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C-band Radarsat-1 InSAR image shows water-level changes over the swamp forest in southeastern Louisiana between May 22 and June 15, 2003.
InSAR-derived water-level changes at the selected locations are compared with gauge readings.
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Radarsat-1 and ERS InSAR Analysis Over
Southeastern Coastal Louisiana: Implications

for Mapping Water-Level Changes
Beneath Swamp Forests
Zhong Lu, Senior Member, IEEE, and Oh-ig Kwoun

Abstract—Detailed analysis of C-band European Remote
Sensing 1 and 2 (ERS-1/ERS-2) and Radarsat-1 interferometric
synthetic aperture radar (InSAR) imagery was conducted to study
water-level changes of coastal wetlands of southeastern Louisiana.
Radar backscattering and InSAR coherence suggest that the domi-
nant radar backscattering mechanism for swamp forest and saline
marsh is double-bounce backscattering, implying that InSAR
images can be used to estimate water-level changes with unprece-
dented spatial details. On the one hand, InSAR images suggest
that water-level changes over the study site can be dynamic and
spatially heterogeneous and cannot be represented by readings
from sparsely distributed gauge stations. On the other hand,
InSAR phase measurements are disconnected by structures and
other barriers and require absolute water-level measurements
from gauge stations or other sources to convert InSAR phase
values to absolute water-level changes.

Index Terms—Forestry, hydrology, interferometry, scattering,
synthetic aperture radar (SAR), vegetation, water.

I. INTRODUCTION

W ETLANDS cover more than 4% of the Earth’s land
surface and include hydrologic and other processes

that are fundamental to understanding ecological and climatic
changes [1]–[4]. Measurement of changes in water level over
wetlands and, consequently, of changes in water-storage capac-
ity, provides a governing parameter in hydrologic models and
is required for comprehensive assessment of flood hazards [5].
Inaccurate knowledge of floodplain storage capacity in wet-
lands can lead to significant errors in hydrologic simulation and
modeling. In situ measurement of water levels over wetlands
is cost-prohibitive, and insufficient coverage of stage recording
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instruments results in poorly constrained estimates of the water-
storage capacity of wetlands. With frequent coverage over wide
areas, satellite sensors may provide a cost-effective tool for
accurate measurements of water storage.

Synthetic aperture radar (SAR) is an active microwave sensor
with all-weather day and night operational imaging capability.
The amplitude (or intensity) of the SAR backscattering signal
is sensitive to terrain slope, surface roughness, and dielectric
constant, and has been used in characterizing wetland types,
conditions, and flooding [6]–[10]. The phase of the SAR
backscattering signal is related to the apparent distance from the
satellite to ground resolution elements as well as the interaction
between radar waves and scatterers within a resolution element
of the imaged area.

Interferometric SAR (InSAR) combines phase information
to produce an interferogram from two or more radar images of
the same area acquired from similar vantage points at different
times. The interferogram depicts range changes between the
radar and the ground, and can be further processed with a
digital elevation model (DEM) to produce an image of ground
deformation at a horizontal resolution of tens of meters over
areas of ∼100 km × 100 km, with centimeter to subcentimeter
vertical precision under favorable conditions [11], [12].

Alsdorf et al. [13], [14] found that interferometric analysis
of L-band (wavelength of ∼24 cm) Shuttle Imaging Radar-C
and Japanese Earth Resources Satellite (JERS-1) SAR im-
agery can yield centimeter-scale measurements of water-level
changes throughout inundated floodplain vegetation. Their
work confirmed that scattering elements for L-band radar
consist primarily of the water surface and vegetation trunks,
which allows double-bounce backscattering returns (i.e., the
radar signal is initially reflected away from the sensor by the
water’s surface, toward a tree bole or other vertical struc-
ture and is then directly reflected toward the sensor). Later,
Wdowinski et al. [15] applied L-band JERS-1 images to study
water-level changes over the Everglades in Florida. All of
these studies rely on this common understanding: Flooded
forests permit double-bounce returns of L-band radar pulses,
thus allowing InSAR coherence (a parameter quantifying the
degree of changes in backscattering characteristics) to be
maintained for monitoring changes in the height of the water
surface.

0196-2892/$25.00 © 2008 IEEE
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Fig. 1. Schematic figures showing the contributions of radar backscattering over (a) forests and (b) marshes due to canopy surface backscattering, canopy volume
backscattering, specular scattering, and double-bounce backscattering.

Using a few C-band (VV polarization) SAR images from
European Remote Sensing 1 and 2 (ERS-1/ERS-2) satellites,
Lu et al. [16] reported that the InSAR images maintained ade-
quate coherence to measure phase change over swamp forests
in southeastern Louisiana. This finding was unexpected because
the radar signal with shorter wavelength than L-band, such as
C-band (wavelength of 5.66 cm), was thought to backscatter
from the upper canopy of swamp forests rather than the under-
lying water surface, and a double-bounce travel path could only
occur over inundated macrophytes and small shrubs [17]–[20].
The study by Lu et al. [16] suggested that the swamp forests
composed of moderately dense trees with a medium-low
canopy closure (i.e., 20%–50% tree cover) could maintain
good coherence to allow measurement of water-level changes
from C-band interferometric phase observations. The authors
showed that the coherence of C-band interferograms could be
maintained over swamp forests for more than three to five years.

In this paper, we have expanded the work by Lu et al. [16]
to further quantify the water-level changes from C-band
InSAR measurements using both vertical-transmit and vertical-
receive (VV) polarized ERS-1/ERS-2 and horizontal-transmit
and horizontal-receive (HH) polarized Radarsat-1 images. After
laying out the framework for measuring water-level changes
using InSAR phase measurements, we systematically analyze
the interferometric coherence measurements for different veg-
etation types, seasonality, and time separation. We then study
the InSAR-derived water-level changes over swamp forests.

Finally, we discuss the potentials and challenges of mea-
suring water-level changes over swamp forests from InSAR
imagery.

