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[11 Two-dimensional (2-D) satellite imagery has been increasingly employed to improve
prediction of floodplain inundation models. However, most focus has been on validation of
inundation extent, with little attention on the spatial variations of water elevation and slope.
The availability of high resolution Interferometric Synthetic Aperture Radar (InSAR)
imagery offers unprecedented opportunity for quantitative validation of surface water heights
and slopes derived from 2D hydrodynamic models. In this study, the LISFLOOD-ACC
hydrodynamic model is applied to the central Atchafalaya Basin Floodway System,
Louisiana, during high flows typical of spring floods in the Mississippi Delta region, for the
purpose of demonstrating the utility of InSAR in 2-D floodplain model calibration. Two
schemes calibrating Manning’s roughness in channels and floodplains are compared. First,
the model is calibrated in terms of water elevations at a single in situ gage during a 62-d
simulation period from 1 April 2008 to 1 June 2008. Second, the model is calibrated in terms
of water elevation changes calculated from ALOS PALSAR 2D imagery acquired on 16
April 2008 and 1 June 2009, an interval of 46 d. The best-fit model shows that the mean
absolute error is 5.7 cm/46 d for InNSAR water level calibration. Daily storage changes within
the ~230-km? model area are also calculated to be on the order of 107 m®> d~' during high
water of the modeled period. The favorable comparison between both approaches
demonstrates the feasibility of SAR interferometry for 2-D hydrodynamic model calibration
and for improved understanding of complex floodplain hydrodynamics.
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1. Introduction

[2] The Atchafalaya River Basin, a low-lying catchment
in southern Louisiana consisting of wetlands and bayous, is
the principal distributary of the Mississippi River. Given its
high concentration of wetlands and its role as the alternate
flow path for Mississippi floodwaters, the Atchafalaya
Basin Floodway System (ABFS) possesses an important func-
tion in mitigating floods and preserving wetland resources
in coastal Louisiana. For example, Mississippi River flood-
waters in May 2011, resulting from unusually high precipita-
tion in the watershed, were diverted through the Morganza
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Spillway into the ABFS to prevent major inundations in
populated cities including Baton Rouge and New Orleans
[U.S. Army Corps of Engineers (USACE), 2011]. Also, flood
damage caused by Hurricane Katrina in August 2005 and
Hurricane Rita in September 2005, although significant, was
mitigated by flooding into the Atchafalaya Basin [Lake
Pontchartrain Basin Foundation (LPBF), 2008; Knabb
et al., 2006, 2007]. Flood management has been enabled
through the construction of levees, bank protection, and spill-
ways along the Lower Mississippi River, the Atchafalaya,
and their tributaries.

[3] Although the man-made levees and river diversions
abate flood damage, they also disrupt the natural floodplain
environment. Of principal concern is the reduction by more
than 50% in the historically large sediment loads deposited
within the Lower Mississippi River delta [LPBF, 2010],
which is a major factor in the land loss in southeastern Loui-
siana [Meade, 1995]. Coastal Louisiana has undergone a net
change in land area of about —4877 km? from 1932 to 2010
and annual wetland loss has been estimated 42.92 km? from
1985 to 2010 [Couvillion et al., 2011]. Comprehensive flood
control and wetland loss studies on coastal Louisiana
including the ABFS have been initiated to further the under-
standing of its important role [U.S. Environmental Protec-
tion Agency (USEPA), 1987].
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[4] Despite its importance to flood control, knowledge of
the Atchafalaya Basin’s floodplain dynamics remains poor.
This is primarily due to a lack of in situ gauge measure-
ments in the floodplain. Most operational gauges are
located along main river channels and bayous for practical
and economic reasons [Allen et al., 2008; Kim et al.,
2009]. Thus, despite long historical data records for the
channels, there are insufficient in situ data for detailed 2-D
floodplain model calibration [Allen et al., 2008]. This is
because water flow across wetlands is more complex than
channel routing [Alsdorf et al., 2007 ; Jung et al., 2010] as
flow paths and water sources are not constant in space and
time, but rather vary with floodwater elevations.

[s] Advances in remote sensing hydrology, particularly
over the past 10 yr and even more recently, have demon-
strated that hydraulic variables can be measured reliably
from satellites [Alsdorf et al., 2007]. Therefore, 2-D flood
modeling combined with emerging remotely sensed data
would greatly facilitate the investigation of the temporal
and spatial flooding patterns and further the understanding
of the linkage between channels and floodplains.

[6] The first popular approach to fluvial hydraulics mod-
eling was one-dimensional finite difference solutions of the
full St. Venant equations along the river reach [e.g., Fread,
1985; Samuels, 1990; Ervine and MacLeod, 1999] since
the 1-D model design and implementation are simple and
computationally efficient (e.g., MIKE11 [DHI Water and
Environment, 2001], ISIS [ISIS FLOW, 2001], FLUCOMP
[Samuels and Gray, 1982], and HEC-RAS [USACE, 2001]).
However, when applied to floodplain flows, the 1-D model
cannot simulate lateral diffusion of the flood wave. This is
because floodplain topography in those models is discre-
tized as cross-sections rather than as a surface and flow
depends on the location and orientation of finite cross-sec-
tion measurements [Hunter et al., 2008].

