This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

Integrating Landsat Imageries and Digital Elevation
Models to Infer Water Level Change in Hoover Dam

Kuo-Hsin Tseng, C. K. Shum, Jin-Woo Kim, Xianwei Wang, Kefeng Zhu, and Xiao Cheng

Abstract—The Thematic Mapper onboard Landsat 4, 5, and
Enhanced Thematic Mapper Plus (TM/ETM+) onboard Landsat
7 have frequency bands (green and SWIR) to effectively mea-
sure water body extents and their changes via the Modified
Normalized Difference Water Index (MNDWI). Here, we devel-
oped a technique, called the thematic imagery-altimetry system
(TIAS), to infer the vertical water changes from MNDWI hori-
zontal water extent changes by integrating long-term TM/ETM+-
imageries with available digital elevation models (DEMs). The
result is a technique to quantify water level changes of natu-
ral or artificial water bodies over two decades. Several DEMs
were used to compute intersects with TM/ETM-+ water extent
time series to evaluate the robustness of the technique. These
DEMs include: the Advanced Spaceborne Thermal Emission and
Reflection Radiometer Global Digital Elevation Map version 2
(ASTER-GDEM2, at 1 arcsec resolution), the Shuttle Radar
Topography Mission version 2 (SRTM C-band at 1 arcsec), and
the Global Multiresolution Terrain Elevation Data (GMTED2010
at 7.5 arcsec). We demonstrated our technique near Hoover Dam
(HD) in Lake Mead to quantify its respective decadal water level
changes. The dammed water had experienced extraordinary level
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variation in the past 20 years due to natural decline from intake
or artificial impoundments. The discrepancy of the HD water
level changes from an analysis of 32-year (1984-2015) time series,
including 584 Landsat scenes, using the GMTED2010 DEM, has
a RMSE reached 0.85 + 0.63 m (91% of data) as compared with
in situ stage record.

Index Terms—Inland water altimetry, lake level, remote sens-
ing, shoreline detection.

I. INTRODUCTION

HANGES in water surface height (WSH) over time for

inland water bodies are critical information for fresh-
water studies and water resource management. Spaceborne
observation has thus become a promising tool for large-scale
observation that supports locally incomplete infrastructure,
such as gauge stations [1]-[3]. Owing to the advance in satellite
altimetry and postprocessing techniques such as radar wave-
form retracking [4]-[6], monitoring large (>100 km?) inland
water bodies has been made possible in the past two decades by
data from multiple satellite radar altimetry missions [7] or data
from laser altimetry mission, such as ICESat [8].

In principle, the distance between satellite and its nadir point
on the Earth could be determined by measuring the two-way
travel time between emission and reception of radar pulses (or
photons in laser pulses), assuming that they travel in the speed
of light in vacuum. After several corrections for distance due to
inhomogeneous media (e.g., troposphere and ionosphere) and
tidal effects, the ellipsoidal height of the nadir point can thus
be approximated by subtracting the satellite-surface distance
from the height of satellite itself. Following to these correc-
tions, the radar waveform retracking fine-tunes the telemetered
range from radar echoes sampled in time, or equivalent in dis-
tance. Tracing the shape of a waveform, especially the position
and slope of leading/trailing edge with respect to a nominal
location in waveform gates, provides information about surface
roughness and tilt of the plane within the radar footprint.

However, these measurements obtained from repeat-orbiting
satellites are strictly confined to a predefined ground-track grid
and a periodical sampling based on orbit characteristics. For
example, the Environmental Satellite (Envisat) launched by the
European Space Agency (ESA) in 2002 had a cross-track inter-
val ~80 km at the Equator and 35-day revisit period, which
shared the same orbital elements with preceding ERS-1/-2 mis-
sions back to the 1990s. Another example is NASA/CNES’s
TOPEX/Poseidon (T/P), Jason-1, and OSTM/Jason-2 series
that has a coarser along-track spacing at the Equator (~315 km)
and a shortened revisit period of ~10 days [9], [10]. In addi-
tion, the ICESat laser altimetry working in campaign mode
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in a period of 2003-2010 had only 2-3 revisits per year
[11], despite its dense ground-track separation of about 7 km.
Although the altimetry satellite such as T/P and Jason-1 was
built intentionally for open-ocean or sea ice studies, along
with some following missions, for instance, Jason-2, Envisat,
ICESat, and SARAL/AItiKa, they have contributed enormously
to the terrestrial hydrology [8], [12]-[20] and many other con-
tinental freshwater applications [5], [12], [21]-[23]. However,
the demand at some particular locations is sometimes totally
unattainable while the target area falls between parallel ground-
tracks without any possible fly-bys. Meanwhile, the footprint
of the conventional pulse-limited radar altimeter usually varies
between 3 and 7 km in radius depending on the surface
roughness for terrestrial measurements. The footprint partially
covering land may encounter a serious land contamination
in echoes and usually needs further waveform editing [24]-
[26], especially for water surface less than 1 km wide [27].
Therefore, an alternative method using swath imaging is con-
sidered to complement spatial/temporal gaps bypassed by these
pulse-limited radar or laser altimetry satellites. To a greater
extent, this alternative method is expected to have a broader
coverage of terrestrial area and seamless mission time span,
which supports operational and long-term observations of WSH
variations.

Considering the altimetric satellite that is scheduled for
launch, the Surface Water Ocean Topography (SWOT) mission
[1], [28] carrying the Ka-band radar interferometer (KaRlIn)
may be the only candidate to fulfill this anticipation. For
example, Frappart er al. [29] presents the signature on sur-
face water of the extreme drought that affected the Amazon
basin in 2005 in a SWOT perspective. Other missions, such
as SARAL/AIltiKa (launched in February 2013), Sentinel-
3 (scheduled for launch in late 2015), Jason-3 (2015), and
Jason-CS (Continuity of Service, 2017) will perhaps fol-
low similar orbits and equip nadir-looking radar or delay-
Doppler [30] altimeters as their predecessors. Hence, before
the expected launch of SWOT in 2020, an alternative method
is needed to study the inland waters variation from histori-
cal satellite records. Previous works have demonstrated the
potential of combining nadir altimetry measurements with
various types of satellites images to quantify water volume
stored in lakes, floodplains and large river basins, such as
using SAR [31], multispectral [32], [33], and multisatellite
observations [29].

