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Abstract 

The rule of three gives n/3  as the upper %95  bound for the success rate of the zero-numerator 

problems. However, this bound is usually conservative although it is useful in practice. Some 

Bayesian methods with beta distributions as priors have been studied. However, choosing the 

parameters for the priors is subjective and can severely impact the corresponding posterior 

distributions. In this paper, some hierarchical models are proposed, which provide practitioners other 

options for those zero-numerator problems.  
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1  Introduction 

1.1 Introduction 

Suppose we want to know the probability of the occurrence of a certain kind of event 

when in n independent trials, the event never occurs. This situation is referred as the 

zero-numerator problem. A probability model for this issue can be built by a binomial 

distribution with sample size n  and the probability p , which is usually very small. 

Based on this binomial model, the point estimate of p  by the maximum likelihood 

estimator is 0/ == nxp  since here 0=x . However, this estimate is not accurate and 

may not useful in practice. Although this event is rare, it may occur on occasion based on 

our previous experience. 
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1.2 Frequentist method and the rule of three 

Louis (1981) gave a (1 ) 100α− ×  percent confidence interval for p : 

[0, np ], 1/1 / .n
n np S nα= − =                                  (1) 

Where nS  can be considered as a number of successes in a future experiment of the same 

size. By taking limit as n → ∞ , then we have  

lim( ) ln( ).nn
S α

→∞
= −                                 (2) 

When 0.05α = , ln( ) 3α− ≈ . So the rule of three states that the upper 95% bound for p  

is about 3/ n . 

Jovanovic and Levy (1997) obtained the same results from a different way. Suppose 

random variable X  has a Binomial distribution with parameters n  and p , then 

( 0 | , ) (1 ) .nP X n p p= = −                           (3) 

A (1 ) 100%α− ×  bound can be obtained by solving (1 )np α− > .  It gives the upper 

bound 1/1 n
up α= − . By using a Taylor expansion, we then have  

1/1 ln( ) / .n
up nα α= − ≈ −                           (4) 

Both Louis (1981) and Jovanovic and Levy (1997) gave numerical examples to show 

that when n is large enough, the rule of three gives a good approximation of the upper 

95% bound.  However, sometimes we are more interested in predicting the occurrence 

rate p  rather than obtaining upper bounds. Obviously, if this is the case, the upper 95% 

bound does not help us much.  Louis (1981) cited Bickel and Doksum (1980) and 

pointed out that this bound corresponds to the Bayesian 95% credibility bound for a 

uniform prior on p . 

1.3 An example and Bayesian models 
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One of the applications for the zero-numerator problems is for the false-positive rate for a 

medical test with no previous record of positive results. Another example, given by 

Hanley and Lippman-Hand (1983) and cited by Winkler et al (2002), involved two 

different contrast agents used by radiologists over a long time. The standard one has been 

shown to cause a serious reaction in about 15 of every 10,000 patients exposed to it. The 

new contrast agent was applied to 167 patients and none of them reported having the 

reaction. By the rule of three, the upper 95% confidence bound for the probability of a 

serious reaction with the new contrast agent is about 3/167 = 0.018, while the standard 

contrast agent has the probability of 0.0015.  What can we say about the probability of a 

serious reaction for the new contrast agent?  

Bayesian models may shed some light on this problem. For a Bayesian model, the 

commonly used prior for Binomial distributions is the class of beta distributions 

( , )Beta a b . Geisser (1984) has discussed several different prior distributions that were 

used in binary trials, for example, the noninformative distributions (0.5,0.5)Beta (a 

Jeffreys prior) and (1,1)Beta  (uniform). 

Jovanovic and Levy (1997) suggested using (1, ), 1Beta b b ≥  as the prior because when 

1b >  the prior favors values of p  close to zero. In addition, values of a  other than 1 

provide the prior with a local maximum away from zero that cannot be justified without 

additional information.  It is well known that ( , )Beta a b  is a conjugate prior for the  

binomial distribution ( , )bin n p and the corresponding posterior distribution is 

( , )Beta y a n b+ + , where y  is the observed value in n  trials.  In zero-numerator 

problems 0y =  and therefore the posterior is ( , )Beta a n b+ . Winkler et al (2002) 

discussed this problem for both noninformative and informative beta distributions.  
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They stated that 1a =  in Jovanovic’s prior ( , )Beta a b  was unduly restrictive and 

suggested trying any ( , )Beta a b  with 0a >  and 0b >  when assessing priors. 