[7] The growing availability of spaceborne data and
advances in computing resources have enhanced the oppor-
tunities to estimate flood inundation extent, floodplain
water elevation, and to model floodplain hydrodynamics
[Hess et al., 1995; Smith, 1997; Alsdorf et al., 2000; Bates
et al., 1992]. For instance, high-resolution light detection
and ranging (LiDAR) elevation maps enable modelers to
represent an improved spatial resolution of channel and
floodplain hydraulics that are consistent with known proc-
esses [Bates et al., 2005]. Repeat-pass synthetic aperture
radar (SAR) interferometry has recently been employed to
estimate water level changes with time [Alsdorf et al.,
2000] and, when combined with modeling, storage changes
[Alsdorf, 2003] and flow hydraulics [Alsdorf et al., 2005].
Satellite SAR interferometry has been utilized to character-
ize complex fluvial environments [Kim et al., 2009; Lu
et al., 2009; Lee et al., 2009; Jung et al., 2010]. Because
radar pulse interactions with inundated vegetation typically
follow a double-bounce travel path that returns energy to
the antenna, flooded woody vegetation in this study area
allows SAR interferometric coherence to be maintained
and makes it possible to provide water elevation changes
[Lu et al., 2005; Lu and Kwoun, 2008; Jung and Alsdorf,
2010].

[8] Two-dimensional models in conjunction with suit-
ably resolved and accurate digital elevation models
(DEMs) of the channel and floodplain, and with suitable
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inflow and outflow boundary conditions, allow the water
depth and depth-averaged velocity to be computed [Bates
et al., 2005]. Many 2-D hydraulic modeling approaches
discretized the floodplain as a high-resolution regular grid
(e.g., TUFLOW [Syme, 1991], DIVAST [Falconer, 1986],
TRENT [Villanueva and Wright, 2006], JFLOW [Bradbrook
et al., 2004], and LISFLOOD-FP [Bates and De Roo, 2000]).
Structured-grid 2-D flood inundation modeling has been
widely used to predict floodplain inundation since first pro-
posed by Zanobetti et al. [1970].

[o] The work presented here complements previous
investigations of Atchafalaya River hydrology. For exam-
ple, previous modeling studies have focused on the spatial
and volumetric changes of water, sediment, and salinity in
the delta and coastal regions located at outlets of the ABFS
[e.g., Donnell et al., 1991; Donnell and Letter, 1992;
Wang et al., 1995; Vaughn et al., 1996], although they did
not implement 2-D modeling to compute floodplain water
variations. Other studies demonstrated the feasibility to mea-
sure floodplain water elevation changes with in situ meas-
urements in combination with InSAR altimetry [Lu et al.,
2005; Lu and Kwoun, 2008 ; Lee et al., 2009; Kim et al.,
2009]. Other studies using visible and infrared Landsat im-
agery have delineated land-water classification within the
ABFS [4llen et al., 2008].

2. Study Objective

[10] The calibration of 2-D floodplain models is usually
limited by few or no water level gauges in the floodplain,
making it difficult to validate detailed spatial variations in
inundation. While remote sensing methods have been uti-
lized to evaluate the accuracy of modeled flooding extent
[e.g., Wilson et al., 2007 ; Di Baldassarre et al., 2009], few
modeling studies have implemented current satellite SAR
interferometric phase measurements of water elevation
changes because the processing of SAR interferometry for
generating hydrologic products is not straightforward.

[11] The goal of the present study is to investigate to
what extent SAR interferometry can be used to improve
model calibration. Specifically, the 2-D LISFLOOD-ACC
model [Bates et al., 2010] is applied to the central ABFS to-
gether with repeat-pass interferometry from the Advanced
Land Observing Satellite (ALOS) Phased Array type L-band
Synthetic Aperture Radar (PALSAR). LISFLOOD represents
1-D diffusive channel flow and 2-D simplified shallow water
floodplain flow [Bates et al., 2010]. Satellite InSAR data,
namely PALSAR, are used to derive flood levels changes
and water surface slopes at times of SAR data acquisitions.

[12] LISFLOOD is calibrated using two different
approaches, both focusing primarily on Manning’s equation.
First, a traditional approach using gauge measurements is
employed. Second, the same model is calibrated using the 2-D
water level and slope data extracted from two PALSAR inter-
ferometric images, acquired 46 d apart. The results of both
approaches are compared and the merits and disadvantages of
each are discussed. The PALSAR-derived floodplain water
elevation change is also used to generate a time series of water
storage changes in the model area.

[13] This study offers new insights in 2-D hydrodynamic
modeling, particularly in floodplain environments. The com-
plexity of floodwaters has not been well captured in
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previous modeling studies because floodwaters move later-
ally across wetlands and this movement is not bounded like
that of a typical channel flow. This study of 2-D hydrody-
namic modeling and the implementation of SAR interferom-
etry for model -calibration aims to improve our
understanding of the Atchafalaya floodplain dynamics and
provide an opportunity to investigate the impacts of flood
hazard in the coastal Louisiana regions.

3. Study Area

[14] The ABFS, a large low-lying wetland bounded on
the east and west by levees, is characterized by 2500 km?
of the nation’s most significant extents of bottomland hard-
woods, swamps, bayous, and backwater lakes [Allen et al.,
2008]. As a major distributary of the Mississippi, it annu-
ally receives nearly 30% of the Mississippi River water
which flows south through the floodplain to the Gulf of
Mexico along ~225 km of river reach [Louisiana Depart-
ment of Natural Resources (LDNR), 2010; Kim et al.,
2009]. In the spring, the basin receives water carrying high
loads of sediment and nutrients [Allen et al., 2008]. As a
consequence of frequent flooding, the basin is a sparsely
populated area holding a rich abundance and diversity of
vegetation species. Figure 1 shows the study area including
rivers, levees, gauges, the ALOS PALSAR swath, and model
domain. The U.S. Geological Survey (USGS) National Wet-
lands Research Center and the U.S. Army Corps of Engineers
(USACE) provide available gauge stations in the study area.
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[15] The USACE has identified 13 sub-basins or water
management units (WMU) because of morphological di-
versity within the basin [USACE, 1982]. Figure 2 shows
the WMUs outlined in gray. Because of the unique charac-
ter of each WMU, fluctuating river levels can result in very
different patterns of water distribution among them. For the
current study, LISFLOOD was applied specifically to the
Buffalo Cove WMU, an area of 230 km? in the central
ABEFS (see Figures 1, 2). The WMU is characterized by a
swamp forest with paths of slowly moving water or bayous.
This WMU was selected because of the proximity of in situ
and satellite measurements, and because its upstream,
downstream, and lateral boundary conditions are well
defined. Buffalo Cove is surrounded by the main channel
on the east and a levee on the west (Figure 2) with water
level gauge stations at Myette Points (C3) in the channel
and Buffalo Cove (B1) in the bayou, shown in Figure 3.

