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Abstract

In this paper a mixture of Type-I censoring and Type-II progressively censoring schemes,

called adaptive progressively hybrid censoring scheme, is introduced for life-testing or

reliability experiments. For this censoring scheme, the number of effective sample size m

is fixed in advance and the progressive censoring scheme (R1, R2, . . . , Rm) is provided but

the values of Ri may change during the experiment. If the experimental time exceeds a

prefixed time T but the number of observed failures does not reach m, we would want

to terminate the experiment as soon as possible by adjusting the Ri’s. Computational

formulas for the expected total test time are provided. Point and interval estimations of

the mean lifetime under exponential distribution are discussed with this censoring scheme.

Different methods have been compared using Monte Carlo simulation.
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1 Introduction

In life-testing and reliability studies, the experimenter may not always obtain complete infor-

mation on failure times for all experimental units. Data obtained from such experiments are

called censored data. Saving the total time on test and the cost associated with it are some of

the major reasons for censoring. A censoring scheme, which can balance between (i) total time

spent for the experiment; (ii) number of units used in the experiment; and (iii) the efficiency

of statistical inference based on the results of the experiment, is desirable.

The most common censoring schemes are Type-I (time) censoring, where the life-testing

experiment will be terminated at a pre-fixed time T ; and Type-II (item) censoring, where the

life-testing experiment will be terminated as soon as the r-th (r is pre-fixed) failure is observed.

However, the conventional Type-I and Type-II censoring schemes do not have the flexibility of

allowing removal of units at points other than the terminal point of the experiment. Because

of that, a more general censoring scheme called progressive Type-II right censoring has been

introduced. Briefly, it can be described as follows: Consider an experiment in which n units

are placed on a life-test. At the time of the first failure, R1 units are randomly removed from

the remaining n− 1 surviving units. Similarly, at the time of the second failure, R2 units from

the remaining n−2−R1 units are randomly removed. The test continues until the m-th failure

at which time, all the remaining Rm = n −m−R1 −R2 − . . . −Rm−1 units are removed. The

R,
is are fixed prior to the study. Readers may refer to Balakrishnan and Aggarwala [2] and

Balakrishnan [1] for extensive reviews of the literature on progressive censoring.

Recently, Kundu and Joarder [14] proposed a censoring scheme called Type-II progressively

hybrid censoring scheme, in which the life-testing experiment with progressive Type-II right

censoring scheme (R1, . . . , Rm) is terminated at a prefixed time T . However, the drawback of

the Type-II progressive hybrid censoring, similar to the conventional Type-I censoring (time

censoring), is that the effective sample size is random and it can turn out to be a very small

number (even equal to zero), and therefore the standard statistical inference procedures may

not be applicable or they will have low efficiency. In this paper we suggest an adaptive Type-II

progressively hybrid censoring, where we allow R1, R2, . . . , Rm to be dependent on the failure
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times so that the effective sample size is always m, which is fixed in advance. A properly

planned hybrid progressively censored life-testing experiment can save both the total time on

test and the cost induced by failure of the units and increase the efficiency of statistical analysis.

For application of different hybrid progressive censoring schemes in Bayesian variable sampling

plans, one can refer to Lin, Hwang and Balakrishnan [15] for more details.

The rest of the paper is organized as follows. In Section 2, we first introduce the notation

and describe the adaptive Type-II progressive hybrid censoring scheme. In Section 3, we derive

the MLE for the parameter and discuss the construction of confidence interval for the parameter

by different methods, when the underlying distribution is exponential. Section 4 provides the

computation formulas for the expected total test time which will be useful for experimental

planning purpose. In Section 5, the efficiency of the MLEs based on the proposed censoring

scheme with the Type-II progressively hybrid censoring scheme proposed by Kundu and Joarder

[14] are compared. Confidence intervals obtained by different methods are also compared in

term of their coverage probabilities and conditional expected widths by means of extensive

Monte Carlo simulations. Suggestions and comments are made based on these simulation

results.

2 Model Description

Suppose n independent units are placed on a life-test with the corresponding lifetimes X1,

X2, . . ., Xn being identically distributed. We assume that Xi, i = 1, 2, . . . , n are indepen-

dently and identically distributed with probability density function (PDF) fX(x; θ) and cu-

mulative distribution function (CDF) FX(x; θ), where θ denotes the vector of parameters.

Prior to the experiment, a number m < n is determined and the progressively Type-II cen-

soring scheme (R1, R2, . . . , Rm) with Ri > 0 and
m∑

i=1
Ri + m = n is specified. During the

experiment, i-th failure is observed and immediately after the failure, Ri functioning items are

randomly removed from the test. We denote the m completely observed (ordered) lifetimes

by X
(R1,...,Rm)
i:m:n , i = 1, 2, . . . , m, which are the observed progressively Type-II right censored

sample. For convenience, we will suppress the censoring scheme in the notation of the Xi:m:n’s.
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We also denote the observed values of such a progressively Type-II right censored sample by

x1:m:n < x2:m:n < . . . < xm:m:n.

As noted by Ng, Chan and Balakrishnan [17], it is expected that a progressive censoring

plan has a longer test duration than a single (conventional Type-II) censoring plan in return for

the gain in efficiency. The value of Ri at the time of the i-th failure Xi:m:n may be determined

depending on the objective of the experimenter. The objective may be controlling the total

time on test or having higher chance to observe some extreme failures (usually leading to a

gain in efficiency for statistical inference). Suppose the objective is to control the total time

on test, a reasonable design to control the total time on test is to terminate the experiment

at a prefixed time. This problem is considered in [14] for a fixed progressive censoring scheme

(R1, R2, . . . , Rm) and they called this type of censoring as Type-II progressively hybrid censoring.

The drawback of this censoring scheme is that the effective sample size is random and it can turn

out to be a very small number (even equal to zero) so that usual statistical inference procedures

will not be applicable or they will have low efficiency. Therefore, we suggest considering an

adaptive censoring scheme in which the number of effective sample size m is fixed in advance

and the progressive censoring scheme (R1, R2, . . . , Rm) is provided, but the values of some of

the Ri may change accordingly during the experiment.

Suppose the experimenter provides a time T , which is an ideal total time on test, but we

still allow the experiment to run over time T . If the m-th progressively censored observed

failure occurs before time T (i.e. Xm:m:n < T ), the experiment stops at the time Xm:m:n (see

Figure 1). Otherwise, once the experimental time passed time T but the number of observed

failures has not reached m, we would want to terminate the experiment as soon as possible.

This setting can be viewed as a design in which we are assured of getting m observed failure

times for efficiency of statistical inference plus the total time on test will not be too far away

from the ideal time T .

Theorem. Suppose X1:n is the first order statistic of a random sample from a continuous

distribution F with sample size n. For n1 < n2, E(X1:n1) ≥ E(X1:n2).

Proof: The distribution function of the first order statistic of a random sample from a contin-

uous distribution F with sample size n is Pr(X1:n ≤ x) = 1 − [1 − F (x)]n. Let the first order
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Figure 1: Experiment terminates before time T (i.e. Xm:m:n < T )

statistic of a random sample of size n1 and n2 be Y1 and Y2, and their distribution functions to

be G1(y) = 1 − [1 − F (y)]n1 and G2(y) = 1 − [1 − F (y)]n2, respectively. For n1 < n2, we have

G1(y) ≤ G2(y), i.e. Y2 is stochastically smaller than Y1. From David and Nagaraja [9] (Section

4.4), if E(Y1) and E(Y2) exists, then E(Y1) ≥ E(Y2).
⊙

Suppose J is the number of failures observed before time T , i.e.

