is applied.
Moreover, it is noted that the weighted least square adjustment
for the 3-D displacement measurement may not be necessary
because the measurement precision values in the across- and
along-track directions are very similar to each other. The results
indicate that the SuperSAR imaging system might enable us to
measure the 3-D surface displacement in all directions (east,
north, and up) with subcentimeter precision.
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IV. CONCLUSION

The MAI method has recently been developed, and this
method achieves a remarkable improvement in along-track
displacement measurements. This method can measure the
along-track displacement with measurement accuracy of sev-
eral centimeters. Despite the remarkable improvement resulting
from the MAI technique, the measurement uncertainty of the
along-track displacement is a few centimeters, which is almost
ten times lower than the measurement uncertainty of the LOS
displacement. Because of this difference between measurement
accuracy values for the along-track and LOS displacements, it
is difficult to perfectly retrieve information regarding 3-D sur-
face deformation. To surmount this limitation, the SuperSAR
imaging system has been proposed, and this system is a novel
multi-azimuth SAR system that is capable of detecting Earth
surface deformation in three dimensions.

In this paper, we investigate the feasibility of precise 3-D sur-
face displacement measurement from the SuperSAR imaging
system using a point target simulation. First, from the mathema-
tical derivations of the SuperSAR measurements, we establish
a relationship between the InSAR phase and the across-track
displacement and a relationship between the MAI phase and the
along-track displacement from the SuperSAR imaging geom-
etry. Moreover, the theoretical uncertainties of the SuperSAR
measurement are analyzed in the across- and along-track direc-
tions, and the theoretical accuracy of 3-D displacement mea-
surement from the SuperSAR system is also investigated with
respect to both the decorrelation and the squint and look angles.
Assuming that the interferometric coherence is about 0.8 and
that there are five effective looks, the theoretical 2-D measure-
ment precision values are about 3.67 and 6.35 mm in the across-
and along-track directions, respectively, and the theoretical 3-D
measurement precision values of the 3-D displacement are
about 4.05, 4.56, and 3.45 mm in the east, north, and up
directions, respectively. This result proves that the SuperSAR
imaging system is capable of measuring the 3-D surface dis-
placement in all directions with subcentimeter precision.
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