4. Methods and Data
4.1. Hydrodynamic Model

[16] An inertial and parallel version of LISFLOOD-FP
hydrodynamic model, or LISFLOOD-ACC [Bates and De
Roo, 2000; Bates et al., 2010], was applied to the Buffalo
Cove WMU. LISFLOOD-ACC is a simplified shallow
water model that allows the use of a larger stable time step
than previous LISFLOOD-FP variants, and hence quicker
run times in addition to a better representation of the flow
physics [Bates et al., 2010; Neal et al., 2011]. Channel

W90

Figure 1.

LiDAR map over the study area. The ABFS is bounded on the east and west sides by levees

in southern Louisiana. The upstream main channel in the basin diverts the Lower Mississippi River and
flows out to the Gulf of Mexico. The orange rectangular box represents the model study area and the
green diagonal box indicates the ALOS PALSAR swath. The Atchafalaya River and Mississippi River
are represented by blue lines. Levees and gauges are marked with red lines and inverted black triangles.
Gage stations are located at (C1) Krotz Springs and (C3) Myette Point along the main channel and at
(B1) Buffalo Cove in the bayou, whereas C2 is a virtual station.
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Figure 2. Schematic of local hydrodynamics in the
ABFS including 13 water management units (WMUs): (1)
Lake Henderson, (2) Alabama Bayou, (3) Werner, (4) Lost
Lake, (5) Cow Island, (6) Bayou DeGlais, (7) Cocodrie
Swamp, (8) Pigeon Bay, (9) Beau Bayou, (10) Flat Lake,
(11) Buffalo Cove, (12) Upper Bell River, and (13) Six
Mile Lake [USACE, 1982]. Black and light blue arrows are
indicative of channel and floodplain flow directions. Light
blue dotted lines represent floodplain flow boundary condi-
tion segments in the model. These lines are normal to the
main channel direction between C2 and C3.

flow is represented using the diffusive approximation to the
full I-D St. Venant equations solved using a fully implicit
Newton-Raphson scheme. Floodplain flows decoupled in x
and y directions are implemented for a raster grid to give
an approximation to a 2-D inertial wave. Mass conserva-
tion is simulated through the continuity equation (equa-
tion (1)). The LISFLOOD-ACC momentum equation
includes the gravity and local acceleration terms from the
shallow water equations but not the convective accelera-
tion, and it is solved using an explicit finite difference
scheme (equation (2)),
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where /4 is the cell water depth, A0 is the depth between
cells through which water can flow, Q is the flow between
cells, Ax is the cell size, n is Manning’s roughness coefficient,
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q is O from the previous time step divided by cell width, and
g is gravity. Model implementation involves use of the diffu-
sive solver for channel flow and equations (1) and (2) for 2-D
inundation flow modeling, which has been parallelized using
the shared memory Open Multi Processor (OpenMP) [Neal
et al., 2009] to reduce model run time.

[17] The Buffalo Cove model was run over a 62-d simu-
lation period from 1 April 2008 to 1 June 2008 to accom-
modate at least two ALOS PALSAR acquisition dates on
16 April 2008 and 1 June 2008. Figures 3a and 3b illustrate
that the simulation period comprises the high flow condi-
tions associated with upper Mississippi River Basin snow-
melt and spring rains, typical for this time of year.

[18] Model inputs included floodplain topography, bath-
ymetric depths, channel widths, flow boundary conditions,
and Manning’s roughness coefficients for channels (n¢)
and floodplains (nr). The floodplain topography was con-
structed using a high-resolution 1 m LiDAR DEM of the
basin [U.S. Geological Survey (USGS), 2011]. The LiDAR
survey was acquired in November 2010 during an optimal
data collection window in terms of average river stage, av-
erage minimum temperature, and tree canopy. The vertical
accuracy requirements meet or exceed the root-mean-
square elevation (RMSE) of 18.5 cm required by National
Standard for Spatial Data Accuracy (NSSDA). The 1 m
LiDAR data was aggregated to 90 m to decrease grid reso-
lutions and reduce model run time. The pixel-to-pixel noise
is uncorrelated and reduces linearly in proportion to 1/+/n
as the data are aggregated, where n is the number of pixels
being averaged [Rodriguez et al., 2006]. The input LiDAR
noise for model grids at 90 m is thus less than 0.2 cm.

[19] The averaging can result in a terrain data error due
to the smoothing out of hydraulically relevant topography.
This resolution has been shown in a number of previous
studies to be appropriate to predict flood inundation in rural
areas providing care is taken over the representation of lin-
ear features, such as embankments or levees, which can
control the flow development [Bates and De Roo, 2000;
Horritt and Bates, 2001]. Levees in the domain are narrow,
typically less than 10 m wide and are sufficiently high so
that floodwaters cannot overtop them for the chosen simu-
lation period. In order to handle these subgrid-scale fea-
tures [Yu and Lane, 2011], the levees in 1 m resolution
were vectorized, extracted, and input into the 90 m resolu-
tion floodplain topography directly, without averaging out
adjacent elevations that would have resulted in an unchar-
acteristically low height at 90 m resolution.