XJ:m:n < T < XJ+1:m:n, J = 0, 1, . . . , m

where X0:m:n ≡ 0 and Xm+1:m:n ≡ ∞. According to the above theorem, after the experiment

passed time T , we set RJ+1 = · · · = Rm−1 = 0 and Rm =

(
n − m −

J∑
i=1

Ri

)
. This formulation

leads us to terminate the experiment as soon as possible if the (J + 1)-th failure time is

greater than T for (J + 1) < m. Figure 2 gives the schematic representation of this situation.

The value of T plays an important role in the determination of the values of Ri and also as

a compromise between a shorter experimental time and a higher chance to observe extreme

failures. One extreme case is when T → ∞, which means time is not the main consideration

for the experimenter, then we will have a usual progressive Type-II censoring scheme with the

pre-fixed progressively censoring scheme (R1, . . . , Rm). Another extreme case can occur when

T = 0, which means we always want to end the experiment as soon as possible, then we will

have R1 = · · · = Rm−1 = 0 and Rm = n−m which results in the conventional Type-II censoring

scheme.
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Figure 2: Experiment terminates after time T (i.e. Xm:m:n ≥ T ) with adaptive Type-II pro-

gressive hybrid censoring

3 Statistical Inference for Exponential Distribution

3.1 Point Estimation

Given J = j, the likelihood function is given by

L(θ|J = j) = c

[
m∏

i=1

f(xi:m:n; θ)

]


j∏

i=1

[1 − F (xi:m:n; θ)]Ri





× [1 − F (xm:m:n; θ)]

(
n−m−

j∑
i=1

Ri

)

where

c = n(n − R1 − 1) · · · (n −R1 − . . . − Rj − 1)

×(n− R1 − . . . − Rj − 2) · · · (n −R1 − . . . −Rj − m + 1).

The exponential distribution is one of the most widely used life-time models in the areas of

life testing and reliability. The volume by Balakrishnan and Basu [3] (see also Chapter 19 of

[12]) provides an extensive review of the genesis of the distribution and its properties, including

several characterization results. For exponential distribution with PDF f(x) = λe−λx, x > 0

and CDF F (x) = 1 − e−λx, x > 0 (denote as Exp(λ)), the log-likelihood function is

lnL(λ|J = j) = constant + m lnλ

−λ




m∑

i=1

xi:m:n +
j∑

i=1

Rixi:m:n +


n − m −

j∑

i=1

Ri


 xm:m:n


 .

We have

∂L(λ|J = j)

∂λ
=

m

λ
−

m∑

i=1

xi:m:n −
j∑

i=1

Rixi:m:n −

n − m−

j∑

i=1

Ri


xm:m:n,
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∂2L(λ|J = j)

∂λ2
= −m

λ2
,

therefore, the maximum likelihood estimator of λ is given by

λ̂ =
m

m∑
i=1

xi:m:n +
j∑

i=1
Rixi:m:n +

(
n − m −

j∑
i=1

Ri

)
xm:m:n

and an estimate of asymptotic variance is v̂ar(λ̂) = λ̂2

m
. For brevity we denote

δ = δ(x, j) =
m∑

i=1

xi:m:n +
j∑

i=1

Rixi:m:n +


n − m−

j∑

i=1

Ri


xm:m:n.

3.2 Construction of Confidence Interval for λ

1. Conditional exact confidence interval (EX)

We consider θ = 1/λ and the MLE of θ is θ̂ = 1
λ
. Let Y be a Gamma(α, β), i.e., a gamma

random variable with shape parameter α and scale parameter β. Then the PDF of Y is

given by

g(y; α, β) =
βα

Γ(α)
yα−1e−βy, y > 0.

where Γ(α) =
∫∞
0 xα−1e−xdx is the gamma function.

Conditional on J = j > 0, the exact conditional distribution of θ̂ is given by (see Appendix

B)

fθ̂(t|J = j) =

j∑
i=0

ci,j(R)e−T b∗i,j (R)/θg
(
t− T b∗i,j(R)

m
; m, m

θ

)

j∑
i=0

ci,j(R)e−T b∗i,j(R)/θ

.

where R = (R1, R2, . . . , Rj),

ci,j(R) =
(−1)i

{
i∏

l=1

j−i+l∑
k=j−i+1

(Rk + 1)

}{
j−i∏
l=1

j−i∑
k=l

(Rk + 1)

} ,

b∗i,j(R) =
j∑

k=j−i+1

(Rk + 1) +


n − j −

j∑

k=1

Rk


 ,
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in which we use the usual conventions that
0∏

l=1
dl ≡ 1 and

i−1∑
l=i

dl ≡ 0. For J = 0, the

conditional PDF of θ̂, given J = 0, is

fθ̂(t|J = 0) = g
(
t − nT

m
; m,

m

θ

)
.

We can show that the probability Pr(θ̂ ≥ w|J = j) is increasing function of θ. This

assumption guarantees the invertibility of the pivotal quantities and construct exact con-

fidence intervals of θ based on the exact distribution of θ̂. Several articles including

[5, 8, 7, 11, 13], have used this approach for constructing exact confidence intervals in

different contexts. For J = j > 0, the conditional 100(1 − α)% confidence interval for θ,

(θL, θU) can be obtained as the solutions of the following nonlinear equations:

j∑

i=0

ci,j(R)e−T b∗
i,j

(R)/θL

[
α

2
− Γ

(
m,

m

θL
· max

(
0, θ̂ − T b∗i,j(R)

m

))]
= 0,

j∑

i=0

ci,j(R)e−T b∗i,j(R)/θU

[
1 − α

2
− Γ

(
m,

m

θU
· max

(
0, θ̂ − T b∗i,j(R)

m

))]
= 0,

where Γ(m, z) = 1
Γ(m)

∫∞
z tm−1 exp(−t)dt. For J = 0, the conditional 100(1 − α)% confi-

dence interval for θ, can be obtained as the solutions of the following nonlinear equations:

α

2
= Γ

(
m,

m

θL
· max

(
0, θ̂ − nT

m

))
,

1 − α

2
= Γ

(
m,

m

θU
· max

(
0, θ̂ − nT

m

))
.

The corresponding conditional 100(1 − α)% confidence interval for λ, (λL, λU ), can be

obtained as

λL =
1

θU
and λU =

1

θL
.

2. Normal approximation of the MLE (NA)

Based on the normal approximation of the MLE, we can say that λ̂−λ√
V ar(λ̂)

is asymptotically

normally distributed with zero mean and unit variance, i.e.

λ̂ − λ√
V ar(λ̂)

·∼ N(0, 1).
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If we replace the variance var(λ̂) by its estimate, we can obtain a 100(1−α)% confidence

interval for λ as

λ̂ ± z1−α/2

λ̂√
m

,

where zq is the q-th upper percentile of a standard normal distribution.

3. Normal approximation of the log-transformed MLE (NL)

The problem with applying normal approximation of the MLE is that when the sample size

is small, the normal approximation may be poor. However a different transformation of

the MLE can be used to correct the inadequate performance of the normal approximation.

Based on the normal approximation of the log-transformed MLE, a 100(1−α)% confidence

interval for λ is

exp
[
ln(λ̂) ± z1−α/2

√
V ar(ln λ̂)

]
,

where var(ln λ̂) can be approximated by delta method as

V̂ ar(ln λ̂) =
1

m
.