II. MAPPING WATER-LEVEL CHANGES BY INSAR

Interactions of C-band radar waves with water surface are
relatively simple [21]. As SAR transmits radar pulses at an off-
nadir look angle, a smooth open-water surface causes most of
the radar energy to reflect away from the radar sensor, resulting
in little energy being returned back to the SAR receiver. When
the open-water surface is rough and turbulent, part of the radar
energy can be scattered back to the sensor; however, the SAR
signals over open water are not coherent if two radar images are
acquired at different times. Thus, it has been generally accepted
that InSAR is an inappropriate tool to use in studying changes
in the water level of open water.

Interactions of C-band radar waves with wetlands can be
complex [22]. Over flooded vegetation, the radar backscattering
consists of contributions from the interactions of radar waves
with the canopy surface, canopy volume, and water surface.
Based on the canopy backscattering model for continuous
tree canopies developed by Sun [23], we can infer that the
total radar backscattering over wetland can be approximated
as the incoherent summation of contributions from the fol-
lowing: 1) canopy surface backscattering; 2) canopy volume
backscattering that includes backscattering from multiple path
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interactions of canopy water; and 3) double-bounce trunk-water
backscattering [Fig. 1(a)]. The relative contributions from sur-
face backscattering, volume backscattering, and double-bounce
backscattering are controlled primarily by vegetation type (and
structure), vegetation leaf on/off condition, canopy closure,
and other environmental factors. Over marsh wetlands, the pri-
mary backscattering mechanism is volume backscattering, and
with possible contributions from stalk-water double-bounce
backscattering and/or specular scattering if the above-ground
vegetation is short and the majority of the imaged surface is
water [Fig. 1(b)].

After removing the topographic effect, the repeat-pass inter-
ferometric phase (φ) is approximately the incoherent summa-
tion of differences in surface backscattering phase (φs), volume
backscattering phase (φv), and double-bounce phase (φd)

φ = (φs2 − φs1) + (φv2 − φv1) + (φd2 − φd1) + n (1)

where φs1, φv1, and φd1 are the surface, volume, and double-
bounce backscattering phase values, respectively, from the SAR
image acquired at an earlier date; φs2, φv2, and φd2 are the
corresponding phases from the SAR image acquired at a later
date; and n is the noise.

As the two SAR images are acquired at different times,
the loss of interferometric coherence has to be evaluated.
Loss of InSAR coherence is often referred to as decorrelation.
Besides the thermal decorrelation, caused by the presence
of uncorrelated noise sources in radar instruments, there are
three primary sources of decorrelation over wetlands [24]–[26]:
1) geometric decorrelation resulting from imaging a target
from different look angles; 2) volume decorrelation caused by
volume backscattering effects; and 3) temporal decorrelation
due to environmental changes over time.

Geometric decorrelation increases as the perpendicular base-
line length increases, until a critical length is reached at which
coherence is lost [27], [28]. For surface backscattering, most of
the effect of baseline geometry on the measurement of inter-
ferometric coherence can be removed by the common spectral
band filtering [29]. Because volume backscattering describes
multiple scattering of the radar pulse that occurs within a
distributed volume over wetlands, InSAR baseline geometry
configuration can significantly affect volume decorrelation. As
a result, volume decorrelation is most often coupled with geo-
metric decorrelation and is a complex function of vegetation
canopy structure that is difficult to simulate. Generally, the
contribution of volume backscattering is controlled by the
proportion of transmitted signal that penetrates the surface and
the relative two-way attenuation from the surface to the volume
element and back to the sensor [26]. Because both surface
backscattering and volume backscattering consume and attenu-
ate the transmitted radar signal, they determine the proportion
of radar signal that is available to produce double-bounce
backscattering. Surface backscattering and volume backscat-
tering combine to lower InSAR coherence and reduce double-
bounce backscattering that is utilized to measure water-level
changes. Volume backscattering can be significantly affected by
canopy closure; the volume decorrelation should be generally
disproportional to canopy closure.

Temporal decorrelation describes any event that changes the
physical orientation, composition, or scattering characteristics
and spatial distribution of scatterers within an imaged volume.
Over wetlands, these decorrelations are primarily caused by
wind changing the leaf orientations, moisture condensation and
rain changing the dielectric constant, flooding changing the
dielectric and roughness of canopy background, and seasonal
phenology, as well as anthropogenic activities such as culti-
vation and timber harvesting [26]. Temporal decorrelation is
the net effect of changes in radar backscattering and therefore
depends on the stability of the scatterers, the canopy penetration
depth of the transmitted pulse, and the response to the changing
conditions with respect to the wavelength.

It is clear that the geometric, volume, and temporal decor-
relations are interleaved with each other and collectively affect
InSAR coherence over wetlands. The combined decorrelations,
which can be estimated using InSAR images (and are quantita-
tively assessed in Section V-C), determine the ability to detect
water-level changes through the utilization of double-bounce
backscattering signal.

When double-bounce backscattering dominates the returning
radar signal, a repeat-pass InSAR image can be sufficiently
coherent to allow the measurement of water-level changes from
the interferometric phase values. The interferometric phase (φ)
is related to the water-level change (∆h) by

∆h = − λφ

4π cos θ
+ n (2)

where φ is the interferogram phase value, λ is the SAR wave-
length (5.66 cm for C-band ERS-1, ERS-2, and Radarsat-1), θ
is the SAR incidence angle, and n is the noise caused primarily
by the aforementioned decorrelation effects.

III. STUDY SITE

Louisiana contains one of the largest expanses of coastal
wetlands in the conterminous U.S. The coastal wetlands, built
by the deltaic processes of the Mississippi River, contain an
extraordinary diversity of habitats that range from narrow nat-
ural levee and beach ridges to expanses of forested swamps and
marshes. Taken as a whole, the unique habitats of upland areas
and the Gulf of Mexico, with their hydrological connections to
each other, and migratory routes of birds, fish, and other species
combine to place the coastal wetlands of Louisiana among
the nation’s most productive and important natural assets [30].
Our study area is over southeastern Louisiana (Fig. 2), and it
includes the western part of New Orleans and the area between
Baton Rouge and Lafayette.