[20] Bathymetry was based on USACE hydrographic
survey maps for the Atchafalaya [USACE, 2006] that pro-
vided bathymetric depth measurements every 10 feet along
the river cross sections. Based on the bathymetry data set,
the average bed elevations and channel widths were calcu-
lated as equivalent area rectangular cross sections at
approximately every 1 km along the 34 km reach of the
main channel in the Buffalo Cove region.

[21] To facilitate model set up, the model coordinates
were rotated 15.67° clockwise north. The coordinate rota-
tion makes the vertical axis in the model system parallel to
the main channel direction and the horizontal axis to the
floodplain flow condition. Figure 2 shows schematic local
hydrodynamics in the study area. Flow pathways are well
protected by high levees, thus water discharge per each
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Figure 3. Daily time series of water discharges and elevations at gauges in the model area during
2008. (a, b) A 1-y hydrograph including the model period during high water. The solid lines represent the
first and last days of simulation on 1 April 2008 and 1 June 1 2008, respectively. Channel water eleva-
tions Hcs and Hyp, are required for downstream channel boundary condition and calibration, respectively.
Channel discharge O, and floodplain discharge O, are collected and calculated for upstream boundary
condition. (c, d) Data fitted in the model period. The vertical dashed lines represent the ALOS PALSAR
acquisition dates on 16 April 2008 and 1 June 2008. The detailed locations on C1, C2, C3, F2, and F3

are shown in Figure 2.

cross section along the main river channel is conservative.
The continuity constraint is given by,

th‘1 + Q;’l = Qrcz + Qth = th‘3 + Q;r3v 3)
where the superscript ¢ represents time-varying discharge
(Q), subscript digits are cross-section locations, and the sub-
script letters C and F represent the channel and floodplain,
respectively. The channel flow from upstream to down-
stream results in more overbank flooding into the floodplain,
thus the upstream channel discharge is greater than the
downstream channel discharge (ie., Qf > Of, > 0).
The upstream floodplain discharge is lower than the down-
stream floodplain discharge and floodplains around WMU1
and WMU?2 are not flooded due to high levees which prevent
overbank flow (i.e., Q% > 0%, > O = 0).

[22] Boundary conditions for fluvial flooding applica-
tions normally require time-dependent discharge in the
compound channel at the upstream end of the reach and the
time-varying water elevation or gradient at the downstream
end of the channel [Bates et al., 2005]. Since there is no
discharge station at the upstream boundary of the WMUI1
domain, a virtual location C2 was created for which flow,
Ql,, was estimated using an inverse distance squared
weighting (IDW) interpolation with channel discharges
QL. at Krotz Springs and QL; at Myette Point [Heijden and

Haberlandt, 2010]. The upstream channel boundary condi-
tion was thus calculated as,

¢ t ¢ 2
Oci1 X deycs + Ocs X deica
2 2 )
dircr + deacs

Qrcz :f(thu ths)mw = 4)

where dj; is the distance between locations of i and j.

[23] In addition to upstream channel discharge, upstream
floodplain discharge was also set as a boundary condition.
Although nonchannel flow at the boundary of the domain is
usually negligible for fluvial flooding applications [Bates
et al., 2005], a time-dependent floodplain discharge was
necessary since the upper domain boundary crosses the
floodplain and substantial flow crosses into the domain dur-
ing the 62-d simulation period. The upstream floodplain
discharge derived from equations (3) and (4) (i.e., O%, =
O¢y + O — Ofy; O = 0) was distributed equally among
all of the upstream boundary grid cells.

[24] For the downstream condition, water elevation data
at Myette Point (H[;) were used. The other boundaries of
the domain within the rectangular grid were set to a free
flux condition to force the model to calculate the slope used
for the normal depth calculation between the last two
points. Figure 3 shows the daily time series of water eleva-
tions and discharges at gauge stations. Gauge stations are
located at Krotz Springs (C1) and Myette Point (C3) along
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the main channel and at Buffalo Cove (B1) in the bayous,
whereas C2 is a virtual station. The gauge vertical datum
were converted from the National Geodetic Vertical Datum
of 1929 (NGVD29) into the National American Vertical
Datum of 1988 (NAVDS88) [Milbert, 1999] to fit the
LiDAR floodplain elevations and bathymetry data set from
USACE. In this study, the focus is on right (i.e., west) bank
flooding in the Buffalo Cove WMU from the main channel
of the Atchafalaya River.

[25] To calibrate the model response to Manning’s
roughness coefficients, a matrix of 36 simulations was run
with values of n¢ varying from 0.020 to 0.030 in steps of
0.002 in the channel, and np varying from 0.05 to 0.30 in
steps of 0.05 in the floodplain. The range of values was
chosen based on tables of typical n in various types of
channels and floodplain [Chow, 1959]. Previous modeling
in the Atchafalaya River Delta suggested that Manning’s
roughness coefficients in the area ranged from 0.01 to 0.06
for navigable waters, 0.01 to 0.02 for bayous, 0.03 to 0.06
for obstructed canals, and 0.2 to 0.5 for marsh and/or sub-
aerial delta lobes [Donnel et al., 1991; Donnel and Letter,
1992].

[26] The mean absolute error (MAE) and bias were used
to evaluate the sensitivity of the model to the range of
Manning’s coefficients, or.

1
MAE = -3V |M; — O], )
N i=1
. 1y
bias = ]_Vzi:' (M; — 0y), 6)

where M is the model and O is the observation (i.e., gauge
height or interferometry height differences). The MAE and
bias were computed for all points where there were obser-
vations and all were weighted equally. All of the model
results for the total model period of 62 d are included in
this calibration. Further details of both calibration
approaches, using water elevations of gauge measurements
and water elevation changes from SAR interferometry, are
described in sections 5.1 and 5.2, respectively.