A 100(1 − α)% confidence interval for λ is

exp


ln(λ̂) ± z1−α/2

√
1

m


 .

4. Likelihood ratio-based confidence interval (LR)

A likelihood ratio-based conditional confidence interval is constructed using the likelihood

ratio statistic [16] for testing the hypothesis H0 : λ = λ0 versus H1 : λ 6= λ0. In our case,

the likelihood ratio statistic is given by

2[lnL(λ̂|J = j) − lnL(λ0|J = j)].

The asymptotic distribution of the likelihood ratio statistic is chi-square with one degree

of freedom (χ2
1). An approximate 100(1 − α)% confidence interval for λ is the region

{
λ : 2[lnL(λ̂|J = j) − lnL(λ|J = j)] ≤ χ2

1,1−α

}
.
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5. Bootstrap confidence interval

We construct confidence intervals based on the parametric bootstrap, using the percentile

bootstrap method and bootstrap t method (see, for example, [10]). To obtain the per-

centile bootstrap confidence intervals for λ, we use the following algorithm:

Parametric percentile bootstrap confidence interval (PB):

1. Based on the original sample x = (x1:m:n, x2:m:n, . . . , xm:m:n), obtain λ̂, the MLE of λ.

2. Simulate the adaptive Type-II hybrid progressive censored sample, say (y1:m:n, . . . , ym:m:n),

with the underlying distribution as Exp(λ̂) (simulation algorithm is described in the fol-

lowing section) with censoring scheme (R1, . . . , Rm) and pre-fixed T .

3. Compute the MLEs of λ based on y1:m:n, y2:m:n, . . . , ym:m:n, say λ̂∗.

4. Repeat Steps 2 - 3 B times and obtain λ̂∗(1), λ̂∗(2), . . . , λ̂∗(B).

5. Arrange λ̂∗(1), λ̂∗(2), . . . , λ̂∗(B) in ascending order and obtain λ̂∗[1], λ̂∗[2], . . . , λ̂∗[B].

A two-sided 100(1 − α)% percentile bootstrap confidence interval of λ, say [λ∗
L, λ∗

U ], is

then given by

λ∗
L = λ̂∗([Bα/2]), λ∗

U = λ̂∗([B(1−α/2)]).

To obtain the bootstrap-t confidence intervals for λ, we use the following algorithm:

Parametric bootstrap-t confidence interval (TB):

1. Based on the original sample x = (x1:m:n, x2:m:n, . . . , xm:m:n), obtain λ̂, the MLE of λ.

2. Simulate the adaptive Type-II hybrid progressive censored sample, say (y1:m:n, . . . , ym:m:n),

with the underlying distribution as Exp(λ̂) (simulation algorithm is described in the fol-

lowing section) with censoring scheme (R1, . . . , Rm) and pre-fixed T .

3. Compute the MLEs of λ based on y1:m:n, y2:m:n, . . . , ym:m:n, say λ̂∗.

4. Compute the t-statistic

T =

√
m(λ̂∗ − λ̂)

λ̂∗

5. Repeat Steps 2 - 4 B times and obtain T (1), T (2), . . . , T (B).
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6. Arrange T (1), T (2), . . . , T (B) in ascending order and obtain T [1], T [2], . . . , T [B].

A two-sided 100(1−α)% bootstrap-t confidence interval of λ, say [λt,L, λ∗
t,U ], is then given

by

λt,L = λ̂ + T ([Bα/2]) λ̂√
m

, λt,U = λ̂ + T ([B(1−α/2)]) λ̂√
m

.

6. Bayesian Analysis

Bayesian inference provides an alternative way to estimate the parameter λ, especially

when prior information about the sampling distribution of λ is available. A reason-

able choice of prior distribution for Λ is a gamma prior with parameters a and b (de-

note by Gamma(a, b)). Given the data, the posterior density of λ is proportional to

λa+m−1 exp(−λδ), which is the kernel of Gamma(a + m, b + δ). Therefore, if we assume

the commonly used squared error loss function, the Bayesian estimator of λ is given by

λ̃ =
a + m

b + δ
.

A 100(1 − α)% Bayesian credible interval, say (λ̃L, λ̃U ), can be obtained as the solutions

of the following equations:

∫ λ̃L

0

(b + δ)(a+m)

Γ(a + m)
λa+m−1 exp(−(b + δ)λ)dλ =

α

2
,

∫ λ̃U

0

(b + δ)(a+m)

Γ(a + m)
λa+m−1 exp(−(b + δ)λ)dλ = 1 − α

2
.

If a is an integer, a 100(1 − α)% Bayesian credible interval can be obtained as

(
χ2

(a+m),1−α/2

2(b + δ)
,
χ2

(a+m),α/2

2(b + δ)

)
.

In the simulation study presented in Section 4 below, we use the non-informative prior

with a = b = 0 (say, BN) and prior distribution Gamma(0.1, 0.1) (say, BA).

3.3 Expected Total Test Time

As we mentioned before, the difference between the proposed adaptive Type-II progressively

hybrid censoring scheme and the one proposed by Kundu and Joarder [14] is that the maximum
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total time on test is not fixed in advance. In practical applications, it is useful to have an idea

on the total test time for a particular life-testing plan. When an adaptive Type-II progressively

hybrid censoring scheme is used, one can obtain the expected total test time (ETT) by

ETT = E(Xm:m:n) =
m∑

j=1

Pr(J = j)E(Xm:m:n|J = j). (1)

For exponential distribution, we can show that the probability mass function of the value

J for a pre-fixed value of T is (see Appendix A)

Pr(J = j) = Pr(Xj:m:n < T ≤ Xj+1:m:n)

= cj−1 exp (−rj+1λT )
j∑

i=1

ai,j

(ri − rj+1)
{1 − exp [−(ri − rj+1)λT ]} ,

(2)

j = 0, 1, 2, . . . , m, where

rj = m− j + 1 +
m∑

i=j

Ri, j = 1, 2, . . . , m, with rm+1 ≡ 0,

cj−1 =
j∏

i=1

ri, j = 1, 2, . . . , m, with c0 ≡ 1,

ai,j =
j∏

k=1
k 6=i

1

rk − ri
, 1 ≤ i ≤ j ≤ m.

Based on the memoryless property of exponential distribution and the properties of exponen-

tial order statistics, we can obtain the conditional expectation of Xm:m:n for j = 0, 1, . . . , m− 1

as

E(Xm:m:n|J = j) = T + E(Ym∗:n∗)

= T + λ
n∗∑

k=n∗−m∗+1

1

k
, (3)

where Ym∗ :n∗ denotes the m∗-th order statistic from a sample of size n∗ with n∗ = n− j −
j∑

i=1
Ri

and m∗ = m − j. For j = m, the conditional expectation of Xm:m:n is

E(Xm:m:n|J = m) =
∫ T

0

xfXj:m:n(x)

FXj:m:n(T )
dx

=
cm−1

m∑
i=1

ai,m

ri

[
1−exp(−riλT )

riλ
− T exp (−riλT )

]

Pr(J = m)
. (4)
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Usually, some information on λ from past data or prior experience should be available. There-

fore, from Eqs. (2)–(4), we can approximate the expected test length provided that the values

of n and m, the progressive censoring scheme (R1, . . . , Rm) and T are specified.

4 Monte Carlo Simulation and Numerical Comparisons

We first describe the procedure to generate Type-II progressively hybrid censored data (from

any distribution F ) for given values of n, m, T and (R1, . . . , Rm):

1. Generate an ordinary Type-II progressive censored sample X1:m:n, X2:m:n, . . . , Xm:m:n

with censoring scheme (R1, . . . , Rm) based on the method proposed in [6].