The study area consists of primarily eight land cover types:
urban, agriculture, bottomland forest, swamp forest, freshwater
marsh, intermediate marsh, brackish marsh, and saline marsh.
Agriculture and urban land covers are found in higher elevation
areas and along the levee system. Bottomland forests exist in
less frequently flooded lower elevation areas and along the
lower perimeter of the levee system, while swamp forests are
in the lowest elevation areas. Bottomland forests are dry during
most of the year, and swamp forests are inundated. Both types
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Fig. 2. Thematic map, modified from GAP and 1990 USGS-NWRC classification results, showing major land cover classes of the study area. Polygons represent
extents of InSAR images shown in Fig. 4(a) for the ERS-1/ERS-2 and Radarsat-1 tracks, respectively.

of forests are composed largely of American elm, sweetgum,
sugarberry, swamp red maple, and bald cypress [31].

Marshes, including saline, brackish, intermediate, and
freshwater marshes, account for a major proportion of the
biomass along the northeastern Gulf of Mexico coastal
area. Freshwater marshes are composed largely of a float-
ing marsh known locally as “flottant” and consist of
vegetative mats of detritus, algae, and plant roots that support
aquatic emergent plants such as maidencane, spikerush, and
bulltongue (http://aquaplant.tamu.edu/database/index/visual_
id_emergent_plants.htm). Intermediate marshes can be char-
acterized by plant species common to freshwater marshes
but with the saltier versions toward the sea and are largely
composed of bulltongue and saltmeadow cordgrass [32].
Brackish marshes are largely composed of wire grass and
three-square bulrush. Saline marshes are largely composed
of smooth cordgrass, oyster grass, and saltgrass. The salinity

increases from freshwater marsh, to intermediate marsh,
to brackish marsh, and to saline marsh. Vegetation species
decrease seaward because of the increase in salinity.

IV. DATA AND PROCESSING

A. SAR Data

SAR data used in this paper consist of 33 scenes of ERS-1/
ERS-2 images and 19 scenes of Radarsat-1 images. The ERS-1/
ERS-2 scenes, spanning 1992–1998, are from a descending
track with a radar incidence angle of about 20◦–26◦. The
ERS-1/ERS-2 data are VV polarized. The Radarsat-1 scenes,
spanning 2002–2004, are from an ascending track with a
radar incidence angle of about 25◦–31◦. Unlike ERS-1/ERS-2,
Radarsat-1 images are HH polarized. From these data, we
produced 47 ERS-1/ERS-2 interferograms with perpendicu-
lar baselines less than 300 m [Fig. 3(a)] and 31 Radarsat-1
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Fig. 3. InSAR image pair characteristics, including image acquisition times and their corresponding baselines for both ERS-1/ERS-2 and Radarsat-1 data used
in this paper.

interferograms with perpendicular baselines less than 400 m
[Fig. 3(b)]. The common spectral band filtering was applied to
maximize interferometric coherence [29].

B. InSAR Processing

For InSAR processing, the 30-m SRTM DEM is used. The
study area is very flat, with height variations ranging from about
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−9 to 23 m for 99.9% of the study area. For ERS-1/ERS-2
interferograms, we used the precision restituted orbital vectors
from Delft University, The Netherlands [33]. The accuracy of
the satellite position vectors provided in Radarsat-1 metadata is
much poorer than the precision vectors for ERS-1 and ERS-2.
Accordingly, the baselines of Radarsat-1 interferograms have
to be refined. We utilized the fringe patterns over urban areas
and agricultural fields (whenever interferometric coherence is
maintained) to adjust the baseline so that the fringes over
urban and agricultural areas are flattened. This can be done
by perturbing the baseline values and calculating the average
of interferometric coherence values over urban and agriculture
areas through a computation-intensive search. The optimum
baseline produces the highest coherence. Alternatively, one can
model the fringes over nonwetland areas with a first-order
or second-order polynomial function of range and azimuth
coordinates and remove the best fit polynomial function from
the whole interferogram. The latter is computationally efficient
and often works.

Interferometric coherence was calculated using 15 by
15 pixels on ERS-1/ERS-2 interferograms that were generated
with a multilook factor of 2 by 10 from the single-look-complex
images and 11 by 11 pixels for Radarsat-1 interferograms with
a multilook factor of 3 by 11. The large amount of pixels
for coherence estimation can reduce the bias in coherence
estimation [28], [34]. Therefore, although interferograms used
to map water-level changes have spatial resolutions of about
40 and 53 m for ERS-1/ERS-2 and Radarsat-1 images, the
coherence measurements were made over a spatial scale of
about 600 m by 600 m. As significant fringes were observed
over swamp forest areas, we “detrended” the fringes to calculate
the coherence as follows. First, interferograms were filtered
[35] and unwrapped with the minimum cost flow method [36].
The unwrapped interferometric phase images were then spa-
tially smoothed with a boxcar filter of 7 by 7 pixels. Next, the
unwrapped smoothed images were subtracted from the original
interferometric phase images, and finally, the resultant phase
images were used to calculate interferometric coherence values.
This procedure significantly reduces artifacts caused by dense
fringes on the coherence estimation.

V. RESULTS AND DISCUSSION

A. Averaged Intensity Images

Fig. 4(a) shows the averaged ERS-1/ERS-2 SAR intensity
image and the averaged Radarsat-1 intensity image. These
averaged images were generated using all of the SAR intensity
images for this paper. The primary focus of this paper is the
region of overlap by the ERS-1/ERS-2 and Radarsat-1 images.
Based on normalized difference vegetation index analysis by
Kwoun and Lu [10], we define the months of May–September
as the leaf-on season and the months of October–April as the
leaf-off season.