4.2. SAR Interferometry

[27] The Japan Aerospace Exploration Agency’s (JAXA’s)
Advanced Land Observing Satellite (ALOS), a follow-on
mission for the Japanese Earth Resources Satellite-1 (JERS-1),
carries the Phased Array type L-band Synthetic Aperture
Radar (PALSAR). The PALSAR scenes are HH polarized
and L-band (wavelength: 23.62 cm). The incidence angles of
PALSAR scenes are ~38.7° from descending passes. The
PALSAR swath of path 168 and frame 590 were collected on
16 April 2008 and 1 June 2008. As illustrated in Figure 1, the
SAR image covers the central ABFS including the Buffalo
Cove WMU.

[28] Measurements of water elevation changes in time
(dh/dt) for the model domain were obtained from repeat-
pass PALSAR interferometry and were used in the model
calibration. SAR interferometric processing followed the
two-pass method [Massonnet et al., 1993]. The interfero-
metric phase includes satellite orbit, topographic relief,
and any changes in the radar range (i.e., floodplain water
elevation change in this study). The orbit-related phase was
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subtracted through a flat earth phase removal that calculates
satellite state vectors given by the system file and adjusts
baseline errors based on the residual phase in the interfero-
gram. As the most critical parameter in SAR interferome-
try, baseline is a measure of the distance between the two
SAR antenna locations. The topographic-related phase was
subtracted using the Shuttle Radar Topography Mission
(SRTM) C-band elevation data to make the remaining dif-
ferential phase dependent on floodplain water elevation
changes. Interferometrically measured water elevation
changes in the direction of the radar line-of-sight (LOS)
were converted to a vertical displacement in terms of the
wavelength and incidence angle of the PALSAR scenes
[Massonnet and Feigl, 1998]. In this processed interfero-
gram, 2 7 radians of interferometric phase are equivalent to
15.1 cm of vertical height change.

[29] SAR interferometry with a short spatial baseline is
more appropriate to provide water elevation changes and
calibrate the corresponding model products as compared to
a long baseline. Short perpendicular components in the
baseline yield more topographic relief per phase cycle than
long baselines, thus more reliable estimates of water eleva-
tion changes [Zebker and Villasenor, 1992]. In this study,
the ALOS PALSAR L-band interferogram were processed
with a perpendicular baseline of —219 m at the center of the
satellite acquisition. The short baseline indicates that 2 7
radians of phase are equivalent to ~204 m of topographic
relief (i.e., the ambiguity height), whereas depending on the
incidence angle, the same 2 7 radians are also equivalent to
~15.1 cm of vertical water elevation change [Massonnet
and Feigl, 1998]. The short perpendicular baselines and the
C-band SRTM relative height errors of 5.5 m [Farr et al.,
2007] cause 0.17 radians of phase change, which are equiva-
lent to 0.4 cm of vertical displacement. The accuracy of this
displacement measurement is a function of the local coher-
ence as well as of our ability to separate the topographic
phase component from the total observed phase. The mean
coherence of 0.35 in the modeled floodplain yields an
expected phase noise value of less than 0.4 radian error for
21 looks used in the processing [Zebker and Villasenor,
1992; Li and Goldstein, 1990], which is equivalent to less
than 1.0 cm of vertical displacement. The scale errors in the
observed dh/dt are small enough to calibrate the modeled
dh/dt and provide the optimum Manning’s roughness.

[30] Figure 4 shows differential wrapped interferometric
fringes in the floodplain. The patterns of a cycle of inter-
ferometric phase (i.e., fringe) imply that the basin consists
of various independent hydrodynamic units as defined by
the USACE [1982]. Distinct changes in the interferometric
dh/dt measurements are located along the WMU bounda-
ries. The Buffalo Cove and Upper Bell River WMUSs show
a clearer flow pattern of floodwater in the PALSAR inter-
ferometric phase as compared to any other WMUs. This
provides more spatial variation in water elevation changes
and is therefore a more rigorous test of the floodplain
model performance. Most of the WMUs exhibit homoge-
nous values in the interferogram. However, the Buffalo
Cove and Upper Bell River WMUs show a sheet flow pat-
tern and the Bayou DeGlais WMU shows a sharp distinc-
tion in the middle of the floodplain due to a navigable
waterway. The differential phase wrapped in a cycle of
2 7 radians is unwrapped with a minimum of cost flow
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Figure 4. Differential wrapped interferogram of L-band
PALSAR superimposed on the image reflectivity map in the
ABFS. The orange rectangular box shows the location of the
LISFLOOD model area. The color scale represents one cycle
of interferometric phase that can be interpreted as 15.1 cm in
vertical displacement. These fringes represent water eleva-
tion changes between 16 April 2008 and 1 June 2008.

techniques and a triangular irregular network to provide
water elevation changes. In the phase unwrapping stage,
adaptive radar interferogram filtering was applied to reduce
noise and enhance fringe visibility. The unwrapped differ-
ential phase corresponds to relative water elevation
changes. The interferometric SAR measurements require a
reference datum to convert from the relative water eleva-
tion changes to absolute values [Jung et al., 2010]. For this
reference datum, gauge B1 was used, where the water level
decreased 71 cm. (i.e., dh/dt = =71 cm over 46 d from

(a) Mean absolute error (cm)
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16 April 2008 to 1 June 2008; see /p; in Figure 3b). The
unwrapped and absolute interferometric measurements
were used to calibrate the model water elevation changes.