In the last few years, numerous studies have been dedicated
to the computation of water surface area (WSA) using remote
sensing (RS) imagery and compared the results to various water
level measurements [34]-[38], such as in situ gauge data. In
fact, the WSH of water body itself can be approximated by
monitoring the WSA expansion moving along the contour of
an accurate reference elevation, as long as the side slope of
a lake is not vertical. And the WSH can be directly validated
by the gauge or altimetry measurements, if they were existed.
However, the possibility of conversion between WSA and WSH
had been poorly investigated in the literatures, due primarily
to the high cost of very high-resolution optical imagery and
unavailability of good topography references. Pietroniro et al.
[39] demonstrated this concept using Landsat Multispectral

Scanner (MSS) and Thematic Mapper (TM) images, cou-
pled with GPS-derived digital elevation model (DEM) at the
Peace-Athabasca Delta (PAD) in Canada. They included 8
Landsat snapshots in 16 years and obtained water level in
<20 cm accuracy compared with hydraulic model over the very
low-relief PAD floodplain. Xu et al. [40] used QuickBird-2
submeter resolution imagery to estimate river discharge along
Yangtze River. However, they only used 5 images in multiple
locations and relied on a look-up table for river width-stage
conversion. Andreoli er al. [41] showed an integration of
Envisat ASAR/MERIS images with SRTM-C at Poyang Lake,
China. In their study, the monitor of lake level in the flat Poyang
Lake had an average error at 1.26 + 1.83 m. Cai et al. [42] ana-
lyzed MODIS imageries and construct a area-level relationship
also in Poyang Lake. They obtained high correlation between
water area and water level at R? equal 0.61-0.98 by multiple
regression models.

Due to the rising accessibility of several high resolution
DEMs released in the last couple of years, the operational and
global-covering virtue of this approach becomes feasible as we
could employ high quality DEMs as a reference to recover
the WSH more accurately for practical usage. Therefore, we
intend to build such an algorithm namely the thematic imagery-
altimetry system (TIAS) that aims to recover WSH by using
a conceptually different principle than conventional nadir-
looking radar or laser altimetry instruments. An introduction
of study area will be given in Section II. A general work-
flow of the TIAS will be given in Section III, followed by a
detailed description of data products and computational meth-
ods in Section IV. Statistics and error sources of the TIAS
measurements in Lake Mead are tabulated and discussed in
Section V. Finally, Section VI concludes the major contribution
and prospective works from this study.

II. STUDY SITE

To demonstrate the feasibility of this proposed approach, we
applied the TIAS and examined its WSH estimate capability
at Hoover Dam (HD) in Lake Mead. The HD located 40 km
southeast of Las Vegas formed Lake Mead across Nevada and
Arizona, USA, which is the largest reservoir in the USA since
1930s. During 2000-2010, the water level of Lake Mead at
HD fell nearly 40 m due to the shortage of its intake [33].
The lake level dropped to 329.78 m above mean sea level,
because of a reduction of flow along Colorado River from
another giant reservoir upstream, the Glen Canyon Dam. After a
short rebound during 2010-2013, the water level in Lake Mead
kept hitting lowest level in all-time record since 2013, while the
record in May 2015 is 328.14 m. The HD also incurred serious
decrease in water volumes that are arguably subject to a secu-
lar trend in climate change [43], [44] and groundwater depletion
[45]. In this study, the Boulder Basin, which is a part of western
Lake Mead, was taken for investigation as specified in Fig. 1.
The water area in the Boulder Basin is about 280 krnz, with a
shoreline length in some 450 km.

The HD in Lake Mead is not only socioeconomically impor-
tant concerning its regional water storage/supply but also pre-
dominant in hydropower generation. However, relatively large
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Fig. 1. Left panel denotes the geographical location of Lake Mead in the USA (blue dot in the inset) and the Boulder Basin aimed in this study (red box). Envisat
pass #406 flying over the northern Overton Arm is denoted by yellow line. ICESat actual ground track near the Boulder Basin is denoted by green dashed line.
The closest Jason-2 ground track falling east of the lake is not shown here. Right panel demonstrates a birdview of nearby terrain exemplified by ASTER GDEM?2
in 30 m. The Boulder Basin covers a distance within ~17 km from HD and a WSA stretches about 12 km in E-W and 10 km in N-S direction. We used addition

masks to ensure WSA only covering upstream of the dam.

water areas of Lake Mead were infrequently monitored by radar
altimeters, due primarily to the shape, terrain, and geographical
locations that lack of ground tracks from a series of altime-
try satellites. Although the surface area of entire lake is larger
than 600 km?, it has only covered by two Envisat passes with
three crossovers ranging from 1.9 to 3.5 km. T/P and Jason-1/-2
series have no pass near this location (except for short-term
extended/interlaced tracks). Therefore, an examination of the
TIAS at this site is appropriate to demonstrate its comparable
role in altimetric services. We perform an analysis of 32-year
(1984-2015) water level study by collecting available Landsat
imageries and in situ record, and compared with Envisat and
ICESat data therein. The SARAL/AItiKa that follows Envisat
is not included in current study.

III. WORKFLOW OF THE TIAS

The TIAS has a three-tier architecture generally categorized
in terms of data maturity levels, which include: 1) data col-
lection; 2) preliminary estimate; and 3) Cal/Val sections as
shown in Fig. 2. The steps from gathering data to converting
WSA into WSH are also illustrated in Fig. 3 for visualization.
In the beginning, the data collection part first gathers RS data
and DEMs, and applies a preceding coregistration on both
data sets. For DEM collection part, we utilized three popular
products with spatial resolution ranging from 30 to 250 m,
namely the Advanced Spaceborne Thermal Emission and
Reflection Radiometer Global Digital Elevation Map version 2
(ASTER-GDEM?2), Shuttle Radar Topography Mission C-band
version 2 (SRTM-C), and Global Multiresolution Terrain
Elevation Data (GMTED2010) (see details in Section IV-A).
For RS imagery part, the TIAS algorithm employs both the
TM carried by Landsat 4 and 5 and the Enhanced Thematic
Mapper Plus (ETM+) onboard Landsat 7 to compute WSA.
The Landsat series has nominally 30 m spatial resolution and
16-day revisit period. Since the grid size varies in each data