2  Hierarchical Models 

2.1 Hierarchical models 

In Bayesian models for the zero-numerator problems, the prior has a huge impact on the 

posterior distributions due to the limited information available in the data (i.e. no event 

has been observed). Following Jovanovic and Levy (1997), we use the prior (1, )Beta b  

where b  is a random variable taking values greater or equal to 1, which has its own 

distribution, the hyperprior. In the previous Bayesian models, b  is a constant number 

that may vary according to the person assigning the values.  Therefore, it is reasonable 

for us to treat b  as a random variable with a given distribution. In the zero-numerator 

problem, we know that the probability of p  is small. To capture this information, as 

Jovanovic and Levy (1997) have stated, b  is usually greater than 1. So the random 

variable b  may take values on ),1( ∞ . Based on this, a reasonable hyperprior can be 

assigned. For example, we can assume 1/( 1)b − is distributed as a ( , )Beta c d where c and 

d  are constants. Therefore we have the following hierarchical model:  

| , ~ ( , )
| ~ (1, )

1/( 1) ~ ( , )

y n p Bin n p
p b Beta b

b Beta c d−
                          (5) 

In this model, the hyperparameter c  should not be too small; otherwise the mass of the 

distribution will concentrate around zero and it will be very likely to obtain a large value 

of b . In other words, the posterior distribution will concentrate around zero and 

underestimate the probability of p .  
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Another reasonable choice is an exponential hyperprior: 

| , ~ ( , )
| ~ (1, )

( 1) ~ exp( )

y n p Bin n p
p b Beta b
b λ−

                             (6) 

Where exp( | ) xx e λλ λ −= .  

We can also choose gamma hyperprior on 1b −  

                       
| , ~ ( , )
| ~ (1, )

( 1) ~ ( )

y n p Bin n p
p b Beta b
b Gamma α−

                             (7) 

Where 1( | ) / ( )xGamma x x eαα α− −= Γ . 

In the next subsection, we will give the numerical results obtained from different 

methods, including Bayesian models with noninformative and formative prior as well as 

hierarchical models (5-7). 

2.2 Numerical results of the example 

The popular priors of noninformative Beta distributions for this problem are Beta(0.5, 0.5) 

(a Jefferys prior) and Beta(1, 1) (uniform distribution). If we apply these two 

distributions to the previous example, the corresponding posterior distributions are 

(0.5,167.5)Beta  and (1,168)Beta , respectively. The means are 0.5/(0.5 + 167.5) = 

0.00298 and 1/169 = 0.00592. Although these two numbers are very different, both of 

them are greater than 0.0015.  

In this example, the risk proportion for the standard agent is known and this may 

provide us some information about the proportion of the new agent. Winkler et al. (2002) 

chose a prior ( , )Beta a b  such that the prior mean equals to 0.0015 and has 95% chance 

that p  is less than 0.75%, five times the risk of the old agent. They obtained 0.042a =  
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and 27.96b = . The posterior is (0.042,194.96)Beta  and its mean is 0.00022,which is 

much less than 0.0015. If we set 1a =  and want the mean of (1, ) 0.0015Beta b = , then 

b = 665.71. The resulting posterior is (1,832.71)Beta  and its mean is 0.0012. 

