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Far Casting Cross-Validation

Patrick S. CARMACK, William R. SCHUCANY, Jeffrey S. SPENCE,
Richard F. GUNST, Qihua LIN, and Robert W. HALEY

Cross-validation has long been used for choosing tuning parameters and other
model selection tasks. It generally performs well provided the data are independent, or
nearly so. Improvements have been suggested which address ordinary cross-validation’s
(OCV) shortcomings in correlated data. Whereas these techniques have merit, they can
still lead to poor model selection in correlated data or are not readily generalizable to
high-dimensional data.

The proposed solution, far casting cross-validation (FCCV), addresses these prob-
lems. FCCV withholds correlated neighbors in every aspect of the cross-validation pro-
cedure. The result is a technique that stresses a fitted model’s ability to extrapolate rather
than interpolate. This generally leads to better model selection in correlated datasets.

Whereas FCCV is less than optimal in the independence case, our improvement of
OCV applies more generally to higher dimensional error processes and to both paramet-
ric and nonparametric model selection problems. To facilitate introduction, we consider
only one application, namely estimating global bandwidths for curve estimation with
local linear regression. We provide theoretical motivation and report some comparative
results from a simulation experiment and on a time series of annual global tempera-
ture deviations. For such data, FCCV generally has lower average squared error when
disturbances are correlated.

Supplementary materials are available online.

Key Words: Dependent data; Optimistic error rates; Prediction; Temporal correlation;
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1. INTRODUCTION

Cross-validation as described by Stone (1974) and Geisser (1975) is a well-established
method for model selection and estimation of prediction error in the nonparametric regres-
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sion and classification settings. The original method starts by withholding one data point
at a time, builds a model with the remainder of the data, and uses that model to predict
the withheld data point. In a model selection setting, the model with the lowest average
squared prediction error is declared the best. In a modification of ordinary cross-validation
(OCV), sometimes known as v-fold cross-validation, the data are randomly partitioned
into v training sets and test sets for building the model and assessing its prediction error,
respectively. As in ordinary cross-validation, the model with the smallest average squared
prediction error is chosen as the best one. Both these approaches work well when the data
are independent, but exhibit overly optimistic prediction error rates when the data are cor-
related. This can lead to biased model selection. Hastie, Tibshirani, and Friedman (2001,
chapter 7) had an excellent discussion on model selection and error assessment as it relates
to optimism.

Burman, Chow, and Nolan (1994) addressed this dependence issue with what they
called h-block cross-validation. Instead of withholding one data point at a time or dividing
the data into training and test sets, h-block cross-validation obtains a parameter estimate
at each data point, which is the minimizer of weighted least squares where the weights
omit the point and its neighbors within h units. This set of estimates is then used to ar-
rive at the corrected h-block cross-validated estimate. Racine (2000) provided a consistent
modification called hv-block cross-validation that essentially combines h-block and v-fold
cross-validation. Hart and Yi (1998) studied a method known as one-sided cross-validation
(OSCV) that approaches the problem by omitting the data from either the left or right of the
point of prediction and using the remaining data for both model estimation and prediction.
All of these methods produce less optimistic error estimates and thereby improve model
selection. The focus of this article is to introduce a conceptually similar, yet fundamentally
different, improvement to cross-validation in correlated data, which we have dubbed far
casting cross-validation (FCCV).

2. FAR CASTING CROSS-VALIDATION

The new method, FCCV, withholds a block of neighbors from the entire cross-validation
process. This approach assesses the candidate model’s ability to predict across deleted
neighborhoods, or extrapolate, as opposed to its ability to interpolate when the full dataset
is used. Basically, OSCV approaches the problem in a similar fashion by only using data
to the left or right of the point of prediction to estimate the model and obtain a predic-
tion. Unfortunately, the notion of left and right does not have a unique extension in higher
dimensions.