1. Original DEM 2. RS imagery
Data collection ASTER GDEM2
SRTM-C Landsat TM/ETM+
GMTED2010

e e 000000000

3. Modified DEM
fill lake

4. MNDWI
water mask

Preliminary bathymetry
estimate
5. Preliminary
water surface
height
6. Cal/Val by radar/
laser altimetry
or in situ
Calibration

and validation

7. Verified
water surface

height

Fig. 2. Flowchart of the TIAS showing the process to estimate and verify WSH
using RS imagery, DEMs, and other independent measurements. Two diamond
boxes indicate technical processes required in the computation. (a) To fill the
DEM water mask by a projection from nearby terrain. (b) To fit the distribu-
tion of height estimates by using the GEV fitting function. Step 6) is optional
depending on the availability of in sifu data or extra measurements.

source, it is necessary to align each pair of RS imagery and
DEM to the same grid size via double-linear interpolation.
We coregistered all datasets into 30 m grid and assume the
geolocation error is ignorable.

After that, a modification for the DEM is needed because the
raw data in these models cannot be directly used as their orig-
inal forms—these DEMs have a constant elevation over lake
area on the basis of a predefined water mask and the timing of
composition [46]. Hence, a technical process denoted as dia-
mond a in Figs. 2 and 3 is developed to replace the constant
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Fig. 3. Visualization of Steps 1-4) and technical processes a and b as marked in Fig. 2. Panel 1 is a 3-D elevation profile of Lake Mead near Boulder Basin. Panel
2 is the false-color composite image of a typical ETM~+ scene (RGB: B5, B4, and B3). Panel 3 is a visualization of DEM modification process that extends the
terrain inward of lake area to simulate the bathymetry near shore. Panel 4, a two color-coded plot, is an example of binarized MNDWI image that has been applied
thresholding operation at a ratio equal 0.2. The bottom two panels are the scatter plot (left) and histogram of height distribution (right) for a typical ETM+ scene.

value in DEM over lake surface by a projection from the encom-
passing terrain. In other words, we assume that the side slope
of a lake remains unchanged and can be extended toward the
inundated area. As an example given in Fig. 3, a cross-section
of lake bathymetry shown in panel 3 is profiled along the red
dashed line in panel 1. The slope information from terrain in
radial direction is gathered and extended downward to the lake
bottom as denoted by a in panel 3. Although this projection
of terrain may generate unreliable bathymetry close to the lake
center since we assume that the depth of lake bottom is unlim-
ited, based on our analysis, this approach remains effective as
long as the WSH varies within few tens of meters at selected
study site.

The Step 4) in the second part of TIAS consists of computing
the Modified Normalized Difference Water Index (MNDWTI)
using Landsat TM/ETM+ imagery. The area whose MNDWI
exceeding a certain threshold is marked as water and its
boundary is then overlaid onto DEMs. If we assume that the
equipotential surface of a particular water body has no surface
gradient (i.e., geoid anomaly) or the anomaly is well known and
can be corrected, the outline of such water body in steady state
would match the contour of a DEM with respect to a vertical

datum, such as the World Geodetic System 1984 (WGS84).
The number of WSH “samples” is thus equal to the number
of pixels along the shoreline, i.e., the total length of shoreline
divided by the grid size of RS imagery (e.g., 30 m for Landsat).
Ideally, there are a huge amount of samples with values center-
ing to an exact ellipsoidal height, if we assume that the vertical
and horizontal accuracy of the DEM is arbitrarily high and
the grid size of RS imagery grid is infinite small. However,
since the DEMS have various horizontal resolution (30-250 m)
and vertical accuracy (7-30 m), while Landsat imagery also
has limited spatial resolution (30 m) and inaccuracy in water
mask determination, the collection of height estimates around
the water body will practically form a probability distribution
that allows us to compute the most likely WSH from fitting
functions.

The second technical component denoted as diamond b in the
flowchart is thus needed to find the best height estimate along
the water body’s outline. Each grid of shoreline has its corre-
sponding height value from DEM after coregistration, and the
value is considered to be the WSH at that pixel. The height
samples gathered along the shoreline thus forms a histogram
as also demonstrated in the bottom right of Fig. 3, panel b.
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Since the WSH estimates collected along the shoreline may
not be perfectly centering at just one value; instead, it has a
spread across few meters depending on the quality of DEM
and accuracy of shoreline determination. Therefore, finding the
maximum likelihood estimate of WSH is a key component in
this algorithm. In panel b, the histogram of WSH estimates
is slightly different from a normal distribution consisting of
unknown random noises. This probability distribution with a
distinguishable peak may have uneven spread of shoulders (not
shown here). For example, an inadvertent distortion of contour
in DEM w.r.t. a vertical datum may cause a longer leg in either
side of the distribution. Hence, we estimated the WSH by fitting
the probability distribution of height estimates with the gener-
alized extreme value (GEV) distribution that was developed to
model the local maxima in a finite sequence [47]. Because the
actual height of water surface is outstanding in the probability
density function (pdf) and appears to be the outlying observa-
tion, regular normal distribution is poor in fitting the extreme
value in pdf. Therefore, the GEV distribution that has been well
known for modeling extreme events [48] corresponds well with
requirement in this study.

The third part of the workflow includes the calibra-
tion/validation (Cal/Val) with other independent measurements
having better accuracy that serve as groundtruth. In addition to
the comparison with raw TIAS time series, we also provide a
“de-outlier” version of time series for comparison. We used the
moving average of TIAS time series itself to remove potential
outliers in the measurements. More specifically, the difference
between the TIAS WSH and three-point average was first com-
puted, and then the outlying TIAS WSHs that exceeded 2-0 of
the difference were discarded. The performance of using entire
data set and after de-outlier process is both given in Section V.
To validate the accuracy of TIAS results, we used monthly
in situ measurements to validate TIAS WSH estimates, and
also compared with ICESat GLAS laser altimetry and Envisat
radar altimetry results. The quality indicators of WSH esti-
mates include assessments of RMSE, correlation (R?), and
number of temporal points between measuring techniques. We
also demonstrate an optional feedback mechanism showing a
dynamic selection of MNDWTI threshold by iterating a setting
of 0.15, 0.2, and 0.25, in order to find the optimal threshold set-
ting for certain image/DEM combination. The calibration step
is only for lake that has other reference data and can be utilized
to help TIAS accuracy.