Kwoun and Lu [10] conducted a detailed analysis of
backscattering intensity variations over different land cover
types. Radar backscattering values, calibrated with respect
to the backscattering over urban land cover, are shown in

Fig. 4(b). The radar backscattering from swamp forests exhibits
the highest value among the vegetation classes in the study
area, followed by bottomland forest, agriculture, saline marsh,
freshwater marsh, intermediate marsh, and brackish marsh. The
radar backscattering over swamp forests during leaf-off seasons
is about 0.5 to 1.0 dB larger than during leaf-on seasons. The
seasonal difference is more salient for HH-polarized Radarsat-1
data than VV-polarized ERS-1/ERS-2 imagery. The difference
in radar backscattering between leaf-off and leaf-on seasons can
barely reach about 0.2–0.3 dB for bottomland forests, where
water is not present beneath the forests during most of the
year. All of these suggest that double-bounce backscattering is
the dominant backscattering mechanism for swamp forests for
the study area, whereas volume backscattering is the primary
scattering mechanism for bottomland forests [10].

Freshwater and intermediate marshes show very similar
backscattering coefficients in both ERS and Radarsat-1. The
saline marsh has the highest backscattering value whereas
the brackish marsh has the lowest among the marsh classes
[Fig. 4(b)]. The saline marsh generally has a significantly
higher backscattering than other marsh classes and is similar
to those from agriculture and bottomland forest. Based on the
seasonal change in backscattering coefficients for all marsh
classes, Kwoun and Lu [10] suggested the following: 1) the
primary backscattering mechanism for saline marsh is double-
bounce backscattering; 2) volume backscattering dominates
C-band radar interactions with freshwater and intermediate
marshes; and 3) brackish marsh is characterized primarily
by specular scattering. Finally, Radarsat-1 backscattering co-
efficients offer better separability among different wetland
land cover types than ERS data, suggesting that C-band HH
polarization is more sensitive to structural differences than
C-band VV polarization over the study area [10]. Based on
our results, we infer that a similar multitemporal multipolar-
ization backscattering analysis technique may be applicable
for vegetation classification over other regions of the world.
Obviously, the multitemporal analysis of fully polarimetric
SAR will significantly improve the separability among different
types of vegetation [38].

B. Observed InSAR Images

Fig. 5 shows a few examples of ERS-1/ERS-2 InSAR im-
ages. Fig. 5(a)–(d) shows the interferograms acquired during
leaf-off seasons, with time separations of 1 day [Fig. 5(a)],
35 days [Fig. 5(b)], 70 days [Fig. 5(c)], and 5 years [Fig. 5(d)].
The one-day interferogram [Fig. 5(a)] during the leaf-off season
is coherent for almost every land cover class except open water.
In the one-day interferogram, a few localized areas exhibit
interferometric phase changes which are most likely a result
of water-level changes over the swamp forests. The large-scale
phase changes over the southeastern part of the interferogram
are likely caused by atmospheric delay anomalies. Most of
the land cover classes (Fig. 2), except open water, bottomland
forests, and some of the freshwater and intermediate marshes,
are coherent in the 35-day interferogram [Figs. 2 and 5(b)]. The
interferogram clearly shows the water-level changes over both
swamp forests and marshes [Fig. 5(b)]. The overall coherence
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Fig. 4. (a) Averaged ERS-1/ERS-2 and Radarsat-1 intensity images showing locations where quantitative coherence analyses were conducted. (b) Averaged
radar backscattering coefficients (relative to urban backscattering returns) for seven major land cover classes during both leaf-on and leaf-off seasons.

for the 70-day interferogram [Fig. 5(c)] is generally lower than
the 35-day interferogram [Fig. 5(b)]. In 70 days [Fig. 5(c)], bot-
tomland forests, freshwater marshes, and intermediate marshes
completely lose coherence, although some saline and brackish
marshes can maintain coherence. Over five years, some swamp

forests and urban areas can maintain coherence [Figs. 2 and
5(d)]. Coherence can be maintained for swamp forests for over
five years, which strongly suggests that the dominant scattering
mechanism is double-bounce backscattering, supporting the
conclusion by Lu et al. [16].
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Fig. 5. Examples of ERS-1/ERS-2 InSAR images with different time separations during (a)–(d) leaf-off and (e)–(h) leaf-on seasons. BF—bottomland forest;
FM—freshwater marsh; IM—intermediate marsh; BM—brackish marsh; SM—saline marsh.

Fig. 5(e)–(h) shows interferograms from ERS-1/ERS-2 SAR
images acquired during leaf-on seasons, with time separation of
1 day [Fig. 5(e)], 35 days [Fig. 5(f)], 70 days [Fig. 5(g)], and

1 year [Fig. 1(h)]. Compared with the corresponding interfero-
grams acquired during leaf-off seasons with similar time inter-
vals [Fig. 5(a)–(d)], the leaf-on interferograms generally exhibit
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Fig. 6. Examples of Radarsat-1 InSAR images with different time separations during (a)–(b) leaf-off and (c)–(d) leaf-on seasons. BF—bottomland forest;
FM—freshwater marsh; IM—intermediate marsh; BM—brackish marsh; SM—saline marsh.
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Fig. 7. InSAR coherence as a function of time separation for major land cover classes as follows. (a) Open water, (b) urban, (c) agriculture, (d) swamp forest,
(e) bottomland forest, (f) freshwater marsh, (g) intermediate marsh, (h) brackish marsh, and (i) saline marsh for both ERS-1/ERS-2 and Radarsat-1 interferograms
acquired during leaf-off and leaf-on seasons. The scale for Fig.7(d) and (e) is different from the others in order to illustrate that seasonality is one of the factors
controlling coherence for forests.
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much lower coherence. All of the land cover classes (Fig. 2)
maintain coherence in one day [Fig. 5(e)]. For most of the land
cover classes, except urban, agriculture, and portions of swamp
forests, interferometric coherence cannot be maintained after
35 days [Fig. 5(f)–(h)]. With a time interval of 70 days, only
urban and some agriculture fields have coherence [Fig. 5(g)].
Over one year, only urban areas maintain some degree of
coherence [Fig. 5(h)]. We speculate that the overall reduction
in interferometric coherence for swamp forests during leaf-
on seasons is because the dominant backscattering mechanism
is not double-bounce backscattering but the combination of
surface and volume backscattering.