A parameter, denoted by d , specifies the radial distance for neighbors to exclude from
the prediction process with d = 0 being equivalent to ordinary cross-validation. In this
context, extrapolation is used to refer to predictions obtained within deleted neighborhoods.
As shown in the theory section, the optimal selection of d primarily depends on the error
covariance structure. The greater the positive correlation among neighboring points, the
larger d should be for better performance.
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To simplify discussion, consider the special case of global bandwidth estimation in local
linear regression. Let y1, . . . , yn be from the regression model

yi = r(xi) + εi, (2.1)

where r is a smooth mean function, x1 < x2 < · · · < xn are fixed design points, and εi

are uncorrelated random disturbances such that E(εi) = 0, Var(εi) = σ 2 < ∞. Suppose
one wishes to estimate r using a local linear estimator (Fan 1992). Consider the criterion
function

n∑
i=1

(yi − a − b(xi − x))2K

(
x − xi

h

)
, (2.2)

where a is the local linear estimate of r(x), h > 0 is the bandwidth of the unimodal kernel,
K , which is symmetric about 0 and has finite variance. Minimizing (2.2) with respect to a

and b for a fixed h leads to

r̂(x) = â =
∑n

i=1 yi · wi(x)∑n
i=1 wi(x)

, (2.3)

where

wi(x) = K

(
x − xi

h

)
(tn,2 − (x − xi)tn,1) (2.4)

and

tn,j =
n∑

i=1

K

(
x − xi

h

)
(x − xi)

j , j = 1,2. (2.5)

In practice, the global bandwidth, h, must be estimated from the data. Values of h that are
too small will result in a fit that is excessively variable whereas values of h that are too large
oversmooth the curve. In FCCV, the smoothing parameter h is chosen as the minimizer of
cross-validation error defined as

CV(h, d) = 1

n

n∑
i=1

(r̂h,d (xi) − yi)
2, (2.6)

where r̂h,d (xi) denotes the local linear estimate at xi obtained by deleting {(xj , yj ) : |xi −
xj | ≤ d}. This means that FCCV does not use these neighboring points to minimize (2.2)
or to evaluate (2.6). This is in contrast to h-block, which omits them in (2.2), but not in
its analog to (2.6). When d = 0, (2.6) reduces to ordinary cross-validation. OSCV makes
a similar modification by omitting either {(xj , yj ) :xi ≥ xj } or {(xj , yj ) :xi ≤ xj } during
both fitting and prediction. The fundamental difference between FCCV and OSCV is in
the definition of deleted neighborhood. For the remainder of the article, we will dispense
with the assumption that the disturbances ε1, . . . , εn are uncorrelated.
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2.1 THEORETICAL MOTIVATION

The rationale behind using ordinary cross-validation is that 1
n

∑n
i=1(r̂h(xi)−yi)

2 serves
as a (biased) approximation of the average squared error, ASE(h) = 1

n

∑n
i=1(r̂h(xi) −

r(xi))
2. Taking the expectation of a single term, (r̂h,d (xi0) − yi0)

2, exposes the problem
when errors are correlated. In the interest of compact notation, y, r , r̂h, and r̂h,d will be
used in place of yi0 , r(xi0), r̂h(xi0), and r̂h,d (xi0), respectively. For fixed h and d ,

E[(r̂h,d − y)2] = E[r̂2
h,d ] − 2E[r̂h,d · y] + E[y2]

= E[r̂2
h,d ] − 2 Cov[r̂h,d , y] − 2rE[r̂h,d ] + σ 2 + r2

= E[(r̂h,d − r)2] − 2 Cov[r̂h,d , y] + σ 2

= E
[
((r̂h − r) + (r̂h,d − r̂h))

2] − 2 Cov[r̂h,d , y] + σ 2

= E[(r̂h − r)2] + 2E[(r̂h − r)(r̂h,d − r̂h)] + E[(r̂h,d − r̂h)
2]

− 2 Cov[r̂h,d , y] + σ 2

= E[(r̂h − r)2] + σ 2 − Var[r̂h] + Var[r̂h,d ]
+ E[r̂h,d − r̂h](E[r̂h,d + r̂h] − 2r) − 2 Cov[r̂h,d , y]. (2.7)

The leading term to the right of the final equality is the expected value of a single ASE
term whereas the remaining terms are the bias. The second term, σ 2, does not depend on
either d or h and does not influence where the minimum occurs with respect to h. The third
term relies on h alone whereas the remainder are affected by both d and h. To minimize
the effect of bias terms, d should be selected so that