IV. DATA AND PROCESSING TECHNIQUE IN TIAS
A. Data Collection

1) Landsat TM/ETM+: The TM carried by Landsat
4 (1982-1993), Landsat 5 (1984-2012), and the ETM+
onboard Landsat 7 (1999-present) has provided a contin-
uous services as land monitoring system from both pho-
togrammetric and radiometric aspects. Both TM/ETM+
images can be browsed and downloaded via the U.S.
Geological Survey (USGS) EarthExplorer interface (Available:
http://earthexplorer.usgs.gov). After downloading the Level 1
product with separated bands in GeoTIFF format, the digital

numbers (DNs) were then converted into the top-of-atmosphere
(TOA) reflectance by means of appropriate calibration
coefficients, including band-dependent rescaling factor, Sun
azimuth, Earth—Sun distance, mean exoatmospheric solar irra-
diance (EFSUN ), and the gain strength [49]. Moreover, fol-
lowing to the failure of the Scan Line Corrector (SLC), an
instrument used to parallel each cross-track swath during the
forward motion, in May 2003, the uncorrected scanning had
resulted in a zigzag pattern of swath composite and caused
stripe voids in each Landsat 7 ETM+ scene. Hence, approx-
imately 22% of pixels in any given ETM+ scene remain
unfilled. To address this problem, we applied a simple linear
interpolation to fill void stripes in the computed MNDWI with
binarized color-code, e.g., to set pixel whose MNDWI greater
than 0.2 equal 1 and set pixel value equal 0 otherwise. On aver-
age, the SLC-off gaps at an interval approximately ~1 km on
the ground normally have 2-3 pixels in width at study site,
which corresponds to a total <50 pixels at coastal region in one
scene. Therefore, comparing to a great number of RS pixels
along the shoreline, which is mostly >14 000 pixels for HD
(with a variation about 1500 pixels between high and low water
level), the error due to the simplified manner of SLC-off cor-
rection is negligible. However, it should be emphasized that
Boulder Basin lies in the center of the SLC-off Landsat scene
(WRS Path: 39 Row: 35); therefore, the loss of pixels is min-
imal comparing with other lakes globally. For small lakes or
lakes lying near the edge of a SLC-off scene, the treatment
of data gaps should be more careful and a more sophisti-
cated gap filling method should be applied. For this study, we
first collected all TM/ETM+ images available over this region
(1984-2015), and then rejected the ones with partial or full
cloud-cover at study area by visual inspection. Finally, a num-
ber of 584 TM/ETM+ images (174 SLC-off mode) were used
as an input in the TIAS computation.

2) Digital Elevation Models: Three DEMs exploited in this
study are summarized in Table I. The higher resolution is
SRTM-C and ASTER GDEM?2 in 30 m [50], while the coarser
one is GMTED2010 in ~250 m [51]. Although GMTED2010,
which uses SRTM digital terrain elevation data (void-filled)
30 m DEM as a major input at approximately 70% of its terres-
trial coverage, the finest resolution of GMTED2010 has been
reduced to ~250 m to accommodate many other data sources
in its global dataset [52]. For SRTM-C, we used SRTM1 V2
(30 m) in HD [53]. The SRTM X-SAR DEM had also been pro-
posed and tested in the beginning of this study. However, since
its meshed coverage only supports a fraction of lake surface in
HD, it is thus excluded in the evaluation.

In addition, the last row of Table I remarks the elevation
of water mask as the lower bound of WSH estimate while
using raw DEM as an input. As mentioned before, the water
mask in each DEM is identified while there is a polygon with
constant value near the known location of water bodies. The
GMTED2010 has the same water mask elevations as SRTM-
C in HD, despite a 7-year transition between released dates.
Also, the ASTER GDEM2 compiled after 2000 and released
in 2009 has exclusively unveiled the WSH drop in HD dur-
ing late 2000s, with a water mask elevation 22 m lower than
others.
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TABLE I
OVERVIEW OF DEM PRODUCTS USED IN THIS STUDY
Name ASTER GDEM2 SRTM-C GMTED2010
Generation and METI/NASA NASA/USGS USGS/NGA
distribution
. 1 (U8, territory) and 3 7.5-30 arcsec, approx. 250—
Resolution 1 arcsec, approx. 30 m |(others) arcsec, approx.
1000 m
30 m and 90 m
Altitude 714 m 10m 26-30m
accuracy at 7.5 arcsec
Release year 2009 2003 2010
Multiple sources acquired in
Data . 11-day STS-99 mission| 2000 2010 Primarily SRTM,
acquisition 2000~ongoing in February 2000 Canadian elevation data, Spot 5
period Y reference3D, and data from
ICESat.
Spatial 83°N-83°S 60°N-56°S 83°N-56°S for most products
coverage
Coverage rate 100% 80% of earth landmass 100%
Areas with no ASTER Tonoaraphically stee
Area of missing data due to constant pograp ¥ steep
. area (due to radar None
data* cloud cover (supplied by characteristics)
other DEM)
Space shuttle
Instrument ASTER endeavour (NASA) '
- — Multiple sources
Technique Remote sensing (visible Interferometry
to thermal-infrared) C-Band
Datum World geodetic system 1984 (WGS 84) for horizontal and earth gravitational
model 1996 (EGM96) geoid for vertical
Water mask
elevation at
Lake Mead 350 372 372
w.r.t. WGS84 in
meter

* Except for bathymetry under waterbody.