2. Determine the value of J , where XJ:m:n < T < XJ+1:m:n, and discard the sample

Xj+1:m:n, . . . , Xm:m:n.

3. Generate the first to (m−j−1)-th order statistics from a truncated distribution f(x)/[1−

F (xj+1:m:n)] with sample size
(
n −∑j

i=1 Ri − j − 1
)

as Xj+2:m:n, Xj+3:m:n, . . . , Xm:m:n.

For exponential distribution, a more convenient algorithm based on spacing of progressively

censored exponential order statistics (Balakrishnan and Aggarwala, 2000, Section 3.3) can be

used in place of Step 1 above.

4.1 Comparison of two progressively hybrid censoring schemes

In this subsection, we compare the efficiency of the MLE based on the adaptive Type-II pro-

gressively hybrid censoring scheme with the hybrid censoring scheme proposed by Kundu and

Joarder [14]. If the censoring scheme proposed in [14] is employed, the MLE is given by

λ̂KJ =





J
J∑

i=1

(Ri+1)xi:m:n+T

(
n−J−

J∑
i=1

Ri

) xm:m:n > T ,

m
m∑

i=1

(Ri+1)xi:m:n

xm:m:n ≤ T .

The expected total time on test and expected number of failure based on the censoring scheme

proposed in [14] can be computed respectively by

ETTKJ = Pr(J = m)E(Xm:m:n|J = m) + [1 − Pr(J = m)]T
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and EMKJ =
m∑

j=1

j Pr(J = j).

Monte Carlo simulation is used to compare the efficiency of the MLE coming from two

different hybrid censoring schemes. Different values of n, m and T and three progressive

censoring schemes for each setting are considered. For brevity, for example, the censoring

scheme (0,0,1,1,1,1,1,0,0,0) is denoted by (0*2,1*5,0*3). Without loss of generality, we set

λ = 1. The biases and mean squares errors (MSEs) are estimated based on 10,000 simulations

and they are reported in Tables 1–3. For the sake of comparison, based on exact calculation,

the expected total time on test for both censoring schemes, the expected effective sample size

for scheme proposed in [14] and the probability of getting no observation (i.e. Pr(J = 0)) are

also presented in Tables 1–3.

From Tables 1–3, we observed that the MLEs based on the adaptive Type-II progressively

hybrid censoring schemes give larger biases but smaller MSEs compare to those based on the

hybrid censoring scheme proposed in [14]. Although the proposed censoring scheme gives better

performance in estimation in terms of MSE, the trade-off is a longer experimental time and a

larger effective sample size. Therefore, the proposed censoring scheme will be useful to obtain

a higher efficiency in estimation of parameter when the length of the experiment is not a major

concern.

In studying the effect of different censoring schemes, we observed that the MSEs are not

much difference for the three chosen censoring schemes for each set of n and m, however, the

expected total time on test can be very different for different censoring scheme. For example,

in Table 1, (n, m) = (15,10) with T = 0.25, the MSEs for censoring schemes (0*9,5), (5,0*9)

and (0*2,1*5,0*3) are 1.670, 1.694 and 1.664 and their corresponding expected total time on

test are 1.0396, 2.8566 and 1.2494, respectively. This suggested that a significantly reduction

in the experimental time without sacrificing much in efficiency of estimation, one should use

the conventional Type-II censoring scheme and avoid the use of censoring schemes with heavy

censoring at the early stages of the experiment.
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Table 1: Biases and MSEs of the MLEs for different sample sizes and censoring schemes for

m = 5

(n,m) Scheme Bias MSE ETT BiasKJ MSEKJ ETTKJ EMKJ Pr(J = 0)

(15, 5) T = 0.25

(0,0,0,0,10) 0.2536 0.6210 0.3916 0.1507 0.6765 0.2360 3.1848 0.0235

(10,0,0,0,0) 0.2336 0.5365 2.1109 0.2855 1.0113 0.2499 1.6455 0.0235

(2,2,2,2,2) 0.2501 0.5690 0.6023 0.1882 0.6634 0.2478 2.6382 0.0235

T = 0.50

(0,0,0,0,10) 0.2455 0.6442 0.3893 0.2217 0.6664 0.3570 4.6313 0.0006

(10,0,0,0,0) 0.2477 0.5357 2.1491 0.1934 0.6936 0.4983 2.4002 0.0006

(2,2,2,2,2) 0.2619 0.6070 0.7113 0.2084 0.6282 0.4609 3.8843 0.0006

T = 1.00

(0,0,0,0,10) 0.2513 0.5788 0.3893 0.2509 0.5793 0.3888 4.9946 0.0000

(10,0,0,0,0) 0.2615 0.6118 2.1500 0.2007 0.6479 0.9651 3.4234 0.0000

(2,2,2,2,2) 0.2451 0.5573 0.7580 0.2304 0.5669 0.6821 4.7511 0.0000

(25, 5) T = 0.25

(0,0,0,0,20) 0.2480 0.5924 0.2183 0.2094 0.6264 0.1919 4.4330 0.0019

(20,0,0,0,0) 0.2389 0.5366 2.1198 0.2561 0.9535 0.2499 1.7534 0.0019

(4,4,4,4,4) 0.2436 0.5457 0.4068 0.1837 0.5803 0.2382 3.5675 0.0019

T = 0.50

(0,0,0,0,20) 0.2526 0.5577 0.2182 0.2518 0.5588 0.2175 4.9853 0.0000

(20,0,0,0,0) 0.2448 0.6059 2.1233 0.1911 0.7457 0.4979 2.4728 0.0000

(4,4,4,4,4) 0.2472 0.6198 0.4513 0.2231 0.6328 0.3810 4.5896 0.0000

T = 1.00

(0,0,0,0,20) 0.2496 0.5793 0.2182 0.2496 0.5793 0.2182 5.0000 0.0000

(20,0,0,0,0) 0.2584 0.5938 2.1233 0.2009 0.6297 0.9618 3.4672 0.0000

(4,4,4,4,4) 0.2544 0.5877 0.4566 0.2524 0.5897 0.4500 4.9663 0.0000

(50, 5) T = 0.25

(0,0,0,0,45) 0.2469 0.5931 0.1043 0.2463 0.5939 0.1040 4.9897 0.0000

(45,0,0,0,0) 0.2593 0.5705 2.1033 0.2964 1.0349 0.2499 1.8212 0.0000

(9,9,9,9,9) 0.2545 0.5861 0.2255 0.2318 0.5984 0.1905 4.5896 0.0000

T = 0.50

(0,0,0,0,45) 0.2497 0.5724 0.1043 0.2497 0.5724 0.1043 5.0000 0.0000

(45,0,0,0,0) 0.2511 0.5645 2.1033 0.1999 0.7010 0.4976 2.5244 0.0000

(9,9,9,9,9) 0.2440 0.5437 0.2283 0.2417 0.5459 0.2250 4.9663 0.0000

T = 1.00

(0,0,0,0,45) 0.2464 0.5307 0.1043 0.2464 0.5307 0.1043 5.0000 0.0000

(45,0,0,0,0) 0.2419 0.5590 2.1033 0.1820 0.5919 0.9591 3.4985 0.0000

(9,9,9,9,9) 0.2560 0.6227 0.2283 0.2560 0.6227 0.2283 4.9998 0.0000
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Table 2: Biases and MSEs of the MLEs for different sample sizes and censoring schemes for

m = 10

(n, m) Scheme Bias MSE ETT BiasKJ MSEKJ ETTKJ EMKJ Pr(J = 0)