Var[r̂h,d ] − Var[r̂h] + E[r̂h,d − r̂h](E[r̂h,d + r̂h] − 2r) − 2 Cov[r̂h,d , y] (2.8)

is approximately constant as a function of h because this does not change where the mini-
mum occurs for the cross-validation curve. Assuming r admits two derivatives of bounded
variation, we apply a second-order approximation to obtain

E[r̂h] =
∑

i wir(xi)∑
i wi

(2.9)

≈
∑

i wi(r(xi0) + (xi − xi0)r
′(xi0) + (xi − xi0)

2r ′′(xi0)/2)∑
i wi

(2.10)

= r(xi0) + r ′′(xi0)

∑
i wi(xi − xi0)

2

2
∑

i wi

. (2.11)

It follows that

E[r̂h,d − r̂h](E[r̂h,d + r̂h] − 2r)

≈ r ′′(xi0)
2
((∑

|i−i0|>d wi(xi − xi0)
2

2
∑

|i−i0|>d wi

)2

−
(∑

i wi(xi − xi0)
2

2
∑

i wi

)2)
(2.12)
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Figure 1. Plot of the partial bias (variance and covariance terms only) versus bandwidth, h, for an interior point
expressed as a proportion of σ 2 for an AR(1) error process with φ = 0.6 and n = 150. The bottom curve is
ordinary cross-validation (d = 0), which exhibits heavy negative partial bias especially for smaller values of h.
The other curves are for d = 1/150, . . . ,9/150 with d = 5/150 shown as a solid line. The cross-validation curve
associated with d = 5/150 has the lowest integrated squared bias in expectation. Values of d above 5/150 have
positive partial bias especially for smaller values of h.

and∣∣∣∣r ′′(xi0)
2
((∑

|i−i0|>d wi(xi − xi0)
2

2
∑

|i−i0|>d wi

)2

−
(∑

i wi(xi − xi0)
2

2
∑

i wi

)2)∣∣∣∣ < ch,dr ′′(xi0)
2.

(2.13)
This implies when r is sufficiently smooth, the variance and covariance terms will domi-
nate the part of the bias controlled by the withholding neighborhood, d . When possible, d

should be selected so that the partial bias, Var[r̂h,d ] − Var[r̂h] − 2 Cov[r̂h,d , y], is approx-
imately constant as a function of h (Figure 1). In general, FCCV is tailored to the case
where Cov[r̂h,d , y] > 0 and is decreasing in d . In such cases, a radial withholding neigh-
borhood about the point of prediction can reduce the absolute bias due to the (co)variance
terms. One should note that this may not hold for more complex correlation patterns.

In the independence case, the covariance term vanishes, which leaves the two variance
terms whose difference is minimized for d = 0 (i.e., ordinary cross-validation); however,
the difference may become small enough for the curvature term to play a role in regions
where r ′′ is large in magnitude. In such cases, OSCV will have a smaller bias approach-
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ing a peak or valley from one side than OCV. It is interesting to note that the seemingly
paradoxical observation by previous authors (Marron 1986; van Es 1992) that ordinary
cross-validation performs worse when the error variance is low may be due to the curva-
ture term dominating the bias. An additional insight from (2.8) is that spurious runs of
positive correlation in independent errors may explain why ordinary cross-validation can
sometimes fail because their covariances can downwardly bias the estimated error, espe-
cially for small values of h.

2.2 ESTIMATING d

In theory, d can be determined for an arbitrary error process provided the covariance
structure is known. In practice, this is a difficult task because r is unknown. For illustra-
tion, consider the special case of a first-order autoregressive (AR(1)) process. One could
estimate the semivariance at lag k by

γ̂k =
∑

|i−j |=k

(yi − yj )
2

2(n − k)
. (2.14)

This estimator will be biased because the underlying mean function has not been removed
with E[γ̂k] = σ 2

1−φ2 (1 − φk) + ∑
|i−j |=k(ri − rj )

2/(2(n − k)). Provided the variance of the
AR(1) process is large relative to the bias, a simple estimate of φ is

φ̂ = γ̂2/γ̂1 − 1. (2.15)

φ̂ can then be used to numerically estimate d as the minimizer of the estimated squared
partial bias,

d̂ = argmin
d

∫ 1

dmax

(V̂ar[r̂h,d ] − V̂ar[r̂h] − 2 Ĉov[r̂h,d , y])2 dh, (2.16)

where dmax is the largest withholding neighborhood to be considered. More sophisticated
procedures for general covariance structures can in principle be similarly derived.