3) Radar and Laser Altimetry: Launched in March 2002,
Envisat operated by ESA was a near-polar-orbiting opera-
tional satellite with an inclination approximately 98.5°. Its
sun-synchronous and exact-repeat orbital elements allowed the
dual frequency radar altimeter (RA2) to measure the nadir sur-
face height along a predefined ground-track every 35 days.
In October 2010, it accomplished an orbit lowering maneu-
ver to extend mission life and entered a new “drifting phase”
[54] of the mission: the orbit no longer followed exact ascend-
ing/descending nodes and a repeat cycle shortened to 30 days.
Toward the end of April 2012, there was a sudden loss in com-
munication that caused Envisat to be announced the end in cycle
113. The RA2 sensor data record (RA2_MWS_2P) and RA2
geophysical data record (RA2_GDR_2P) were archived for reg-
istered users via the ESA Earth Online data portal (Available:
https://earth.esa.int/). Here, we used the latest version of repro-
cessed Envisat GDR (V2.1) provided by CNES Archiving,
Validation, and Interpretation of Satellite Oceanographic data
(AVISO) service in regular operation mode spanning 2002-
2010, corresponding to cycle 6-93. We picked pass #406 near
the Overton Arm of northern Lake Mead (Fig. 1), which had
~3.5 km water crossover along track, or about ten 18 Hz
footprints. The ICE-1 altimetry range retracker, performed by
AVISO that had been proved adequate for inland water research
[5], [18], was then used with several extra corrections, includ-
ing geophysical (solid Earth tide and pole tide), atmospheric
(dry/wet troposphere), ionospheric (path delay proportional to

the total election content), and hardware (ultra stable oscil-
lator) terms [55]. A random drift of ground track in 4+1km
was ignored. Finally, the height of water level, with respect
to the WGS84 reference ellipsoid, at each 18 Hz Ku band
measurement can be estimated at the overpass in Lake Mead.
For ICESat laser altimetry, the Global Land Surface
Altimetry product number 14 (GLA14, release-33) was
taken as the primary data to calculate water level changes.
It is known that the ICESat only worked in cam-
paign mode, mostly in February—March/May—June/October—
November, 2003-2009, due to the failure in a pump diode array
soon after launch. The ICESat data had been made available
at the NASA’s earth observing system clearing house (ECHO)
online portal (Available: http://reverb.echo.nasa.gov). The data
preprocessing, including saturation correction and cloud exclu-
sion, was conducted by our algorithm identical to the method
introduced in Wang et al. [8], [19]. After that, to calculate
the precise water level changes, we chose the footprints with
only one peak in the received waveform for further calculation
because the footprint covering purely water surface normally
forms a single peak pattern [19]. Lake margin was determined
from Landsat ETM+ via a similar water index mask as intro-
duced later in Section IV-B. For HD, we compared several
images in wet season in 2003-2008, and chose Landsat 7 scene
LE50390352003284LGS01 to extract water boundary, as its
timing corresponding to the larger lake width that ensures more
footprints coming into the final calculation. Since the river
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width at this ICESat crossover is less than 1 km and the slope
of shore is steep, the seasonality of river width is thus negligi-
ble in this case. A buffer region with ~100 m as buffer radius
was then generated to clip footprints covering the waters. In the
end, the height based on its specific ellipsoid in a mean-tide
system (similar to T/P and Jason-1) was then converted into
WGS84 standard, and the averaged water levels and their stan-
dard deviations were calculated from along-track observations.
Regarding to the quantity and quality of observations, the data
obtained from ICESat campaigns were useful and stable over
the water surface. The track covering lake surface was about
2.5 km, approximate 15 footprints on average.

4) In Situ Data: The WSH of Lake Mead at HD has been
measured by the Bureau of Reclamation, U.S. Department
of the Interior (Available: http://www.usbr.gov). The monthly
average data published online were collected since 1935 based
on an uncharted local datum. A long-term historical record with
monthly WSH data allowed us to compare with TIAS estimates
back to 1980s. Since the variation of water level is smooth in
HD, without notable change excepting seasonal signal, we sim-
ply interpolated monthly record to the date when Landsat image
was taken during the time span. Finally, the mismatch in vertical
datum between gauge data and the TIAS was removed from the
estimate of bias in the time series after entire TIAS operation.

B. Data Processing

1) MNDWI: The determination of shoreline in Landsat
TM/ETM+ imagery can be accomplished by a couple of meth-
ods, e.g., the regular NDWI extraction or the single band (band
4, 750-900 nm) analysis. The MNDWI was first presented in
Gao [56] to map the vegetation liquid water. McFeeters [57]
later refined the model to extract water features by using green
and near-infrared (NIR) bands, known as the modified NDWI
(MNDWTI). The form we adopted here is an improved MNDWI
with bands selected by Xu [58], which used the shortwave-
infrared (SWIR) instead of NIR in Ji ez al. [59], to enhance the
separation of built-up features in water area. Upon the computa-
tion of the MNDWI, we are able to differentiate water features
from other landscape by using bands 2 and 5 in TM/ETM+-.
The MNDWI for Landsat is thus formulated as [58]

Green — SWIR
MNDW I andsat = m M

where green is the Landsat TM/ETM+- band 2 at 520—600 nm
and SWIR is the lower reflectance band 5 at 1550-1750 nm.
The principle behind this index is by revealing the difference
between the strong and weak reflectance from water surface,
with a normalization to avoid solar zenith angle alteration, to
distinguish the high-contrast pattern in spectrum that matches
the behavior of water molecules. The area of water surface is
then discriminated from other surface types where the MNDWI
of such pixel is higher than certain threshold. Since the thresh-
old of MNDWTI is an empirical number depending on the local
mixture of landscape [59], we first selected 0.2 as threshold to
compute and then tested between 0.15-0.25 to find the better
setting. This iteration acting as a calibration purpose was used

to find a threshold setting for certain DEM that results in lower
RMSE compared with in situ data.

2) DEM Bathymetry Projection: To extend the terrain
downward into water surface boundary existing in the origi-
nal DEM, we linearly extrapolate the terrain surface from the
nearby grids and assume that the slope remains constant. The
pixelwise computation of bathymetry over water area is thus
expressed as

Hi:Hj—Sj XDij (2)

where

i pixel over lake to be extrapolated,

j  is the pixel closest to ¢ with valid elevation in DEM,

H,; is the height of bathymetry at pixel i,

Hj is the height of land at pixel j,

D, j is the geometric distance between pixel 7 and j,

S is the averaged slope computed from a 3 x 3 window
centered at pixel j.