Fig. 6(a) and (b) shows two Radarsat-1 interferograms
acquired during leaf-off seasons. The interferometric coher-
ence for the 24-day HH-polarization Radarsat-1 interferogram
[Fig. 6(a)] is generally higher than the 35-day VV-polarization
ERS-1/ERS-2 interferogram [Fig. 5(b)]. In 24 days, only water
and some freshwater marshes do not have good coherence
[Fig. 6(a)]. We notice that bottomland forests (Fig. 2) can
maintain good coherence for 24 days. From Fig. 6(b), it is
obvious that some swamp forests and urban areas maintain
coherence for more than one year.

Fig. 6(c) and (d) shows Radarsat-1 interferograms during
leaf-on seasons. Again, the 24-day HH-polarization Radarsat-1
interferogram maintains higher coherence than the 35-day
VV-polarization ERS-1/ERS-2 images [Fig. 5(f)] for most
land cover types. It is surprising that the one-year Radarsat-1
interferogram during leaf-on seasons [Fig. 6(d)] can maintain
relatively high coherence over parts of swamp forests and
saline marshes. In general, although Radarsat-1 coherence is
reduced during leaf-on seasons, the reduction in the coherence
for Radarsat-1 is much less than that for ERS-1/ERS-2. Over a
similar time interval, HH-polarized Radarsat-1 interferograms
have higher coherence than VV-polarized ERS-1/ERS-2
interferograms.

During a very dry season or a period of extremely low water,
even swamp forests can be exposed to dry ground. Among
the interferograms in our study area, patches of swamp forests
can lose coherence. We speculate that this is probably because
there was no water beneath the swamp forest at the image
acquisition times. Therefore, the double-bounce backscattering
mechanism is diminished, and the dominant backscattering
mechanism for “dried” swamp forests is the same as that for
bottomland forests. Alternatively, bottomland forests can be
flooded occasionally. The presence of water on bottomland
forests produces double-bounce backscattering and, accord-
ingly, makes the radar backscattering return from a bottomland
forest similar to that from a swamp forest.

C. Interferometric Coherence Analysis

As it is only possible to detect water-level changes beneath
wetlands from coherent InSAR images, we quantitatively as-
sess variations of interferometric coherence over the study
area. Fig. 7 shows the InSAR coherence measurements for
different land cover types. For each of the land cover classes,
we calculated coherence for several locations, selected as rep-
resentatives of each land cover class. The size of the polygon is

about 600 m by 600 m for both ERS-1/ERS-2 and Radarsat-1
images. We first determined thresholds of complete decor-
relation for ERS-1/ERS-2 and Radarsat-1 interferograms by
calculating interferometric coherence values over open water
with the same polygon size (600 m by 600 m). In Fig. 7, the
coherence measurements from both leaf-on and leaf-off seasons
are combined for all classes except for swamp and bottomland
forests because the seasonality is a critical factor that controls
the interferometric coherence of forests. The dependence of
the interferometric coherence on spatial baseline was also ex-
plored. For the interferograms used in this paper, we found
no dependence between the interferometric coherence and the
perpendicular baseline. This is because more than 70% of the
interferograms have perpendicular baselines of less than 200 m
and that the common spectral band filtering [29], [39] was
applied during the interferogram generation.

Fig. 7(a) shows coherence over open water. Because open
water completely loses coherence for repeat-pass interfero-
metric observations, its coherence value can be regarded as
the threshold of complete decorrelation (loss of coherence).
The coherence values for both ERS-1/ERS-2 and Radarsat-1
InSAR images are about 0.06 ± 0.013. In this paper, coherence
values that are smaller than 0.1 will be regarded as complete
decorrelation.

We chose several sites [Fig. 4(a)] to show coherence over
urban areas: Six of them are located along the Mississippi River
and one in Mogan City which is more vegetated than the other
urban sites. Fig. 7(b) shows interferometric coherence measure-
ments over urban sites from both ERS-1/ERS-2 and Radarsat-1
interferograms. Overall coherence measurements from both
ERS-1/ERS-2 and Radarsat-1 images are similar, and they are
higher than any other land cover class. However, they vary
in the range of about 0.2–0.7. The variations are most likely
a result of decorrelation caused by vegetation over the urban
areas. Vegetation in urban areas can alter radar backscattering
coefficients by more than 8 dB [10]. Urban areas with lower
radar backscattering intensities tend to be associated with lower
interferometric coherence values, suggesting that the vegetation
in urban areas causes lower radar backscattering coefficients as
well as reduced coherence measurements.

Fig. 7(c) shows coherence measurements over agriculture
fields. Because of frequent farming activities with multi-
ple harvesting, a complete decorrelation is reached in about
100 days. This implies that the vegetation condition in these
fields changes completely in about 100 days.

Fig. 7(d) shows interferometric coherence measurements
from swamp forests. Comparing the coherence measurements
from ERS-1/ERS-2 and Radarsat-1 images, we can make
the following inferences. First, coherence is higher during
leaf-off seasons than during leaf-on seasons for both ERS-1/
ERS-2 and Radarsat-1 images. Second, the coherence from
HH-polarization Radarsat-1 images is generally higher than
that from VV-polarization ERS-1/ERS-2 images. Third, the
coherence from both Radarsat-1 images and ERS-1/ERS-2 im-
ages during leaf-off season can last over two years [Fig. 7(d)].
If the scattering elements came primarily from the top of the
forest canopy, it is unlikely that the SAR signal would be
coherent over a period of about one month or longer [24], [25]
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because leaves and small branches comprising the forest canopy
change due to weather conditions. Based on interferometric
coherence [Fig. 7(d)] and backscattering coefficient values
[Fig. 4(b)] during leaf-off and leaf-on seasons, we conclude
that the dominant radar backscattering mechanism over swamp
forests during the leaf-off seasons is double-bounce backscat-
tering. As a result, Radarsat-1 and ERS-1/ERS-2 images during
leaf-off seasons are capable of imaging water-level changes
over swamp forests. During leaf-on seasons, HH-polarization
Radarsat-1 images can maintain coherence for a few months,
reaching up to about 0.2. If HH-polarized C-band radar im-
ages were acquired for shorter time intervals during leaf-on
seasons, they would also be used for measuring water-level
changes.