3. BANDWIDTH SELECTION SIMULATIONS

All the methods used in the simulation experiment employed the compactly supported
Epanechnikov kernel K(u) = 0.75(1 − u2), −1 ≤ u ≤ 1 (Epanechnikov 1969). This is
a second-order kernel because

∫
K(u)du = 1,

∫
uK(u)du = 0, and 0 <

∫ |u2K(u)|du <

∞. Other popular kernels such as the biweight and tricube were not used because the
available software for one of the competing methodologies uses the Epanechnikov. For the
sake of comparison, the simulation study largely follows that of Hart and Yi (1998). The
following four functions with 0 ≤ x ≤ 1 were considered:

r1(x) = x3(1 − x)3, (3.1)

r2(x) = (x/2)3(1 − x/2)2, (3.2)

r3(x) = 1.741 · [2x10(1 − x)2 + x2(1 − x)10], (3.3)
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Figure 2. Plots of the four underlying functions to be estimated after adding error of varying correlation and
variance. The particular functions were chosen to represent a variety of behaviors.

and

r4(x) =
{

0.0212 · exp(x − 1/3), x < 1/3
0.0212 · exp(−2(x − 1/3)), x ≥ 1/3.

(3.4)

Figure 2 shows that these four functions represent a wide variety of shapes. Even though
the second derivative of r4 does not exist at x = 1/3, it was included to assess performance
when theoretical assumptions are violated. The additive errors were taken from an AR(1)
error process with coefficient φ and standard deviation σ . That is, εi = φ · εi−1 + δi , where
δi ∼ N(0, σ 2/(1−φ2)). Regardless of what value φ takes, the variance of the error process
remains the same because Var(εi) = {σ 2/(1 − φ2)}(1 − φ2) = σ 2 for an AR(1) process.
The realizations were obtained using arima.sim in R which provides for proper corre-
lation structure burn-in.

http://cran.r-project.org/
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Four levels of φ were included, from 0.0 to 0.9 in 0.3 increments, which include no,
minimal, moderate, and strong correlation. The equally spaced design points for both
n = 75 and n = 150 were set at xi = (i − 0.5)/n, i = 1, . . . , n. Finally, the amount of
noise was either low (σ = 2−11), medium (σ = 2−9), or high (σ = 2−7). Errors for each
combination of r , φ, n, and σ were independently generated 1000 times.

Even though plug-in bandwidth selection methods are not cross-validation techniques,
they are popular competitors and worthy of consideration. Several such methods exist,
but the approach developed by Gasser, Kneip, and Köhler (1991) and implemented in the
lokern library in R was used here and referred to as PI. OSCV requires the user to
select the data either to the left or to the right of the point of estimation. Without loss
of generality, the simulations always used the data to the left. For these runs we set the
FCCV parameter d so that the point of prediction and three adjacent neighbors on either
side were excluded for prediction purposes. This selection is not optimal for all cases,
but theoretical calculations and extensive simulations show it to be a good choice for the
various combinations of parameters included in the simulations. Altogether, Figure 3 shows
relative ASE for estimating r4 as a function of both withholding neighborhood d and error
correlation φ. Direct calculations of the partial bias for various values of φ and the figure
suggest d = 3/n is a generally reasonable choice. Four bandwidth selection algorithms
were investigated, OCV, OSCV, PI, and FCCV. Once each method produced an estimate
of h for a given realization, its performance was compared on the basis of average squared
error:

ASE(h) = 1

n

n∑
i=1

(r(xi) − r̂h(xi))
2, (3.5)

using all (xi, yi) for r̂h.