While there are multiple land points with the same closest
distance to point ¢, we took an average of slope from these
points and follow the same computation. As mentioned before,
this method would probably underestimate the WSH when the
lake level falls near the actual lake bottom since the lower
bound of lake bottom had not been limited. However, this
coarse approximation is sufficient to serve as a reference for
few tens of meters movement in vertical, as the behavior of
Lake Mead. As shown in Fig. 4, a comparison between original,
modified, and real bathymetry is demonstrated. In this figure,
the top and middle panels show the change of water surface
mask and projected bathymetry exemplified by GMTED2010.
The bottom panel is an actual survey provided by USGS
(Available: http://pubs.usgs.gov/of/2003/0f03-320/index.htm).
It is observed that although some of the coastal areas have inac-
curate bathymetry (e.g., near lon: 245.30 lat: 36.12 and lon:
245.36 lat: 36.14), and some islands that have been intention-
ally masked out, the slope of projected bathymetry matches
mostly well with the USGS reference. Another example shown
in Fig. 5 demonstrates the TIAS with ASTER GDEM?2 before
and after the bathymetry projection. The estimate of WSH using
original DEM meets a lower bound at 350 m w.r.t. WGS84
ellipsoid while WSA shrinks to a smaller extent than the pre-
defined water area (green square). Once we extend the terrain
toward the lake center for hundreds of meters, the improved
WSH estimates (blue cross) are allowed to access deeper
contours based upon the modified DEM.

C. Water Level Extraction

1) WSH Histogram: After gathering all DEM values along
the shoreline, we first eliminated outliers obviously out
of bounds (e.g., deviation greater than + 100 m) and then
applied a standard 20 data editing for initial filtering. The
estimates would form a distribution with a spread of a few
more than ten meters and centralizing within a few meters, as
shown in Fig. 3 panel b. The histogram is then used to find the
best estimate of WSH at certain scene by the following fitting
function.
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Fig. 4. Visual comparison of original (top), modified (middle), and real (bottom) bathymetry from the projection method. The original and modified DEM is
GMTED2010 and the actual bathymetry is from USGS 1999 sidescan-sonar and chirp seismic-reflection survey. The color code covering the variation of water

level during study time span is in meter.

2) Generalized Extreme Value (GEV) Fitting Function:
Considering the DEM with internal vertical accuracy varying
up to few tens of meters, in addition to the grid size of MNDWI
that contains a horizontal ambiguity of at least 30 m, the his-
togram of WSH samples thus has extreme values centered at
a few meters where the tail of the pdf is relatively prolonged.
Therefore, we chose the GEV distribution to model the peak
value among a collection of samples. The density function of
the GEV distribution is expressed as [47], [60]-[61]

y = f(z|p, 0,6) = <1)

a

3

for

g(ffc—u)

g

1+ >0 )

where p, o, and ( are the location, scale, and shape parameters,
respectively.

We exploit the GEV fitting function namely gevfir compiled
by the MATLAB Statistics Toolbox to resolve the fitting param-
eters. The gevfit function fits the histogram by the maximum
log-likelihood estimation. It first obtains initial parameters from
the P—P (probability—probability) plot of input data (i.e., WSH)
over the shape parameter, and then iterates to maximize the log-
likelihood with respect to the parameters until convergence. The
fitting procedure is applied to each of the 584 scenes and a typi-
cal example of fitting result is also shown as green line in Fig. 3
panel b.

V. RESULTS AND DISCUSSION
A. TIAS Versus In Situ

The temporal comparison of WSH anomaly estimated by
the TIAS with MNDWTI threshold equal 0.2, radar altimetry,
and gauge data in HD is shown in Fig. 6. Fig. 6(a) displays
that the TIAS estimates using a paired Landsat images and
ASTER GDEM?2 (blue dot) yield a fairly good agreement with
in situ data (red line) during the comparing time span. Although
the Envisat ICE-1 retracked results (green circle) provide bet-
ter quality measurements at this location, we could see the
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Fig. 6. Panel (a, left): the TIAS time series using ASTER GDEM2 (blue dot) and compared with gauge data (red line) and Envisat altimetry (green circle). Panel
(a, right): a zoom-in of left panel in 2002-2011 during Envisat time span. Panel (b), (c), and (d) is to compare gauge record (x-axis) with TIAS WSH (y-axis)

using ASTER GDEM2, SRTM-C, and GMTED2010, respectively.

temporal restriction for Envisat, in terms of a shorter mission
span and a coarser 35-day repeat period.

The lower panel of Fig. 6 performs the intercomparison
between three DEMs while using identical RS images as input,
and is validated with gauge data. It is observed that all of

these three DEMs are capable to yield excellent agreement
with gauge data, with R? values equal to 0.99 for all, while
GMTED2010 seems the best among them without any specific
deficiency in any altitude. In contrast, the ASTER GDEM?2 has
a slight unmatched height near 350 m w.r.t. WGS84, which
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TABLE 11
STATISTICAL RESULTS OF THE TIAS AND ALTIMETRY SATELLITES MEASURED WSH COMPARED WITH INTERPOLATED
IN SITU DATA IN VARIOUS TIME SPANS

Before de-outlier After de-outlier
MNDWI > | Pres.
- | PEM Lieshota | RMSE (m) (95% CD RMSE (m) (£ 95% CI) R | iy | N
s 0.15 115+ 0.54 112+053 099 | 93 | 543
D _| SRTM o 1.09 £ 0.55 1.03%0.53 099 | 90 | 528
23 cound | 09+0. 03+0. .
Eg 0.25 119 £ 0.55 0.98 £ 0.54 099 | 89 | 522
24 0.15 167045 162+ 043 099 | 92 | 53
§ 2| ASTER =05 1.83+0.46 1.74 + 0.44 099 | 90 | 523
d GDEM2 .. . I U. . T U. .
2 0.25 2.06 + 047 1.90 £ 0.45 099 | 87 | 507
& |omMTED| 0.15 1.01£063 0.97+0.63 099 | 94 | 550
2010 | 020 0.97 £ 0.64 0.86 +0.63 099 | 92 | 539
0.25 115+ 0.64 0.85+0.63 099 | 91 | 530
ICESat (2003-2009) Z 0392008 099 87 20
Envisat (2002-2010) - 0.38+0.10 099 | 95 82