(15, 10) T = 0.25

(0*9,5) 0.1123 0.1670 1.0396 0.0652 0.3177 0.2500 3.3180 0.0235

(5,0*9) 0.1159 0.1694 2.8566 0.1254 0.4738 0.2500 2.4817 0.0235

(0*2,1*5,0*3) 0.1111 0.1664 1.2494 0.1079 0.3837 0.2500 3.2071 0.0235

T = 0.50

(0*9,5) 0.1145 0.1683 1.0350 0.0501 0.2062 0.4979 5.8921 0.0006

(5,0*9) 0.1097 0.1640 2.8947 0.0822 0.3017 0.5000 4.1511 0.0006

(0*2,1*5,0*3) 0.1102 0.1659 1.7346 0.0791 0.2526 0.5000 5.2861 0.0006

T = 1.00

(0*9,5) 0.1091 0.1610 1.0349 0.0828 0.1737 0.8837 8.9857 0.0000

(5,0*9) 0.1083 0.1644 2.8956 0.0743 0.2064 0.9984 6.4526 0.0000

(0*2,1*5,0*3) 0.1094 0.1665 2.4272 0.0917 0.1924 0.9950 7.4378 0.0000

(25, 10) T = 0.25

(0*9,15) 0.1087 0.1697 0.4979 0.0266 0.2133 0.2488 5.5127 0.0019

(15,0*9) 0.1090 0.1621 2.8645 0.1054 0.4505 0.2500 2.6975 0.0019

(1*5,2*5) 0.1104 0.1640 0.6550 0.0642 0.2544 0.2500 4.8865 0.0019

T = 0.50

(0*9,15) 0.1176 0.1718 0.4977 0.0883 0.1878 0.4359 8.9511 0.0000

(15,0*9) 0.1158 0.1695 2.8690 0.0785 0.2959 0.5000 4.3138 0.0000

(1*5,2*5) 0.1108 0.1634 0.8385 0.0782 0.1845 0.4946 7.5501 0.0000

T = 1.00

(0*9,15) 0.1112 0.1746 0.4977 0.1110 0.1748 0.4973 9.9928 0.0000

(15,0*9) 0.1082 0.1664 2.8690 0.0790 0.2096 0.9981 6.5511 0.0000

(1*5,2*5) 0.1188 0.1710 0.9884 0.1091 0.1753 0.8422 9.4527 0.0000

(50, 10) T = 0.25

(0*9,40) 0.1135 0.1758 0.2207 0.0936 0.1893 0.2041 9.3057 0.0000

(40,0*9) 0.1087 0.1614 2.8490 0.1140 0.4267 0.2500 2.8477 0.0000

(4*10) 0.1121 0.1670 0.4541 0.0801 0.1960 0.2487 7.1350 0.0000

T = 0.50

(0*9,40) 0.1115 0.1684 0.2207 0.1115 0.1685 0.2206 9.9985 0.0000

(40,0*9) 0.1103 0.1587 2.8490 0.0837 0.2728 0.5000 4.4298 0.0000

(4*10) 0.1096 0.1619 0.5654 0.0959 0.1675 0.4480 9.1792 0.0000

T = 1.00

(0*9,40) 0.1078 0.1584 0.2207 0.1078 0.1584 0.2207 10.0000 0.0000

(40,0*9) 0.1171 0.1714 2.8490 0.0869 0.2123 0.9979 6.6215 0.0000

(4*10) 0.1134 0.1680 0.5856 0.1116 0.1690 0.5725 9.9326 0.0000
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Table 3: Biases and MSEs of the MLEs for different sample sizes and censoring schemes for

m = 15

(n, m) Scheme Bias MSE ETT BiasKJ MSEKJ ETTKJ EMKJ Pr(J = 0)

(25, 15) T = 0.25

(0*14,10) 0.0693 0.0912 0.8872 0.0210 0.1868 0.2500 5.5300 0.0019

(10,0*14) 0.0674 0.0909 3.2871 0.0590 0.2976 0.2500 3.6417 0.0019

(0*2,1*10,0*3) 0.0659 0.0903 1.1128 0.0464 0.2216 0.2500 5.2300 0.0019

T = 0.50

(0*14,10) 0.0717 0.0942 0.8870 0.0256 0.1173 0.4983 9.8210 0.0000

(10,0*14) 0.0734 0.0919 3.2916 0.0483 0.1861 0.5000 6.1548 0.0000

(0*2,1*10,0*3) 0.0765 0.0968 1.5211 0.0535 0.1445 0.5000 8.4838 0.0000

T = 1.00

(0*14,10) 0.0720 0.0929 0.8870 0.0623 0.0983 0.8355 14.3913 0.0000

(10,0*14) 0.0681 0.0919 3.2916 0.0478 0.1255 0.9999 9.6351 0.0000

(0*2,1*10,0*3) 0.0665 0.0912 2.4247 0.0549 0.1073 0.9987 11.7043 0.0000

(50, 15) T = 0.25

(0*14,35) 0.0708 0.0915 0.3681 0.0216 0.1093 0.2616 10.9217 0.0000

(35,0*14) 0.0683 0.0936 3.2716 0.0718 0.2917 0.2500 3.8743 0.0000

(2*5,3*5,2*5) 0.0743 0.0964 0.6125 0.0482 0.1398 0.2500 8.5478 0.0000

T = 0.50

(0*14,35) 0.0702 0.0938 0.3600 0.0678 0.0956 0.3565 14.8721 0.0000

(35,0*14) 0.0690 0.0933 3.2716 0.0506 0.1872 0.5000 6.3353 0.0000

(2*5,3*5,2*5) 0.0723 0.0912 0.8577 0.0585 0.1023 0.4979 12.0303 0.0000

T = 1.00

(0*14,35) 0.0673 0.0895 0.3646 0.0673 0.0895 0.3646 15.0000 0.0000

(35,0*14) 0.0732 0.0928 3.2716 0.0545 0.1245 0.9999 9.7446 0.0000

(2*5,3*5,2*5) 0.0734 0.0942 1.0486 0.0672 0.0969 0.8787 14.3384 0.0000
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4.2 Comparison of methods for confidence interval construction

In this subsection, Monte Carlo simulation was employed to investigate the performance of

different confidence interval construction method. Criteria appropriate to the evaluation of the

various methods under scrutiny include: closeness of the coverage probability to its nominal

value; and expected interval width. For each simulated sample under a particular setting, we

computed 95% confidence intervals and checked whether the true value lay within the interval

and recorded the length of the confidence interval. This procedure was repeated 10,000 times.

The estimated probability coverage was computed as the number of confidence intervals that

covered the true values divided by 10,000 while the estimated conditional expected width of

the confidence interval was computed as the sum of the lengths for all intervals covered the

true values divided by the number of confidence intervals that covered the true values. The

coverage probabilities and the conditional expected widths for different sample sizes, censoring

schemes and T = 0.25, 0.5 and 1.0 are presented in Tables 4–6.

When comparing in terms of coverage probabilities, EX, NA, LR, PB, BN and BA are

maintaining the coverage probabilities close to or above the nominal level in all the situations

considered here. We observed that the exact confidence interval (EX) has coverage probabilities

always above the nominal level, however, its conditional expected width is the largest among

all the interval estimation procedures considered here. Among these methods, BA has the

shortest conditional expected widths and followed by BN. On the other hand, we observed that

the method TB produces the shortest conditional expected width among all the methods but

its coverage probabilities may not be maintained at the nominal level in some situations.