Figure 3. The ratio of the FCCV average squared error (ASE) to the optimal ASE as a function of the size of
the withholding neighborhood, d , and AR(1) correlation coefficient φ. The points indicate the minimum ASE for
each level of φ. The optimal neighborhood size is increasing with respect to φ. Each point is the result of 1000
simulations using the function r4, σ = 2−9, and n = 150.

http://cran.r-project.org/
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Figure 4. Example of the OSCV, PI, and FCCV methods applied to the function r2 with φ = 0.6 AR(1) error
structure, σ = 2−9, and n = 150. The circles are the sample points. The dash, dot, and solid curves are the
smoothed estimates produced using OSCV, PI, and FCCV, respectively. A withholding neighborhood of size
d = 3/150 was used for FCCV.

Before discussing the results of the simulations, a look at a particular realization would
be informative. Figure 4 shows r2 with additive error from an AR(1), where φ = 0.6,
n = 150, and medium variance as circles. The nonparametric estimates based on the band-
widths selected by OSCV, PI, and FCCV are shown as dash, dot, and solid curves, respec-
tively. As is well known, plug-in methods do not work well in such moderately correlated
error cases because the crucial step of second-derivative estimation performs poorly. Thus,
the PI estimate is excessively variable. Even though OSCV was not originally developed
with correlated errors in mind, it does better than PI, as shown by the more stable estimate
(Hart and Lee 2005). Finally, FCCV does the best with the solid curve closely matching r2

shown in Figure 2. The OCV estimate is not shown because it is very similar to the most
erratic PI curve.

Figure 5 illustrates how FCCV affects the error curve estimates in selecting bandwidth
for a less correlated sample from r1. The optimal bandwidth, estimated by minimizing
ASE, is indicated by the vertical line. Even in uncorrelated data, OCV is known to se-
lect small bandwidths and the problem is exacerbated in the correlated error case. This
is demonstrated by the dot–dash CV error curve and selected bandwidth indicated by the
solid dot on the curve. OSCV improves the CV curve by omitting the correlated neighbors
to the right of the points of estimation, but it still selects too small a bandwidth as indi-
cated by its solid circle. Finally, FCCV comes very close to selecting the estimated optimal
bandwidth as indicated by the solid dot. It omits three neighbors on either side of the points
of prediction.

Figure 6 and online Appendix Figures 8–10 display Monte Carlo density estimates for
the ASE for various combinations of φ, and σ with n = 150. Our gold standard is the
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Figure 5. Comparison of cross-validation error curves. OCV is shown as the dot–dash curve whereas OSCV is
dash and FCCV is solid. The minimum cross-validated error for each technique is indicated by the solid dots. The
vertical line indicates the optimal bandwidth that minimizes ASE for this particular sample which was generated
using r1, n = 150, φ = 0.3, and σ = 2−9. A withholding neighborhood of d = 3/150 was used for FCCV.

estimated ASE density for the ASE optimal bandwidth shown in green. The top row cor-
responds to independent errors (φ = 0.0) where OCV, OSCV, and PI generally compare
favorably to the optimal error. In the interest of conserving space, only one of the four
sets of density estimates is shown; however, the following comments relate to all four
choices of r . Depending on the configuration, FCCV either compares favorably or is only
slightly worse, but not dramatically so. The modest loss makes sense in the context of dis-
carding neighbors when the errors are not correlated. For the other rows, FCCV generally
dominates the other methods, particularly OCV and PI when the correlation is either low
(φ = 0.3) or medium (φ = 0.6). OSCV exhibits more resilience than these two methods
when faced with correlated errors, but FCCV still generally delivers smaller ASE, most
notably in the moderately (φ = 0.6) to highly correlated (φ = 0.9) noise combinations
coupled with moderate to large variability. An interesting feature is the seemingly para-
doxical increase in performance for OCV and PI in the highly correlated cases relative to
their poor showings under low and medium correlation. This may be due to the difficulty
separating the underlying function from long runs of correlated error. That is, no band-
width may be able to satisfactorily smooth out the correlated errors while preserving the
underlying structure of r .