Fig. 7(e) shows coherence measurements for bottomland
forests. We can see that the coherence is higher during leaf-off
seasons than leaf-on seasons. The HH-polarization Radarsat-1
images tend to have higher coherence than the VV-polarized
ERS-1/ERS-2 images for short temporal separations (less than
about two months). The coherence from both ERS-1/ERS-2 and
Radarsat-1 images decreases exponentially with time. ERS-1/
ERS-2 images become decorrelated in about one month while
Radarsat-1 can maintain coherence up to about two months
[Fig. 7(e)]. The difference in radar backscattering coefficient
and interferometric coherence between swamp and bottomland
forests is primarily caused by the double-bounce backscattering
over swamp forests. The water beneath the trees enhances the
double-bounce backscattering for swamp forests, producing
higher InSAR coherence as well as stronger backscattering co-
efficient values. For bottomland forests, forest understory atten-
uates radar signal returns and the double-bounce backscattering
is retarded, resulting in relatively lower coherence as well as
smaller backscattering values than that of swamp forests. Other
factors also affect the difference in backscattering between
swamp and bottomland forests over the study area. The two for-
est types are structurally different. The bottomland forests have
broad leaves and deterrent structures where the lateral branches
form wide and bell-shaped crowns, whereas swamp forests tend
to have needle leaves and excurrent structures, producing some-
what cone-shaped crowns. In addition, swamp forests display
a fairly to highly nonuniform canopy, with frequent gaps of a
few meters and large canopy height variations. Compared to
the swamp forests, bottomland forests tend to exhibit a wide
range of dense forest types with diverse understories. From
the perspective of scatterer roughness within a SAR resolution
cell, forests with large height variations tend to exhibit stronger
backscattering than uniform height forests, and forests with
gaps tend to show stronger backscattering signal than that of
dense forests (G. Sun, personal communication, 2007). There-
fore, swamp forests have both stronger backscattering returns
and higher coherence values than the bottomland forests over
the study site.

The above coherence analysis suggests that SAR images,
preferably HH-polarized, can maintain good coherence over
both swamp and bottomland forests for about one month.
Accordingly, shorter temporal separations (a few days) will
significantly improve the InSAR coherence for the detection of
water-level changes.

Fig. 7(f)–(i) shows coherence measurements over marshes.
Coherence measurements are generally higher from HH-
polarized Radarsat-1 images than from VV-polarized ERS-1/
ERS-2 images; ERS-1/ERS-2 can barely maintain coherence
for about one month, whereas Radarsat-1 maintains coherence
up to about three months. The coherence values for inter-
mediate, freshwater, and brackish marshes are similar, and
they are lower than those for saline marshes. Overall, saline
marsh has the highest coherence [Fig. 7(i)] as well as the
highest backscattering value [Fig. 4(b)] among marsh classes,
suggesting that saline marshes tend to develop more dominant
vertical structure than other marshes to allow double-bounce
backscattering of C-band radar waves. Over intermediate and
freshwater marshes, the surface and volume backscattering
mechanisms are the primary backscattering mechanism, and
the backscattering return depends on the amount of emerged
biomass [40]. For brackish marshes, specular scattering can
be dominant during some portion of the year. As marshes can
only maintain coherence in less than 24 days, repeat-pass SAR
images should be acquired over short time intervals (a few days)
for the purpose of robust detection of water-level changes.

D. InSAR-Derived Water-Level Changes

Fig. 8 shows several examples of coherent ERS-1/ERS-2
and Radarsat-1 interferograms with short temporal separations,
where interferometric phase values were used to study changes
in the water level of swamp forests. Each interferogram shows
the relative changes in water level between dates when the two
images were acquired. Each fringe represents a range (distance
from the satellite to ground) change of 2.83 cm, or about
3.07-cm water-level change for ERS-1/ERS-2 InSAR images
and 3.20 cm for Radarsat-1 images. From the interferograms in
Fig. 8, we can make the following inferences.

1) The changes in water level are dynamic. For exam-
ple, Fig. 8(i) shows the change in water level reach-
ing as much as 36 cm over a distance of about
37 km. The direction and the density of fringes within the
Atchafalaya Basin Floodway (ABF) are spatially varying.
Such changes in water level reflect local differences in
topographic constrictions and vegetation resistance to the
surface flow. Flooding throughout this area is primarily
by sheet flow after the rivers and bayous leave their banks.
Under ideal circumstances, water should flow placidly
and smoothly over a symmetrically smooth surface de-
void of obstructions. Thus, the sheet flow should not be
symmetric throughout the study area, i.e., it should not
be a smooth even surface of constant elevation from one
edge of the swamp to the other. Instead, there should be
bulges and depressions in the water surface as a result
of topographic constrictions and vegetation resistance in
sheet flow.

2) The changes in water level are not homogeneous. First,
the observed fringes exhibit evidence of control by struc-
tures such as levees, canals, bayous, and roads, result-
ing in abrupt changes in interferometric phase value.
The heterogeneity in water-level change is due primarily
to these man-made structures and artificial boundaries.
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Fig. 8. (a)–(f) ERS-1/ERS-2 and (g)–(l) Radarsat-1 Interferograms with good coherence and short temporal separations, used to illustrate the heterogeneity of
water-level changes.