For the Bayesian credible interval, we tried different prior distribution with different values

of a and b and found that a prior distribution with correct information (for example, a = 1,

b = 1 have E(Λ) = 1 = true value) about the true value of λ improves the performance of the

Bayesian credible interval compare to the one using non-informative prior (a = b = 0) (BN),

however, a prior distribution not matched with the true value of λ (for example, a = 2, b = 4)

worsens the performance of the Bayesian credible interval. We presented here the results for

prior distribution with a = b = 0 and a = b = 0.1 for illustrative purpose.
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Table 4: Coverage probabilities and conditional expected width of 95% confidence intervals

based on different methods for (n, m) = (15, 5) and (25,5)

T = 0.25 T = 0.5 T = 1.00

(n, m) Scheme Method Coverage Length Coverage Length Coverage Length

(15, 5) (0,0,0,0,10) EX 97.70 5.097 95.55 3.009 95.03 2.093

NA 95.72 2.147 95.67 2.136 95.44 2.153

NL 93.25 2.092 93.31 2.087 93.11 2.081

LR 94.83 1.998 94.62 1.982 94.59 1.984

PB 99.54 2.549 95.00 2.388 94.90 2.399

TB 88.65 1.262 88.30 1.218 87.47 1.193

BN 95.22 1.970 95.01 1.956 94.96 1.961

BA 95.30 1.966 95.05 1.951 95.00 1.956

(10,0,0,0,0) EX 95.41 2.509 96.48 2.891 95.94 3.004

NA 95.69 2.123 95.94 2.152 95.66 2.167

NL 93.75 2.086 93.35 2.093 92.98 2.088

LR 94.94 1.972 94.82 1.993 94.41 1.988

PB 100.00 2.684 100.00 2.677 99.49 2.599

TB 93.85 1.466 92.44 1.384 89.33 1.273

BN 95.17 1.944 95.12 1.969 94.97 1.971

BA 95.20 1.938 95.15 1.963 95.05 1.967

(2,2,2,2,2) EX 95.20 3.355 97.31 2.979 95.86 2.357

NA 95.91 2.154 95.50 2.163 95.67 2.142

NL 93.37 2.094 92.86 2.091 93.12 2.080

LR 94.58 1.979 94.26 1.991 94.42 1.977

PB 99.98 2.646 98.20 2.510 94.85 2.406

TB 91.38 1.338 88.00 1.243 87.61 1.198

BN 95.05 1.954 94.74 1.972 94.75 1.948

BA 95.08 1.949 94.81 1.968 94.78 1.943

(25, 5) (0,0,0,0,20) EX 96.91 3.486 95.70 2.101 95.52 2.039

NA 95.37 2.139 95.60 2.159 95.56 2.146

NL 93.16 2.075 92.78 2.077 93.32 2.095

LR 94.33 1.968 94.49 1.987 94.75 1.991

PB 94.61 2.387 94.91 2.395 95.02 2.423

TB 87.65 1.215 87.09 1.189 87.53 1.187

BN 94.67 1.945 94.99 1.967 95.00 1.961

BA 94.70 1.940 95.08 1.964 95.05 1.955

(20,0,0,0,0) EX 95.28 2.450 96.24 2.759 95.40 2.931

NA 95.46 2.130 95.33 2.131 95.86 2.160

NL 93.39 2.081 93.23 2.066 93.40 2.100

LR 94.69 1.978 94.41 1.966 94.74 1.995

PB 100.00 2.689 99.99 2.716 99.52 2.590

TB 93.57 1.458 91.84 1.362 89.64 1.283

BN 95.11 1.957 94.64 1.933 95.14 1.972

BA 95.19 1.953 94.69 1.928 95.22 1.969

(4,4,4,4,4) EX 96.78 3.344 96.02 2.629 95.11 2.147

NA 95.70 2.140 95.63 2.135 95.25 2.151

NL 93.44 2.087 93.63 2.091 93.08 2.087

LR 94.42 1.971 94.74 1.981 94.34 1.987

PB 99.16 2.570 95.71 2.434 94.53 2.383

TB 89.30 1.272 88.23 1.215 87.14 1.195

BN 94.94 1.949 95.09 1.951 94.56 1.958

BA 95.02 1.945 95.14 1.947 94.66 1.955
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Table 5: Coverage probabilities and conditional expected width of 95% confidence intervals

based on different methods for (n, m) = (50, 5) and (15,10)

T = 0.25 T = 0.5 T = 1.00

(n, m) Scheme Method Coverage Length Coverage Length Coverage Length

(50, 5) (0,0,0,0,45) EX 95.00 2.146 95.45 2.035 95.51 2.020

NA 95.49 2.134 95.62 2.152 95.79 2.148

NL 93.16 2.076 92.89 2.068 92.86 2.072

LR 94.54 1.979 94.23 1.969 94.58 1.985

PB 94.81 2.408 94.65 2.414 94.94 2.413

TB 87.84 1.191 87.68 1.192 87.29 1.189

BN 95.00 1.956 94.74 1.946 95.08 1.968

BA 95.10 1.953 94.80 1.942 95.13 1.963

(45,0,0,0,0) EX 96.19 2.394 96.43 2.828 97.70 3.106

NA 95.95 2.171 95.82 2.152 95.24 2.135

NL 93.02 2.092 93.20 2.085 93.21 2.075

LR 94.47 1.995 94.60 1.986 94.35 1.970

PB 100.00 2.665 99.99 2.684 99.47 2.628

TB 93.59 1.464 92.02 1.374 89.28 1.269

BN 94.90 1.967 95.13 1.969 94.56 1.942

BA 94.98 1.963 95.20 1.965 94.67 1.940

(9,9,9,9,9) EX 95.56 2.641 95.00 2.147 95.48 2.040

NA 95.69 2.153 95.65 2.139 95.94 2.155

NL 93.04 2.078 93.43 2.089 93.20 2.089

LR 94.28 1.971 94.70 1.984 94.82 1.996

PB 95.61 2.418 95.02 2.406 95.17 2.416

TB 87.51 1.211 87.80 1.208 87.79 1.201

BN 94.89 1.958 95.13 1.958 95.29 1.970

BA 94.96 1.954 95.17 1.952 95.38 1.966

(15, 10) (0*9,5) EX 95.60 2.128 96.29 2.250 96.80 2.329

NA 95.52 1.328 95.85 1.335 95.87 1.330

NL 93.96 1.319 93.79 1.314 94.38 1.324

LR 94.69 1.283 94.62 1.279 95.20 1.289

PB 100.00 1.548 99.91 1.522 96.15 1.413

TB 97.42 1.191 94.85 1.102 92.08 1.021

BN 94.95 1.273 94.93 1.271 95.43 1.280

BA 94.98 1.271 95.01 1.271 95.49 1.279

(5,0*9) EX 95.56 1.547 96.39 1.650 96.00 1.871

NA 95.53 1.332 95.56 1.326 95.27 1.323

NL 93.90 1.319 94.26 1.320 94.06 1.316

LR 94.90 1.288 95.00 1.284 94.57 1.278

PB 100.00 1.506 100.00 1.530 99.70 1.522

TB 97.75 1.224 97.03 1.164 94.57 1.087

BN 95.19 1.280 95.25 1.274 94.82 1.269

BA 95.20 1.279 95.31 1.274 94.87 1.269

(0*2,1*5,0*3) EX 96.22 1.714 96.00 1.963 96.02 1.959

NA 95.46 1.328 95.48 1.328 95.54 1.325

NL 94.23 1.323 94.06 1.320 94.29 1.320

LR 95.05 1.289 94.70 1.280 94.94 1.282

PB 100.00 1.514 99.98 1.519 99.07 1.502

TB 97.52 1.198 95.51 1.124 93.89 1.065

BN 95.34 1.280 95.06 1.273 95.07 1.272

BA 95.37 1.279 95.07 1.271 95.08 1.271
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Table 6: Coverage probabilities and conditional expected width of 95% confidence intervals

based on different methods for (n, m) = (25, 10) and (50,10)