5. Results

5.1. Calibration of Model Water Elevations (%) With
Gauge Measurement

[31] LISFLOOD was first calibrated in terms of water
elevations at the Buffalo Cove (B1) gauge using a matrix
of 36 simulations with various Manning’s roughness coeffi-
cients of the channel, nc and the floodplain, ng. For each
simulation, the MAE was computed based on the daily
water elevation differences between model and gauge mea-
surement for the entire 62-d simulation period. The best-fit
model of nc and np was then determined as the lowest
MAE in the three-dimensional space plot of MAE, n¢ and
np. Figure 5 shows the calibration surfaces for MAE and
bias. The models with 0.022 to 0.026 in nc and 0.10 to 0.20
in np show less than 10 cm in MAE. The optimum lies at
0.024 in n¢ and 0.10 in nF with 3.8 cm in MAE. The cali-
bration surfaces show the L-shaped optimal region typical
for 2-D hydraulic models optimized against single gauge or
flood extent data [see, for example, Fewtrell et al., 2011].
Here an increase in channel friction can be compensated
for by a decrease in floodplain friction (and vice versa) to
yield identical MAE or global goodness-of-fit for a range
of channel and floodplain friction combinations. It can be
seen that as one moves away from the optimal L-shaped
region, MAE is greater with increasing gradient.

[32] The bias calibration surface shows that as n¢
increases, bias increases and becomes less sensitive to ng. It
implies that modeling water elevations at gauge B1 in bayous
is more dependent on the Manning’s roughness coefficient of
the main channel than that of the surrounding floodplain. The
generally positive bias means that modeled water elevations
are greater than the gauge measurement (see equation (6)).
This agrees with the notion that as channel roughness

(b) Bias (cm)

\.
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Figure 5. Calibration surfaces for (a) mean absolute error and (b) bias in terms of water elevations at
gauge (B1) Buffalo Cove as function of channel (horizontal axis) and floodplain (vertical axis) Mann-
ing’s roughness coefficients. The optimum roughness, determined as the lowest MAE equal to 3.8 cm,
lies at 0.024 for channel 7, and 0. 10 for floodplain 7.
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Figure 6. Model water elevations compared to actual
water elevations at gauge (B1) Buffalo Cove. The model af-
ter 2 d in simulation starts to fit the gauge water elevations
within £4 cm in MAE with Manning’s roughness coeffi-
cients of 0.024 in the channel and 0.10 in the floodplain.

increases, water elevation and storage must increase. Higher
channel roughness decreases water velocity, thereby requiring
a greater cross section to maintain the same outflow. The
daily time series of water elevation in the best-fit model is
shown in Figure 6. It reveals that after 2 d of initiating the
simulation, the model reaches a stable stage and the model
results fit the gauge water elevations within £4 cm MAE.
This is an excellent result given typical terrain and discharge
errors, and within an engineering study would likely be used
to indicate a model that could provide information in flood
risk management decisions. In scientific terms, it is, however,
a relatively limited test since the model performance is only
evaluated at a single point with the domain.

(a)Mean absolute error (cm / 46 days)
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5.2. Calibration of Model Water Elevation Changes
(dh/dr) With SAR Interferometry

[33] The model is calibrated in terms of water elevation
changes in the Buffalo Cove WMU using the same simula-
tions as performed in section 5.1. However, instead of
using one in situ gauge with a continuous height record,
calibration is conducted using two images of height cover-
ing the entire flooded domain, separated by 46 d.

[34] The MAE is again used to find the best-fit model of
nc and np against water elevation changes calculated from
ALOS PALSAR interferometry from 16 April 2008 to 1
June 2008. Figure 7 shows the calibration surfaces for
MAE and bias. The models with 0.024 to 0.028 in nc and
0.10 in nr show a MAE of less than 8 cm over the 46-d pe-
riod. The optimum lies at 0.028 in n¢ and 0.10 in ny with a
MAE of 5.7 cm, which are similar but not identical to the
Manning’s roughness coefficients calibrated in section 5.1.
The bias calibration surface shows that as nyp increases,
bias decreases, being less sensitive to nc. It implies that
obtaining an optimal match between floodplain dh/dt
measurements and the LISFLOOD-ACC model for the
Buffalo Cove WMU is more dependent on the Manning’s
roughness coefficient of the floodplain compared to that of
the main channel. The negative bias means that model
water elevation change is actually less than that indicated
by the interferometric measurements (see equation (6)).
This is consistent with the notion that floodplain water ele-
vations are less sensitive with higher roughness in the
floodplain due to the lower floodplain velocities. Total fric-
tional force (F) is proportional to Manning’s roughness (n)
and the square of flow velocity (v?), so model sensitivity to
friction is a nonlinear function of the flow velocity (v).
When v is low, the modeled water levels become dramati-
cally less sensitive to 7.

[35] Figure 8 shows the water elevation change maps
calculated from the best-fit model and SAR interferometry.
The modeled dh/dt is calculated by subtracting the water
elevation map on 16 April 2008 from that on 1 June 2008.

(b) Bias (cm / 46 days)
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Figure 7. Calibration surfaces for (a) mean absolute error and (b) bias in terms of water elevation
changes in the Buffalo Cove WMU as function of channel (horizontal axis) and floodplain (vertical axis)
Manning’s roughness coefficients (7). The optimum lies at 0.028 for channel n. and 0.10 for floodplain

ny with 5.7 cm MAE for the 46-d simulation period.
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(a) Water elevation maps on 16 April 2008 (upper) and 1 June 2008 (lower). (b) Water ele-

vation change map calculated from the calibrated model. (c) Water elevation change map from SAR
interferometry. (d) Difference of water elevation change from between the (b) model and the (c) SAR

interferometry.