Second, within the ABF, the observed interferometric
fringes are bent [e.g., Fig. 8(h)–(k)]. This suggests that
local variations in vegetation cover resist water flow

variably. Heterogeneous water-level changes such as
these make it impossible to accurately characterize water
storage based on measurements from a few sparsely
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Fig. 9. Unwrapped Radarsat-1 images used to quantify water-level changes. InSAR-derived water-level changes at the selected locations are compared with
gauge readings (see Table I for details).

distributed gauge measurements. This demonstrates the
unique capability of InSAR to map water-level changes in
unprecedented spatial detail. This is the most promising
aspect of mapping water-level changes with InSAR.

3) Interferograms in Fig. 8 reveal both localized and rel-
atively large-scale changes in water level. On the one
hand, localized changes in water flow can be found in the
24-h interferogram (outlined in white in [Fig. 8(b)] and
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TABLE I
COMPARISON OF WATER-LEVEL-CHANGE MEASUREMENTS BETWEEN INSAR AND GAUGE STATIONS. A AND B ARE TWO GAUGE STATIONS

WITHIN THE SWAMP FOREST WEST OF AICWW (FIG. 9). C IS A POINT OVER THE AICWW WHERE INSAR IMAGES ARE NOT COHERENT.
Cw AND Ce, TWO INTERFEROMETRICALLY COHERENT POINTS NEAR C, ARE LOCATED OVER THE SWAMP FOREST WEST AND EAST

OF THE AICWW, RESPECTIVELY. Be IS A POINT ADJACENT TO B. BOTH Cw AND B ARE WITHIN THE SWAMP FOREST WEST OF

THE AICWW, AND Ce AND Be ARE OVER THE SWAMP FOREST EAST OF THE AICWW (FIG. 9)

the 70-day interferogram during January–March 1997
(outlined in white in [Fig. 8(c)]. On the other hand, rela-
tively large-scale changes in water level can be observed
across much of the water basin [e.g., Fig. 8(g) and (i)].

Because the interferometric fringes are dissected by rivers,
canals, levees, roads, and other structures, interferometric phase
measurements can be disconnected at these boundaries. In other
words, interferometric phase measurements at two nearby pix-
els separated by these boundaries are discontinuous. This adds
enormous complexity to understanding water-level changes
inferred from InSAR measurements. Furthermore, calculating
water-level changes along two different paths that are separated
by these boundaries can lead to different estimates of water-
level changes. We chose four Radarsat-1 interferograms (Fig. 9)
to illustrate this. We first unwrapped the interferograms piece-
wise using the branch-cut method [37]. In particular, the regions
to the west and east of the Atchafalaya Intracoastal Waterway
(AICWW) were unwrapped separately. The interferometric
coherence along the AICWW is often lost. To investigate water-
level changes quantitatively, we selected several locations, in-
cluding two gauge locations (Cross Bayou station at A and
Sorrel station at B). Both A and B lie within the swamp forests
west of AICWW, and we can extract the phase measurements
at the exact locations of A and B. To the east of B and
across the AICWW, we choose a location Be (Fig. 9) over the
swamp forest east of the AICWW where InSAR coherence is
maintained. Lastly, we selected a location C over the upstream
of AICWW (Fig. 9). Because the interferometric coherence
is not maintained at C, we chose two locations immediately
adjacent to C: One is over the swamp forest to the west of
AICWW (Cw in Fig. 9), and the other over the swamp forest to
the east of AICWW (Ce in Fig. 9). Interferometric coherence
is maintained at Cw and Ce, and consequently, we can measure
phases at these two points.

We first compared the water-level changes measured by
InSAR and recorded at gauges at A and B to validate the
reliability of the InSAR-based measurements of water-level
changes. The daily gauge data represent water level at 8 A.M.
local time (C. Swarzenski, personal communication, 2005),
while Radarsat-1 images were acquired at 6 P.M. local time.
Therefore, to match satellite image acquisition time, we inter-
polated gauge readings from the image acquisition date and the

following date. Table I summarizes the results of water-level
changes from gauges and from the interferograms in Fig. 9.
The InSAR-derived water-level changes at A and B are in good
agreement with gauge readings and within about 2-cm overall
discrepancy. This indicates that water-level-change measure-
ment by InSAR can be as good as that by gauges. As such,
we can infer that the water-level changes detected by InSAR
in areas not covered by gauges may be trusted. If this is the
case, then the InSAR technique provides a unique way to map
dynamic and heterogeneous water-level changes at accuracy
comparable to gauges and at a spatial resolution unattainable
by gauges. The gauge data at Cross Bayou (A in Fig. 9) on
May 22, 2003, do not exist so we could not confirm water-level
changes of about 36 cm detected by InSAR [Fig. 9(b)]. If we
extend the perceived correspondence of about 2 cm between
InSAR and gauge measurements, we can estimate the gauge
reading at A to be about 437 cm around 6 P.M. local time
on May 22, 2003. This demonstrates the utility of InSAR-
based water-level-change measurement to augment the missing
gauge data.

We next compare and quantitatively examine the water-
level changes measured along two different paths (Cw−B and
Ce−Be) within two swamp forest bodies separated by the
AICWW. Please note locations Cw and B are within the swamp
forest west of AICWW and locations Ce and Be are within
the swamp forest east of AICWW. Integrating interferometric
phase measurements along the western path (Cw−B) and the
eastern path (Ce−Be) gives water-level changes ranging from
about −1 cm to 31 cm (Table I). For example, the water-level
change between Cw and B is about 31.34 cm whereas it is
about 6.61 cm between Ce and Be for the May 22, 2003, and
June 15, 2003, InSAR image [Fig. 9(b)]. We interpret this to
be a result of structures that obstruct smooth and rapid water
flow, primarily within the swamp forests west of AICWW. The
change in fringe pattern across the AICWW suggests that parts
of the AICWW also act as barriers to continuous water flow in
this area. Water-level changes in swamp forests over the study
area are heterogeneous and disconnected by structures and
other barriers, and therefore cannot be represented adequately
by sparsely distributed gauge stations. This finding can be
useful for hydrologists to enhance surface water flow models by
correctly defining the spatial extent of homogeneous continuum
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and for emergency planners to simulate the dynamics of flood
water in the region with enhanced accuracy.