T = 0.25 T = 0.5 T = 1.00

(n, m) Scheme Method Coverage Length Coverage Length Coverage Length

(25, 10) (0*9,15) EX 98.10 2.708 96.80 2.374 94.37 1.350

NA 95.44 1.322 95.71 1.336 95.23 1.322

NL 94.03 1.313 94.02 1.324 94.08 1.319

LR 94.91 1.281 94.97 1.293 94.55 1.279

PB 99.93 1.536 95.59 1.396 94.62 1.398

TB 95.40 1.105 91.50 1.017 91.54 0.999

BN 95.03 1.270 95.25 1.283 94.82 1.270

BA 95.04 1.269 95.29 1.282 94.84 1.269

(15,0*9) EX 97.98 1.589 97.00 1.737 97.10 1.905

NA 95.76 1.325 95.78 1.334 95.49 1.322

NL 94.72 1.328 93.78 1.316 94.07 1.313

LR 95.31 1.288 94.67 1.282 94.78 1.276

PB 100.00 1.510 100.00 1.525 99.70 1.524

TB 97.88 1.218 96.62 1.161 94.39 1.082

BN 95.30 1.273 95.07 1.276 94.86 1.264

BA 95.33 1.272 95.12 1.275 94.90 1.263

(1*5,2*5) EX 95.01 2.039 94.00 2.066 95.12 1.681

NA 94.97 1.326 95.66 1.328 95.89 1.341

NL 93.94 1.319 94.16 1.318 93.71 1.317

LR 94.51 1.282 95.04 1.289 94.85 1.290

PB 99.98 1.540 98.90 1.487 95.83 1.409

TB 95.95 1.136 93.38 1.058 91.20 1.008

BN 94.64 1.273 95.24 1.277 95.11 1.281

BA 94.67 1.271 95.24 1.275 95.15 1.279

(50, 10) (0*9,40) EX 98.00 2.183 95.32 1.329 95.02 1.275

NA 95.11 1.322 95.11 1.323 95.47 1.326

NL 94.04 1.321 93.82 1.312 94.16 1.322

LR 94.93 1.287 94.52 1.277 94.84 1.283

PB 95.19 1.392 94.68 1.401 94.84 1.406

TB 91.76 1.011 91.49 0.997 91.68 1.004

BN 95.04 1.274 94.72 1.269 95.02 1.275

BA 95.06 1.273 94.75 1.268 95.07 1.274

(40,0*9) EX 97.23 1.538 97.00 1.659 98.11 2.018

NA 95.41 1.326 95.89 1.335 95.63 1.338

NL 94.41 1.324 94.28 1.324 93.72 1.319

LR 94.93 1.283 95.02 1.289 94.64 1.288

PB 100.00 1.512 100.00 1.529 99.72 1.513

TB 97.75 1.216 96.83 1.161 94.34 1.087

BN 94.94 1.270 95.20 1.279 94.93 1.280

BA 94.95 1.269 95.22 1.278 94.96 1.279

(4*10) EX 94.88 2.207 96.11 1.751 96.61 1.445

NA 95.17 1.326 95.53 1.328 95.61 1.331

NL 93.74 1.316 94.21 1.319 93.86 1.314

LR 94.52 1.283 95.16 1.288 94.61 1.277

PB 99.26 1.499 96.53 1.432 94.97 1.407

TB 93.54 1.064 92.11 1.013 91.36 0.998

BN 94.67 1.271 95.24 1.278 95.03 1.271

BA 94.70 1.270 95.26 1.276 95.06 1.270
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In terms of computational effort, the normal approximation confidence interval (NA) and

the Bayesian credible intervals (BN and BA) are easy to compute with hand calculator and sta-

tistical tables while computer programs are required for the computation of the other confidence

intervals.

Overall speaking, for interval estimation, the Bayesian credible interval provide a good bal-

ance between the coverage probabilities as well as the conditional expected widths. Therefore,

we would recommend to use the Bayesian credible interval with non-informative prior in general

if no prior information about the parameter is available, otherwise, Bayesian credible interval

with informative prior should be used when reliable prior information about the parameter is

available. If one wants to guarantee the coverage probability is above the nominal level and the

width of the confidence interval is not the major concern, then the exact confidence interval

(EX) should be used.

5 Concluding Remarks

In this paper, we proposed a adaptive Type-II progressive hybrid censoring scheme and dis-

cussed the statistical inference based on exponential lifetime data. We compared different

statistical inference procedures and the performance of the MLE with the hybrid censoring

scheme proposed by [14].

Based on our results, the Bayesian posterior mean for point estimation and Bayesian credible

interval are recommened when reliable prior information about the unknown parameter is avail-

able, otherwise, MLE for point estimation and Bayesian credible interval with non-informative

prior for interval estimation should be used in general.

From this study, once again, we can see that experimenter needs to compromise in between

(i) total time on test; (ii) saving experimental units; and (iii) efficiency in estimation, and

there is always trade-off between these three concerns. The computation formulas and results

provided in this paper give a guideline on planning an experiment to compromise these three

concerns. Further investigation on obtaining optimal experimental designs for given values of

ideal total test time (T ), number of units available for test (n) and the number of failures
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allowed for the experiment (m) would be of interest in experimental planning.
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A Appendix A. Probability Mass Function of J

For exponential distribution, the probability density function of Xj:m:n is given by (see Balakr-

ishnan and Aggawala, 2000)

fXj:m:n(x) = cj−1

j∑

i=1

ai,jλ exp (−riλx) , 0 < x < ∞,

where

rj = m − j + 1 +
m∑

i=j

Ri, j = 1, 2, . . . , m,

cj−1 =
j∏

i=1

ri, j = 1, 2, . . . , m,

ai,j =
j∏

k=1

k 6=i

1

rk − ri
, 1 ≤ i ≤ j ≤ m.

Given Xj:m:n = xj, Xj+1:m:n is distributed as the first order statistic of a random sample of

size

(
n − j −

j∑
i=1

Ri

)
= rj+1 from a truncated exponential distribution with CDF

FXj+1:m:n(x|Xj:m:n = xj) = 1 − exp [−rj+1λ(x − xj)] , xj < x < ∞.

First, the probability that J = 0 and J = m are

Pr(J = 0) = Pr(X1:m:n > T ) = exp (−nλT ) ,

Pr(J = m) = Pr(Xm:m:n < T ) = 1 − cm−1

m∑

i=1

ai,m

ri

exp (−riλT ) ,

respectively.