Table 1 Summary statistics for the posteriors of Bayesian model with different a and b’s 
 a=b=0.5 a=b=1 a=0.042, b=27.96 a=1, b=665.71

5% quantile 1.12e-5 0.00029 3.14e-34 6.16e-5 
Median 0.00140 0.00387 2.03e-10 0.00083 
Mean  0.00298 0.00559 0.00022 0.00120 
95% quantile 0.0144 0.0167 0.00106 0.00359 
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Figure 1 Posteriors for Bayesian models with different parameters 

If we use posterior mean to estimate the new risk, the method based on Jovanovic’s 

suggestion seems give a value closer to the previous information than the one obtained by 

Winkler. Furthermore, if we believe that under the true risk p  the probability that no 

serious reaction occurs in 167 observations is between 5% and 95%, then p  should be 

between 0.00031 and 0.01778.  Therefore the risk value given by Winkler seems too 

small. In addition Winkler’s posterior median is 102 10−× , which is too small. That means 

the posterior distribution concentrates too much mass at zero. These four posteriors are 
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plotted in Figure 1 and some statistics (5% quantile, median, mean and 95% quantile) for 

these posteriors are shown in Table 1. From Figure 1 and Table 1, we can see that with 

different priors, the densities and the statistics may be very different. Choosing a “good” 

prior is a very important and difficult task.  

Table 2 Summary statistics for the posteriors of models (5), (6) and (7) 
Medel (5) Model (6) Model (7)  

c=0.5 
d=0.5 

c=1 
d=1 

c=1 
d=10 

c=1 
d=100 

c=0.01 c=1 c=10 c=1000 c=0.1 c=1 c=100 c=1000

5% 8.1e-6 1.5e-4 1.1e-4 4.9e-5 1.6e-4 3.0e-4 3.2e-4 3.0e-4 3.2e-4 3.0e-4 2.0e-4 4.4e-5 

Median 0.0013 0.0030 0.0024 0.0013 0.0022 0.0041 0.0041 0.0041 0.0041 0.0041 0.0026 6.0e-4 

Mean 0.0028 0.0047 0.0039 0.0024 0.0034 0.0059 0.0058 0.0059 0.0058 0.0059 0.0037 8.6e-4 

95% 0.0110 0.0151 0.0128 0.0085 0.0105 0.0174 0.0175 0.0138 0.0175 0.0138 0.0110 0.0026 

            
       c=d=0.5                            c=1=d=1 

p sample: 9500
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Figure 2 Posteriors for model (5) 

 
Hierarchical models (5), (6) and (7), each with different hyperparameters in the 

hyperprior distributions, are also developed for this example. Markov chain Monte Carlo 

(MCMC) method is used to approximate the corresponding posterior distributions. The 

calculation and plots are done by using software Winbugs (reference).  Some statistics 

(5% quantile, median, mean and 95% quantile) are summarized in Table 2.  Unlike the 

Bayesian models, the summary statistics from our Bayesian hierarchical models have 

very close values even for different hyperpriors with different hyperparameters.  Figure 
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2 shows the densities of the posteriors from model (5) with different parameters. It is 

clear that those posteriors have very similar densities. For models (6) and (7), we 

obtained similar plots (not shown) as Figure 2. 

3  Conclusion 

For the zero-numerator problem, the rule of three gives conservative results of the upper 

95% bounds. Bayesian models typically use beta priors, and the posterior distribution 

depends heavily on the values of the parameters used in the priors. Choosing the 

parameters is a hard task that needs more attention. The numerical results of an example 

shows that the traditional way of assessing a prior is not suitable for zero-numerator 

problems because of the sensitivity to choice of priors. To solve this problem, we 

proposed several hierarchical models. The hierarchical models give very consistent 

results, regardless of the choice of prior parameters. 

References 

Louis, T.A. (1983). Confidence intervals for a binomial parameter after observing no successes. The 

American Statistician 35, 154-154. 

Jovanovic, B.D. and Levy, P.S. (1997). A Look at the Rule of Three. The American Statistician 51, 

137-139. 

Bickel, P.J. and Doksum, K.A. (1980). Mathematical Statistics. Holden-Day: San Francisco 

Hanley, J.A. and Lippman-Hand, A. (1983). If nothing goes wrong, is everything all right? 

interpreting zero numerators. Journal of the American Medical Association 249, 1743-1745. 

Winkler, R.L. and Smith, J.E. and Fryback D.G. (2002). The role of informative priors in 

zero-numerator problems: being conservative versus being candid. The American Statistician 56, 1-4. 

Geisser, S. (1984). On prior distributions for binary trials (with comments). The American 

Statistician 38, 244-251. 