The interferometrically measured dh/dt in Figure 8 are the
absolute water elevation changes, which are referenced and
unwrapped from the differential wrapped interferogram in
Figure 4. The dh/dt in Buffalo Cove WMU ranges from
—100 to =50 cm over 46 d showing that the floodplain is
draining over the this period. The largest difference in
dh/dt between model and SAR interferometry was exhib-
ited in the southwest part of the WMU. It appears that inside
waterways hold floodwater moving from east to west and
add more complexity into the local floodplain dynamics than
is captured by this model. The interferometry demonstrates
that the southwest part exhibits a distinct difference in the
spatial gradients of water elevation changes as compared to
the surrounding area, which are microterrain effects that are
not predicted by the model in a 90 m grid.

5.3. Estimation of Water Storage Changes (dS/dr) in
Buffalo Cove WMU
[36] The daily modeled dS/dt is calculated by multiply-

ing dh/dt by the grid cell area. The model dh/dt calibrated
by SAR interferometry is used to calculate dS/dt,

ds'jdt =" —S"' =N (' — ') x dx x dy, (7

where ¢ ranges from 1 to 62 as a simulation day and dx and
dy are 90 m for a given grid box.

[37] The time series dS/dt is shown in Figure 9a for
daily as well as 5- and 10-d moving averages to highlight
longer-term trends. The daily storage changes in the model
domain of ~230 km? range approximately from +10” m*> d~"
to —107 m® d~! during the modeled period. The water storage
changes are positive at the beginning whereas they turn to be
negative after 27 April 2008 with some variations.

[38] The relationship between the model water storage
changes (dS/dt) and water elevation changes (dh/drf) at the
Buffalo Cove gauge (B1), shown in Figure 9b, indicates a
strong linear relationship, except for three outliers gener-
ated at the beginning of the simulation. It implies that the
model requires more than 3 d to wet the whole floodplain
and to provide reasonable values of water elevations in the
floodplain of the WMU. The first polynomial regression
model (y = 2,216,650 x x + 52,421; y : dS/dt, x : dh/drt)
exhibits an R® of 0.94. The residuals of the regression
model suggest that dh/dt at the Buffalo Cove gauge cannot
be representative of dh/dt across all of the Buffalo Cove
WMU floodplain. As can be seen in Figure 8, the dh/dt
varies markedly in space. Maps of & and dh/dt in Figure 10

7WMU Buffalo Cove (~230 km? °
(a) ,x10 ‘ ) k) 300
dS/dt (= 1 day) 25 Data X
= b 5-day moving ave. || __ % Ouliers
> ———10-day moving ave.|| & 2 R?=0.94
ke kel
=2 I & 15
Eo0 % 1 X
5 5
€ 8 o5 "
0 W
, 05
16 April 1 May 16 May 1 June -10 -5 0 5 10
Year 2008 dh/dt (cm/day)

Figure 9. (a) Daily time series of water storage changes in the area of ~230 km? in the Buffalo Cove
WMU. The 5 and 10 d moving averages are performed to demonstrate the trend of the water storage
changes. (b) Relationship between model dS/dt in Buffalo Cove WMU and dh/dt at the (B1) Buffalo
Cove gauge. The goodness of fit (R?) is 0.94 based on the first polynomial regression model without
three outliers that are generated before the model is stabilized.
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Figure 10.

(Top row) Water depth maps relative to the LiDAR floodplain elevation and (bottom row)

water depth change maps when dS/dt is (a) positive, (b) near zero, and (c) negative.

exhibit water storage changes that are positive, near zero, and
negative. The maps of / show instances of floodplain filling
and emptying. For instance, the average dh/dt of the WMU
between 15 April 2008 and 16 April 2008 is 2.4 cm d~'
when the corresponding dS/dt is 5.5 x 10° m® d~'. On the
contrary, the dh/dt average of the WMU between 31 May
2008 and 1 June 2008 is 2.9 cm d~' when the correspond-
ing dS/dt is 6.6 x 10° m*> d~'. The dh/dt maps in the
lower panel of Figure 10 show less variation within the
WMU as compared to the dh/dt maps shown in Figure 8
because the time interval (df) is 1 d shorter than 46 d in
Figure 8.

6. Discussion of Sensitivity to Different Errors

[39] Two approaches to calibrate a 2-D hydrodynamic
model were investigated, one using a single in situ gauge
measurement and the second using SAR interferometry.
Each approach calibrates the model in terms of different
model products that have different space (i.e., dimensional-
ity) and timescales. The first calibration uses time series of
water elevations at one specified gauge station for the total
simulation period of 62 d. Because of the gauge location in
the bayou, the calibration shows more dependency on chan-
nel roughness relative to floodplain roughness.

[40] The second calibration uses water elevation changes
calculated from SAR interferometry across the whole
WMU area for one time interval of 46 d between two suc-
cessive overpasses of the PALSAR satellite. This is a par-
ticularly stern test for a 2-D hydrodynamic model because
the calibration requires accurate prediction of spatial pat-
terns of water elevation change over a long simulation pe-
riod. Since SAR interferometry receives strong scatters in
the floodplain due to the double-bounce effect as compared
to specular scattering of open water [Lu and Kwoun, 2008
Jung and Alsdorf, 2010], this calibration shows more de-
pendency on floodplain roughness.

[41] Most 2-D floodplain modeling requires a longer
spin-up time, as compared to 1-D channel modeling, in
order to wet the floodplain as well as channel for stabiliza-
tion of the floodplain dynamic in the model. The spin-up

time in the calibration with SAR interferometry requires at
least 3 d more than the 2 d required with only gauge meas-
urements. The different calibration methods suggest the
same floodplain roughness, but different channel roughness
in their best-fit models, which can be explained by different
model products used in their calibrations. The pattern and
trend of the MAE and bias calibration surfaces imply that
calibration against different data sets would lead a user to
make different conclusions regarding the model’s differen-
tial sensitivity to channel and floodplain friction. Practically,
the real meaning of roughness as an effective parameter is a
component of topography that has to be calculated to opti-
mize the agreement between model predictions and meas-
urements [Lane, 2005]. The calibrated roughness can be a
valuable reference to the hydrodynamic modeling commu-
nity as it is properly adjusted along water stage, grid resolu-
tion, and model feature.