The probability mass function of J , J = 1, 2, . . . , m− 1 is

Pr(J = j) = Pr(Xj:m:n < T ≤ Xj+1:m:n)

=
∫ ∞

0
Pr(x < T ≤ Xj+1:m:n|Xj:m:n = x)fXj:m:n(x) dx

=
∫ T

0

[
1 − FXj+1:m:n(T |Xj:m:n = xj)

]
fXj:m:n(x) dx

= cj−1 exp (−rj+1λT )λ





j∑

i=1

ai,j

∫ T

0
exp [−λ(ri − rj+1)x] dx





= cj−1 exp (−rj+1λT )





j∑

i=1

ai,j

(ri − rj+1)
[1 − exp (−λ(ri − rj+1)T )]



 .
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Therefore, we can write the PMF of J as

Pr(J = j) = cj−1 exp (−rj+1λT )
j∑

i=1

ai,j

(ri − rj+1)
[1 − exp (−(ri − rj+1)λT )] ,

for j = 0, 1, . . . , m, with rm+1 ≡ 0 and c−1 ≡ 1.

B Appendix B. Exact conditional distribution of θ̂ given

J = j

First, we consider the case for J = j > 0. From Lemma 1 of Balakrishnan, Childs and

Chandrasekar [?] (p.361), we have the following result for j > 0:

∫ T

0

∫ xj:m:n

0
· · ·

∫ x3:m:n

0

∫ x2:m:n

0

j∏

i=1

f(xi:m:n)[1 − F (xi:m:n)]
Ridx1:m:ndx2:m:n · · · dxj−1:m:ndxj:m:n

=
j∑

i=0

ci,j(R)[1 − F (T )]bi,j(R), (B.1)

where R = (R1, R2, . . . , Rj),

ci,j(R) =
(−1)i

{
i∏

l=1

j−i+l∑
k=j−i+1

(Rk + 1)

}{
j−i∏
l=1

j−i∑
k=l

(Rk + 1)

} and bi,j(R) =
j∑

k=j−i+1

(Rk + 1),

in which we use the usual conventions that
0∏

l=1
dl ≡ 1 and

i−1∑
l=i

dl ≡ 0.

We can show that the integral

∫ ∞

T

∫ ∞

xj+1:m:n

· · ·
∫ ∞

xm−1:m:n





m∏

i=j+1

f(xi:m:n)





×[1 − F (xm:m:n)]

(
n−m−

j∑
k=1

Rk

)

dxm:m:ndxm−1:m:n · · ·dxj+1:m:n

= Cj [1 − F (T )]

(
n−j−

j∑
k=1

Rk

)

, (B.2)

where

Cj =




m−1∏

l=j


n −

j∑

k=1

Rk − l





−1

.
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Combining the above results, we have

∫
· · ·

∫

Ω
L(θ|J = j)dx1:m:n · · · dxm:m:n = Cj

j∑

i=0

ci,j(R)[1 − F (T )]b
∗

i,j
(R) (B.3)

where

Ω = {(x1:m:n, . . . , xm:m:n)|x1:m:n < . . . < xj:m:n < T < xj+1:m:n < . . . < xm:m:n}

L(θ|J = j) =

[
m∏

i=1

f(xi:m:n)

]


j∏

i=1

[1 − F (xi:m:n)]
Ri



 [1 − F (xm:m:n)]

(
n−m−

j∑
i=1

Ri

)

and

b∗i,j(R) =




j∑

k=j−i+1

(Rk + 1)


+


n − j −

j∑

k=1

Rk


 .

Therefore, the joint distribution of (X1:m:n, . . . , Xm:m:n) based on adaptive hybrid progressive

censoring is given by

fX(x1:m:n, . . . , xm:m:n|J = j)

=

[
m∏

i=1
f(xi:m:n)

] { j∏
i=1

[1 − F (xi:m:n)]
Ri

}
[1 − F (xm:m:n)]

(
n−m−

j∑
i=1

Ri

)

Cj

j∑
i=0

ci,j(R)[1− F (T )]b
∗

i,j
(R)

,

−∞ < x1:m:n < . . . < xj:m:n < T < xj+1:m:n < . . . < xm:m:n < ∞.

For exponential distribution, the joint distribution of (X1:m:n, . . . , Xm:m:n) becomes

fX(x1:m:n, . . . , xm:m:n|J = j) =
λme−λδ(x,j)

Cj

j∑
i=0

ci,j(R)e−λT b∗
i,j

(R)

,

where

δ(x, j) =
m∑

i=1

xi:m:n +
j∑

i=1

Rixi:m:n +


n − m −

j∑

i=1

Ri


 xm:m:n.

Let θ = 1
λ

and the MLE of θ is θ̂ = δ(x,j)
m

. The moment generating function of θ̂, conditional

on J = j is given by

E(eωθ̂|J = j) = E
(

e
ωδ(x,j)

m

∣∣∣∣ J = j
)
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=
∫

· · ·
∫

Ω
e

ωδ(x,j)
m fX(x1:m:n, . . . , xm:m:n)dx1:m:n · · · dxm:m:n

=
θ−m

∫ · · · ∫Ω e−( 1
θ
− ω

m)δ(x,j)dx1:m:n · · · dxm:m:n

Cj

j∑
i=0

ci,j(R)e−λT b∗i,j(R)

=
θ−m

(
m−ωθ

mθ

)−m ∫ · · · ∫Ω
(

m−ωθ
mθ

)m
e−( 1

θ
− ω

m)δ(x,j)dx1:m:n · · · dxm:m:n

Cj

j∑
i=0

ci,j(R)e−T b∗
i,j

(R)/θ

.

From Eq. (B.3), we can obtain

E(eωθ̂|J = j) =

(
1 − ωθ

m

)−m
Cj

j∑
i=0

ci,j(R)e−( 1
θ
− w

m)T b∗
i,j

(R)

Cj

j∑
i=0

ci,j(R)e−T b∗i,j (R)/θ

=

(
1 − ωθ

m

)−m j∑
i=0

ci,j(R)e−T b∗
i,j

(R)/θewTb∗
i,j

(R)/m

j∑
i=0

ci,j(R)e−T b∗
i,j

(R)/θ

.

Let Y be a Gamma(α, β), i.e., a gamma random variable with shape parameter α and scale

parameter β. Then the PDF of Y is given by

g(y; α, β) =
βα

Γ(α)
yα−1e−βy, y > 0.

where Γ(α) =
∫∞
0 xα−1e−xdx is the gamma function. For an arbitrary constant A, it can be

shown that the moment generating function of Y +A is (Johnson, Kotz and Balakrishnan [12],

p. 338)

MY +A(ω) = eωA

(
1 − ω

β

)−α

.

It follows that the conditional PDF of θ̂, given J = j > 0, is

fθ̂(t|J = j) =

j∑
i=0

ci,j(R)e−T b∗
i,j

(R)/θg
(
t− T b∗i,j(R)

m
; m, m

θ

)

j∑
i=0

ci,j(R)e−T b∗
i,j

(R)/θ

.

For J = 0, we can show that the joint distribution of (X1:m:n, . . . , Xm:m:n) based on adaptive

hybrid progressive censoring is

fX(x1:m:n, . . . , xm:m:n|J = 0) =
n!

(n − m)!

{
m∏

i=1
f(xi:m:n)

}
[1 − F (xm:m:n)]

(n−m)

[1 − F (T )]n
,

T < x1:m:n < . . . < xm:m:n < ∞.
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Following the same steps as above, we can obtain the moment generating function of θ̂,

conditional on J = 0 as

E(eωθ̂|J = 0) =

(
1 − ωθ

m

)−m

e(
nT
m )ω

and the conditional PDF of θ̂, given J = 0, is

fθ̂(t|J = 0) = g
(
t− nT

m
; m,

m

θ

)
.

29