VI. DISCUSSIONS AND CONCLUSION

The ability to map water-level changes at high spatial resolu-
tion with InSAR makes it an attractive tool for studying many
hydrological processes. To adequately characterize the hetero-
geneous water-level changes over a complex wetland system
requires many ground-based measurements, which can be cost-
prohibitive. In this paper, we have demonstrated that C-band
InSAR images can map water-level changes of coastal wetlands
of Louisiana. Particularly, HH-polarized C-band InSAR can
maintain good coherence for mapping water-level changes over
coastal wetlands if the SAR images are acquired in a few
days. Because L-band InSAR images generally maintain much
higher coherence than C-band InSAR, L-band InSAR can map
water-level changes over denser forests such as the Amazon
rain forests [13], [14]. Combining C-band and L-band InSAR
images can significantly improve temporal sampling of water-
level measurements.

However, there are several shortfalls regarding water-level
measurements from InSAR images. First, InSAR requires the
presence of emergent vegetation [13]–[16] or structures in
water [41] to allow radar signals to be scattered back to
the antenna in order to measure water-level changes. Over
open-water bodies, InSAR is useless for detecting water-level
changes.

Second, a repeat-pass InSAR image measures the relative
spatial gradient of water-level changes between two times. In
other words, from interferometric phase measurements alone,
we cannot derive the absolute volumetric change of water
storage within a wetland without additional constraints. In an
extreme case, we can assume that the water level over a wetland
moves up or down by a constant height. The volumetric change
of water over the wetland can be calculated by the area extent
of the wetland and the constant height of water-level change.
However, an InSAR image can only exhibit a constant phase
value, which suggests no water-level changes over the wetland.
Therefore, to estimate the volumetric change of water storage,
the absolute water-level change at a single location within a
wetland body is required. The situation can become even more
complicated if the wetland system consists of many wetland
bodies which are bounded by structures such as levees, canals,
and other barriers, all of which can disconnect the InSAR phase
values. In this case, it may be impossible to estimate volumetric
storage change of the whole wetland system without knowing
the absolute water-level change at a single location within each
wetland body.

Another limitation of repeat-pass InSAR is that the at-
mospheric delay signal obscures radar signal associated with
surface elevation changes. As an approximation, we can utilize
the characteristics of both observed fringes and SAR backscat-
tering returns to roughly infer whether certain fringes over
wetlands are dominantly due to actual water-level changes
or contaminated by atmospheric artifacts. The fringes due to
water-level changes exhibit evidence of control by structures
such as levees, canals, bayous, and roads (which are clearly

observable from the SAR intensity image), resulting in abrupt
changes in interferometric phase value (Figs. 8 and 9). If a cer-
tain fringe pattern extends across such structure features [e.g.,
the large-scale fringe pattern over the lower right quadrant of
Fig. 5(a) or the upper right quadrant of Fig. 8(c)], we interpreted
that the fringe was probably affected by atmospheric delay
anomaly. However, the small-scale dense fringes inside the
white ellipse in Fig. 8(c) are constrained by structures and water
barriers identifiable from the SAR backscattering intensity im-
age; we interpreted that these fringes were probably dominant
from water-level changes. Atmospheric delay anomalies can
reduce the accuracy of interferometrically derived water-level
measurements from several millimeters in ideal conditions to
several centimeters under coastal regions such as our study
area. Over the wetland areas, we were unable to estimate the
range of atmospheric delay anomalies. By inspecting a stack
of ERS-1/ERS-2 images over the city of New Orleans, it was
found that about 40%–50% of interferograms were affected
by atmospheric delay anomalies (Kwoun and Lu, unpublished
data). The atmospheric artifacts typically ranged about ±5 cm
at New Orleans (Kwoun and Lu, unpublished data). The at-
mospheric delays that hamper InSAR accuracy can potentially
be lessened by routinely estimating water-vapor content using
a high-resolution weather model, continuous global positioning
system network, or other satellite sensors such as the Moderate
Resolution Imaging Spectroradiometer, Advanced Spaceborne
Thermal Emission and Reflection Radiometer, and European
Medium Resolution Imaging Spectrometer [42], [43].

Converting relative water-level change to absolute water-
level change is challenging. Under some extreme and rare
circumstances, radar backscattering intensities can be used to
relate to the water-level height to resolve the phase ambiguities
in the InSAR images [41]. Over our study site, exploring radar
backscattering intensity did not reveal any correlation with
water-level changes. Not all gauge stations can be used to help
resolve the phase ambiguity of interferometric measurements.
Gauge stations may be located on rivers and canals (for easy ac-
cess and operation) where water-level changes may be indepen-
dent of water-level changes at adjacent wetlands measured from
InSAR. The satellite radar altimeters have too coarse spatial
resolution to be useful to gauge the InSAR-derived water-level
change. The ICESat data [44], with a spatial resolution of about
70 m, has the potential to provide estimates on absolute water-
level change. Because of the phase ambiguities in the InSAR
images, it is also impossible to establish water-level change
time series using a multi-interferogram processing technique
such as persistent scatterer InSAR [45], [46].

A more feasible solution is to include water-level measure-
ments from a radar altimeter with adequate spatial resolution
and vertical accuracy, such as the Water And Terrestrial Eleva-
tion Recovery (WATER) satellite mission [47], [48]. WATER
is a Ka-band (Ka-band, λ = 0.86 cm) dual-antenna 200-MHz
bandwidth system (0.75-m-range resolution) radar interferom-
eter which can achieve centimeter-level height accuracy at
tens of meters spatial resolution. A similar system will not
only provide temporal and spatial variations of water-level
height but also provide measurements to facilitate the use of
InSAR measurements over wetlands from other satellite radar
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imagery. Optimized radar images with short repeat-pass acqui-
sitions from multiple satellite sensors, combined with available
ground-based gauge readings, will improve the characterization
of surface water hydraulics, hydrological modeling predictions,
and the assessment of future flood events over wetlands.
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