The first column name “Before de-outlier” numerates the RMSE 4 95% confidence interval of the TIAS estimates (entire Landsat dataset) compared with in situ
data. The second column name “After de-outlier” numerates the RMSE 4 95% confidence interval of the TIAS estimates after 20 de-outlier from the moving
average itself and compared with in situ data. R? is square of the Pearson correlation coefficient. The preservation rate (Pres. Rate) indicates the percentage of
height measurements preserved after calibration, where N is the correspondent number of preserved Landsat images. By using different MNDWI threshold, N will
change accordingly due to the inclusion or discard of TIAS points from certain Landsat scenes.

corresponds to the same interval in the top panel. The disagree-
ment, due to the inaccuracy of raw or modified DEM at that
elevation and the slope change, degrade the correlation with
gauge data. A systematic offset between gauge measurement
and TIAS WSH is also noticed in this panel. It is basically due
to the difference in absolute height.

In Table II, we examined the effectiveness among DEMs in
TIAS and compared the results with altimetry data. Moreover,
we tested different MNDWI threshold to reveal its role in the
TIAS computation. The left part (before de-outlier) of Table II
is the comparison between entire RS imagery dataset and gauge
data, without any data selection, where the right part (after de-
outlier) is the comparison using de-outlier time series based
on the moving average itself. As shown in the TIAS part of
Table II, a de-outlier process that removes anomalous estimates
generally improves the accuracy at 3—30 cm, which effectively
discards 6-13% of data during self-check. The best result is
0.85 % 0.63 m while using GMTED2010 with MNDW!I thresh-
old set to 0.25, and the worst one is 1.90 4= 0.45 m while using
ASTER GDEM?2 with MNDWI threshold set to 0.25, after
de-outlier. Although GMTED2010 has the coarser resolution
in this comparison, it gives the best results compared with
others. The reason is because it took SRTM as its core data,
especially in the study area (as shown in Table I); hence, the
TIAS result varies similarly with SRTM C-band solutions. The
extra improvement it has made is because of its smoothness,
which seems to be a shortcoming intuitively, actually yields
a less variable bathymetry, compared with SRTM C-band.
For 30 m SRTM C-band and ASTER GDEM?2, the extrapo-
lated bathymetry is more fluctuating and some of the grids are
treated as noise in the fitting procedure. For ASTER GDEM2,
the actual vertical accuracy may be a bit worse than SRTM,
especially over mountain region [46].

In addition, the optimal threshold setting differs case by case
and depends mainly on the DEM in use. Overall, the refer-
ence value at 0.2 remains the best or second in the midst of
three options, and a change in threshold just marginally alters

the result. This is because the DEM accuracy over mountain
area and the effect of slope change has larger uncertainty that
overrides the difference between these three thresholds. The
fine-adjustment between 0.15 and 0.25 may not be significant
for the determination of TIAS WSH estimates unless we have
a higher resolution DEM. Nevertheless, the selection of thresh-
old can be considered once there is in situ data available and
this calibration step is executable at study site.

In the lower part of Table II, radar/laser altimetry measure-
ments are also listed for a qualitative comparison, although the
sampling time was different from Landsat imagery. The statisti-
cal results maintaining high accuracy at 0.38-0.39 m in RMSE
are similar to the results reported in other studies [62], despite
the narrow water surface width that only allows few points of
measurements in Lake Mead. In contrast, based on the limited
resolution of tested DEMs and Landsat imagery used in this
study, which are 30 m at highest for both, the best result of
the TIAS is 0.85 4 0.63 m. This fact implies that the current
form of TIAS can only be used to monitor water level change
larger than meter level. It needs further improvement to achieve
higher accuracy, e.g., using higher resolution RS imagery and
local DEM.

Another point worthwhile to mention is the temporal sam-
pling rate of each radar, laser, or the TIAS approach. The
common revisit period for current radar altimetry satellites, e.g.,
Jason-2 and SARAL/ALltiKa, is 10 and 35-day, respectively, if
they had a fly-by at these locations. For the not fully operated
ICESat-1, the repeat cycle, by design, would be 91-day. The
TIAS has repeat observation at least every 16-day along with
the revisit of multiple Landsat satellites. However, the temporal
sampling of the TIAS is not regular and heavily depends on the
regional climate, such as pertaining cloud cover in rainy season.
Therefore, at HD there is a sampling rate of ~20-day if we take
584 usable scenes as a benchmark in its 32-years period. The
temporal resolution can be potentially improved in later years
and in the near future since there are many other optical sensors
operating in space.
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Fig. 7. Error analysis and sensitivity test for several error components, namely, shoreline positioning uncertainty (K), vertical random error in DEM (opgm),
terrain slope (%), and RS imagery/DEM resolution (R;s). The blue line used for all panels as a reference is specified as: K = 5, opgy = 20 m, ¢ = 40°, and

Rrs = 30m. (a) A simulation of error budget (in meter) as a function of the
Error of the TIAS estimates associated with three DEMs is given by different

number of pixel along shoreline, i.e., dividing the shoreline length by pixel size.
symbols at corresponding abscissa locations. (b) Error associated with horizontal

uncertainty. The error reduced from meter level to <50 cm when the value of K in (6) reduces to 1 or 2. (c) Error change as a function of varying DEM relative
vertical accuracy. In this case, the change among 1-50 m slightly altered the error budget in just few centimeters due to an abundance of n. (d) The change of error
budget together with terrain slope change, which is the most dominant factor in this analysis. The value of ) varying from 80°—1° altered the error from about
10 m to 0.2 m level when n is about 15 000. (e) A simulation of error while using other RS imagery and DEM sources with smaller pixel size. The error could be

reduced to 0.2 m level with pixel size in 1 m.

B. Error Budget and Sensitivity Analysis

To understand error sources and to explore potential
improvement of the TIAS, we analyze the error propagation and
test the sensitivity of several components. The errors propagat-
ing to the computation of final RMSE (compared with in situ
data) are complicated, at least involving the horizontal/vertical

accuracy of DEM, resolution, and quality of RS imagery, rela-
tive error due to coregistration, terrain slope, number of obser-
vations, and uncertainty of the MNDWI classification. Here, we
simplify the problem and analyze a couple of dominating fac-
tors to check the sensitivity of each component contributing to
the final result. A major part of total error as compared with
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in situ data at each snapshot, as denoted by o in the follow-
ing equation (5), is associated with the random error in DEM
ODEM, the terrain slope osjope that renders the ratio of water
level change along with extent change, and the number of shore-
line pixels n within one Landsat image that efficiently reduce
random errors in DEM.