[42] The sensitivity to upstream discharge was investi-
gated by changing the flow by *+20% in increments of 5%,
for both calibration approaches. Root-mean-square devia-
tion (RMSD) in the modeled / and dh/dt was computed for
each flow, averaged across the domain, using the best-fit
model of 0.028 in n¢ and 0.10 in ng. Assuming that even for
good gauges, Q error is likely to be £10% [Di Baldassarre
and Montanari, 2009], Figure 11 indicates that this likely
error in upstream Q leads to ~10 cm of errors in the modeled
h maps on both 16 April 2008 and 1 June 2008 and less than
2.5 cm in the modeled dh/dt map (Figure 11). This implies
that the effect of an error in Q on the absolute water eleva-
tions is much larger than the effect of the same Q error on
the water elevation changes. The deviation on absolute water
elevations can be compensated for in any modeling study
with a uniform offset derived from a contemporaneous
ground truth campaign. The deviation of 2.5 cm in the mod-
eled dh/dt can be regarded as the range of acceptable differ-
ences between the observed dh/dt and the modeled one. It
suggests that within the QO = 10% error ranges, 54% of dh/dt
map in Figure 8d shows a good agreement between the model
and the interferometric measurement. The slight difference in
channel roughness between two calibration methods (i.e.,
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Results of the modeled % and dh/dt to uncertainty in upstream Qs, varying from —20% and

20% in steps of 5%. The calibrated model of 0.028 in n¢ and 0.10 in ngz is used as a behavioral model.
The 4 maps on 16 April 2008 and 1 June 2008 and d//dt map for the 46 d are shown in Figures 8a and 8b.

0.024/0.1 and 0.028/0.1 in nc/np, respectively) leads to
~1.5 cm of the modeled dh/dt difference in Figure 7a and
this can be also explained within the Q = 10% error ranges.

[43] In both gauge stage /# and interferometric SAR
dh/dt calibrations, the tolerable difference between model
and data is much smaller as some of key errors drop out.
Error sources in the LiDAR data, a terrain data error result-
ing from the averaging to 90 m, the observed % data, and
the measured dii/dt are less than 1 cm, whereas the likely
*10% errors in Q result in less than 2.5 cm in the modeled
dh/dt. Tt is noted that these errors are not necessarily addi-
tive and not all will be at a maximum at the same time.

[44] The Buffalo Cove WMU as a model domain is
mostly covered with woody wetland, yet the Atchafalaya
River Basin includes various land covers of urban, pasture,
cultivated crops, woody wetlands, and emergent herba-
ceous wetlands in the 2006 National Land Cover Data
(NLCD) [Fry et al., 2011]. For large floodplain modeling,
the roughness can be assigned in more detail based on land
use and land cover [Kalyanapu et al., 2009]. To take
advantage of land cover data to improve the roughness
assignment, optimization algorithms need to be utilized for
multiparameter calibration [Zhang et al., 2008].

7. Conclusions

[45] The 2-D LISFLOOD-ACC model was applied to
spring flooding in the central ABFS and calibrated using
two independent approaches. A traditional approach used a
continuous temporal record of in situ, point water-level
gauge measurements. The second new approach, employed
temporal (dh/dt) and spatial (dh/dx, dh/dy) variations of
water levels derived from ALOS PALSAR interferometry,
observed at two separate times. Although the two different
approaches yielded slightly different values for channel
Manning’s #n, the favorable comparison in results estab-
lishes the feasibility of a satellite-based approach, at least
for these particular basin and flow conditions. Results were
facilitated by a relatively simple spring hydrograph with
few spikes in river discharge, and well-defined floodplain
boundaries. Overall, the results offer a new approach for
satellite-based calibration of hydrodynamic models, espe-
cially in regions of sparse in situ data.

[46] The slight difference in calibration results are to be
expected given that the two independent approaches relied
on two different data sets, in one case a continuous time se-
ries of channel elevations at a single point, and in the sec-
ond, a continuous spatial distribution of water levels and
slopes at two points in time. However, differences also
might be due to artifacts in the observed data, or microter-
rain effects that are not picked up in a 90 m grid, or error-
associated with assumptions in the hydraulic model. Results
indicate that even a few observations can quantify the flood-
plain water elevation and reveal the complexity of the flood-
plain hydrodynamics. This study highlights the importance
and potential advantage of 2-D interferometric SAR techni-
ques to support 2-D floodplain model calibration.

[47] Second, results on the spatial and temporal varia-

dh/dt dh/dt
dx O’ dy

be useful to estimate daily time series of water storage
changes (dS/df) in the Buffalo Cove WMU. Since the
model is validated in terms of dh/dt from SAR interferom-
etry, the improved model can generate reliable estimates of
dS/dt and the moving averages can be useful to see the
trend of basinwide water storage changes.

[48] Last, the results indicate the feasibility of using SAR
interferometry for enhanced prediction and assessment capa-
bilities for future flood events in the floodplain. The hydrody-
namic modeling calibrated by SAR interferometry can be
extended into higher grid resolution and/or larger domains to
study the floodplain hydrodynamics in more detail. For the
purpose of future flood control and risk management, model-
ing could focus on monitoring the basin in near real time with
the help of parallel computation using multicore processors.

tions of water elevations ( )are demonstrated to
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