An examination of the bandwidths selected by the four methods relative to the ASE
optimal bandwidth provides insight into the ASE density estimates. Table 1 and online
Appendix Tables 2–4 summarize the means of the ratios of the global bandwidths esti-
mated by the four techniques to the estimated ASE optimal global bandwidth for r3 and
various combinations of φ, n, and σ . The table, unlike the figure, includes n = 75. For
clarity, ĥocv, ĥoscv, ĥpi, ĥfccv, and ĥ0 are used to distinguish the estimates of h, with ĥ0
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Figure 6. Comparison of the distribution of ASE for r2 with n = 150 of the different methods using different
combinations of correlation and noise variance. The rows are indexed by the AR(1) parameter φ and the columns
by variance parameter σ . The optimal ASE is shown in green, whereas OCV, OSCV, PI, and FCCV are shown in
black, purple, blue, and red, respectively. Each distribution was estimated using 1000 realizations.
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Table 1. r3 = 1.741 · [2x10(1 − x)2 + x2(1 − x)10].

mean[ĥ/ĥ0](sd[ĥ])
φ n σ ĥocv ĥoscv ĥpi ĥfccv

0.0 75 2−11 1.06 (0.008) 1.00 (0.003) 1.00 (0.004) 1.99 (0.009)

2−9 1.05 (0.017) 0.97 (0.007) 0.95 (0.011) 1.60 (0.015)

2−7 1.28 (0.083) 1.26 (0.085) 0.93 (0.033) 2.62 (0.310)

150 2−11 1.02 (0.005) 0.97 (0.002) 1.03 (0.003) 1.50 (0.005)

2−9 1.01 (0.012) 0.95 (0.005) 0.98 (0.007) 1.27 (0.011)

2−7 1.09 (0.033) 1.00 (0.024) 0.95 (0.022) 1.25 (0.038)

0.3 75 2−11 0.77 (0.007) 0.82 (0.004) 0.78 (0.004) 1.78 (0.009)

2−9 0.68 (0.020) 0.80 (0.010) 0.61 (0.012) 1.46 (0.017)

2−7 0.83 (0.110) 1.06 (0.095) 0.39 (0.027) 2.74 (0.336)

150 2−11 0.58 (0.007) 0.78 (0.003) 0.68 (0.004) 1.32 (0.006)

2−9 0.52 (0.018) 0.79 (0.009) 0.49 (0.011) 1.18 (0.014)

2−7 0.67 (0.050) 0.87 (0.040) 0.30 (0.019) 1.27 (0.084)

0.6 75 2−11 0.70 (0.002) 0.66 (0.003) 0.67 (0.002) 1.76 (0.004)

2−9 0.41 (0.009) 0.55 (0.010) 0.41 (0.006) 1.25 (0.016)

2−7 0.38 (0.102) 0.73 (0.094) 0.20 (0.010) 2.46 (0.341)

150 2−11 0.38 (0.002) 0.53 (0.003) 0.45 (0.002) 1.09 (0.006)

2−9 0.22 (0.005) 0.50 (0.012) 0.26 (0.004) 0.98 (0.017)

2−7 0.22 (0.043) 0.65 (0.055) 0.13 (0.004) 1.18 (0.126)

0.9 75 2−11 1.39 (0.000) 0.87 (0.002) 0.80 (0.002) 3.47 (0.000)

2−9 0.60 (0.002) 0.55 (0.003) 0.56 (0.002) 1.51 (0.004)

2−7 0.26 (0.007) 0.33 (0.021) 0.26 (0.004) 1.42 (0.230)

150 2−11 0.64 (0.000) 0.54 (0.001) 0.62 (0.001) 1.60 (0.000)

2−9 0.26 (0.001) 0.31 (0.003) 0.29 (0.002) 0.75 (0.006)

2−7 0.12 (0.002) 0.19 (0.028) 0.13 (0.002) 0.50 (0.061)

referring to the ASE optimal bandwidth. The last column shows that FCCV selects too
large a bandwidth when the errors are independent. In contrast, the other three methods
come much closer to matching the ASE optimal bandwidth with OSCV generally coming
closest. In the correlated errors cases, FCCV generally comes closer to the ASE optimal
bandwidth with the other three approaches generally undersmoothing the data. This is par-
ticularly true for PI, which tends to grossly undersmooth when the errors are correlated
and have large variance. As a final comment, FCCV is a data-hungry method as the n = 75
table entries demonstrate. The sampling rate needs to be high enough to retain sufficient
information about the mean function when deleting neighbors.