2 2
0°“DEM + 0“Slope
UT\/ - P ©)

In (5), the vertical uncertainty associated with terrain slope
has a range defined as

OSlope = K x Rrs tan 6 (6)

where R, is the pixel size (i.e., 30 m for Landsat) in meter,
9 is the terrain slope in degree, and K is the general scal-
ing factor indicating horizontal accuracy of DEM and MNDWI
classification error.

By simulating the total error from above-mentioned vari-
ables, we gave a set of sample inputs to generate a figure as
shown in Fig. 7, where the ordinate of panel a, b, d, and e is in
log scale. In Fig. 7(a), opgm equal 20 m and K equal 5 were
selected as a starting point to match the predicted errors with
our results. The number of pixel is set to 14 000 for TIAS results
and a variation of £1500 may occur in this case. Here, the ref-
erence of vertical error at 20 m is reasonable since the accuracy
of DEMs used here is usually less reliable in mountain area,
where the RMSE is higher than the original specification, i.e.,
10-20 m [63]. In Fig. 7(a), the slope of terrain [¢ in (6)] is set
40° for HD, corresponding to the average slope plus 20 com-
puted from SRTM-C within the water variation interval (i.e.,
320-375 m in HD). In this panel, we observe that the error
drops significantly as the number of pixels along the shoreline
increases. The TIAS error is about the same level as analysis
from (5) at HD (blue symbols), except for the slightly higher
error computed by ASTER GDEM?2 (+symbol).

In Fig. 7(b)—(e), we took the setting of Fig. 7(a) as the refer-
ence to test the sensitivity of error component one at a time. In
Fig. 7(b), the error decreases along with the descending value of
K, from 5 to 1, meaning the combined error of shoreline delin-
eation and DEM horizontal accuracy decrease from 5 to 1 pixel
can effectively reduces the error to submeter level. It implies
that our current method may consist of a notable uncertainty in
water outline determination. A more sophisticated decision tree
may be needed to reduce the horizontal error and to achieve
a better shoreline positioning. However, it is emphasized that
the final RMSE is a combined error with other components,
such as the slope shown later in Fig. 7(d), hence the initial
value of K picked here may be exaggerated. Next, in Fig. 7(c),
while switching the relative vertical error in DEM, from 20 m to
1 m and 50 m, the corresponding error varies only within about
10 cm at the study site. Hence, the random error in DEM is less
critical in the computation of water level while dealing with
a water body at similar size. In Fig. 7(d), we tested the error
budget associated with the change of terrain slope, including
1°, 20°, 40° (HD case), 60°, and 80°, to examine the potential
error changes accordingly. In this panel, we observe the error
increases significantly as the slope elevates, from 0.2 m (at 1°

slope) to 6 m (at 80° slope), if we kept other settings in HD
case fixed as reference. It is known that in HD, a part of lake-
side terrain has a slope greater than 40°, which contribute to a
great portion of error in the final RMSE. For other lakes in the
world, the application of TIAS should consider avoiding steep
part of terrain and use only flatter area while the pixel number
(shoreline length) allows.

Finally, the errors associated with the pixel size of both RS
imagery and DEM are shown in Fig. 7(e). In Fig. 7(e), the
prospective application of the TIAS is revealed as we see the
error budget decreases significantly when the pixel size shrinks
to 5 or 1 m level. It is noted that the equivalent lake size
has become smaller accordingly in this figure, while the num-
ber of pixels along the shoreline remains and the size of each
pixel downscales. For example, in the simulation of 1 m res-
olution the x-axis at 10 000 corresponding to a total length
of shoreline equal 10 km, and the errors remaining perhaps
reach 20 cm level. Therefore, use of ultrahigh-resolution opti-
cal or radar images will boost the applicability of this method
prominently.

VI. CONCLUSION

In this study, we demonstrated a possibility to recover the
inland WSH via the TIAS, an indirect measure that incorpo-
rates a horizontal swath of satellite imaging sensors/instruments
and a referenced DEM. In order to obtain a promising
result, several assumptions are needed to uphold the proposed
technique: 1) the shore should be less steep for detection of
WSA changes as WSH varies; 2) the WSH variation must
exceed current limitation in accuracy, say >1m; and 3) the
bathymetry, if not available in a DEM, will be assumed a
constant slope. Here are also some uncertainties need to be con-
sidered: 1) the accuracy depends on the DEM and RS imagery
in use; 2) extra uncertainty introduced by aligning RS imagery
and DEM and the following double-linear interpolation has not
been considered; and 3) regional variability of bathymetry slope
may lead to a decreased accuracy once the water level drop
into the simulated DEM section, and the uncertainty increases
as the WSH approaches lake bottom. Nevertheless, the TIAS
at presented study site, HD in Lake Mead, yields an accuracy
of WSH estimate up to 0.85 m and an excellent correlation
with groundtruth data. It satisfies the needs in a broad range of
hydrological and limnological studies elsewhere in the world,
especially for lakes that are experiencing extreme variations in
height and are isolated without sufficient in situ data, or whose
location is out of the flight path of current radar/laser altime-
try satellites. Although a lot of concerns may have placed to
the data availably in this study: the Landsat 4 was decommis-
sioned in 2001, Landsat 5 stopped working in November 2011,
and Landsat 7 suffers a long-term degradation in gains. The
TIAS will incorporate the newly launched Landsat 8 as well
as other optical instruments in the community, to conduct a
prospective/retrospective analysis and operational observation.
More importantly, the higher resolution (<30cm) is achiev-
able by using high or ultra high-resolution commercial RS
imagery, based on the error analysis. In the future, we will also
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use other altimetry satellite data, such as reprocessed Jason-
1/-2, TOPEX/Poseidon and SARAL/AItiKa, to elongate the
altimetry time series for validation of this technique in other
major lakes
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