4. APPLICATION

Figure 7 shows global temperature deviations spanning the years 1880–1987 as circles.
As pointed out by Woodward, Bottone, and Gray (1997), the residuals for these data from
standard parametric regression procedures are correlated. This is an ideal example in the
present context. The same figure also shows three nonparametric regression estimates with
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Figure 7. Sample application of OSCV, PI, and FCCV to 108 years of deviations of mean global temperatures
from 1880 to 1987 (Hansen and Lebedeff 1987). The dash, dot, and solid curves are smoothed estimates produced
by OSCV, PI, and FCCV, respectively. PI produced the smallest bandwidth estimate at 0.026 (2.8 yr) whereas
OSCV was in the middle at 0.093 (10.0 yr). FCCV, using a withholding neighborhood of d = 4/108, yielded the
largest bandwidth estimate of 0.168 (16.8 yr).

global bandwidths selected by OSCV, PI, and FCCV. Similarly to the simulation results,
the PI method selects the smallest bandwidth of 2.8 yr, which is not surprising given the se-
rially correlated errors. The PI fit, shown as a dotted curve, is excessively variable tracking
small-scale features. OSCV selects a larger bandwidth of 10.0 yr and the corresponding fit
reflects this as the much smoother dashed curve. This parallels the simulation results where
OSCV performed well in the minimally correlated cases. Using the procedure described
earlier for estimating d , φ̂ = 0.38 which leads to a estimated withholding neighborhood of
d̂ = 4/108 that minimizes the squared partial bias. Using d̂ = 4/108, FCCV provides the
largest bandwidth of 16.8 yr and the smoothest fit, shown as a solid curve. The code and
data for this example are available at the JCGS website.

5. CONCLUSIONS

Tuning parameter estimation and model selection when data are correlated present sev-
eral difficulties. Even grossly misspecified models can appear to perform well in terms of
CV error under ordinary cross-validation because highly correlated neighbors retained in
the prediction phase essentially impute the withheld data point, unbeknownst to the user.
FCCV works well in large, strongly correlated datasets. This occurs because model esti-
mates change very little with a few withheld observations. Misspecified models robbed of
correlated neighbors are unlikely to yield good estimates. By assessing the model’s ability
to extrapolate, FCCV reduces overly optimistic model performance measures.
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In the context of global bandwidth selection, FCCV outperforms OCV and PI when er-
rors are correlated. Even though OSCV can perform similarly to FCCV in one dimension
when errors are minimally correlated, OSCV does not readily extend to two or higher di-
mensions. FCCV overcomes this limitation by removing radially defined neighborhoods,
which readily adapts to any dimension. Our motivation for FCCV was precisely this diffi-
culty. We found it necessary to find an alternative to existing methods while investigating
recursive partitioning of two-dimensional kriging models (Carmack 2004).

Although this new method performs well in correlated datasets, it is less than optimal
with uncorrelated data. Also, when errors are correlated, the sampling rate needs to be
high enough to capture the underlying functional form when neighbors are discarded. The
simulation studies presented in this article excluded fixed-size neighborhoods, which is not
necessarily optimal. Provided the covariance structure is known or can be well estimated,
better choices of d may be produced. In the special case of an AR(1) error structure, a sim-
ple procedure for estimating d was outlined and applied to an example. Further research is
necessary to establish a more general data-driven solution and related robustness proper-
ties.

SUPPLEMENTAL MATERIALS

Data Sets and Computer Code: The supplemental materials contain the global temper-
ature deviations spanning the years 1880–1987 (global_temperature_deviations.dat),
R code for applying FCCV to one dimensional data sets (fccv.R), and script for apply-
ing FCCV to the global temperature deviations data (global_temperature_deviations.R).
The appendix (fccv_supplemental.pdf) contains additional tables and figures. (supple-
ments.zip)
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