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Abstract

There are many methods of correcting microarray data for non-biological sources

of error. Authors routinely supply software or code so that interested analysts can

implement their methods. Even with a thorough reading of associated references, it

is not always clear how requisite parts of the method are calculated in the software

packages. However, it is important to understand such details, as this understanding

is necessary for proper use of the output, or for implementing extensions to the

model.

In this paper, the calculation of parameter estimates used in Robust Multichip

Average (RMA), a popular algorithm for background correction and normaliza-

tion of microarray data, is elucidated. RMA models observed microarray data with

a convolution of the true signal, assumed to be exponentially distributed, and a

background noise component, assumed to have a normal distribution. A conditional

expectation is calculated to estimate signal. Estimates of the mean and variance
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of the normal distribution and the rate parameter of the exponential distribution

are needed to calculate this expectation. Simulation studies show that the current

estimates are flawed; therefore, new ones are suggested. When the new parame-

ter estimates are used, it is shown that RMA is more sensitive and specific than

previously thought.
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1 Introduction

Gene expression microarrays allow a researcher to measure the simultaneous

response of thousands of genes to a stimulus. The availability of such technol-

ogy has had a profound impact on molecular biology and related disciplines.

For example, a search on PubMed for the term “microarray” appearing in

the title or abstract of an article between January 1, 2000 and December 31,

2005, produced 12,479 articles. Correspondingly, interest in the analysis of

microarray data has surged among the statistical community. The analysis of

microarray data involves background correction and normalization of the data,

with the purpose of identifying genes that are differentially expressed between

two or more samples, tissues, or conditions. There are dozens of methods for

analyzing microarrays, many with software packages to promote the use of the

methods. Before explaining the analysis methods, it is important to explain

how microarrays are produced.
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There are four nucleotides which make up DNA, and they are denoted A, C,

G, and T. A and T nucleotides always bind to each other, and G and C nu-

cleotides always pair with each other to form double-stranded DNA. During

transcription, DNA is split into single-stranded RNA. Microarray technology

exploits the propensity of single-stranded messenger RNA (mRNA) or comple-

mentary DNA (cDNA) to bind to a sequence of complementary nucleotides to

form DNA. In general, a single-stranded collection of probes, anywhere from

25 to 90 base pairs in length, is affixed to some sort of medium, usually a glass

slide or a silicon chip. Then, a solution containing fluorescently labeled single-

stranded target cDNA or mRNA probes is washed over the fixed probes, and it

is assumed that the targets bind to their perfectly complementary sequences.

Once the excess target is rinsed from the chip, the fluorescent label is excited

using a laser scanner. The amount of fluorescence as measured by the scanner

is proportional to the amount of binding (or gene expression) between the

target cDNA and the fixed probes. Both [17] and [18] give excellent detailed

explanations of the molecular biology pertinent to the design of microarrays.

The leading manufacturer of commercially produced microarrays is Affymetrix,

Inc. Affymetrix GeneChips have a unique structure that affects the way they

are analyzed [3]. Instead of using two dyes (e.g. red and green) to label two

different types of cell targets on the same chip, Affymetrix employs a single-

channel method. The fixed probes are of two types: perfect match (PM) and

mismatch (MM). Both PM and MM probes are twenty-five nucleotides in

length. PM probes are designed to be perfectly complementary to a 25 nu-

cleotide sequence of a section of a unique gene. MM probes have the same

sequence as the PM probes, except that the thirteenth base is changed to its

complement (i.e. A ⇐⇒ T , or C ⇐⇒ G). Every PM is paired with a
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MM, and the two together are called a probe pair. Clearly, a sequence of 25

nucleotides will not provide good sensitivity or specificity for a gene that is

hundreds of nucleotides in length. Therefore, Affymetrix uses eleven to twenty

such probe pairs, called a probe set, to interrogate each gene.

The process by which gene expression measures are determined is subject to

error. First, the data are fluorescence intensities read by a scanner, which are

not really the true fluorescence intensities of the material. The true fluores-

cence intensities are only a surrogate for the measure we really want, which

is gene expression. There are also errors introduced by non-specific hybridiza-

tion, cross-hybridization, quality of RNA extraction, scanner differences, etc.

Therefore, microarray data must be background corrected and normalized be-

fore it can be used to determine differential expression of genes. This is true

of both two-channel and single-channel arrays. The probe sets in Affymetrix

GeneChips must also be summarized to obtain a single expression level for

each gene.

The three most popular algorithms for background correcting, normalizing,

and summarizing Affymetrix arrays are MAS 5.0 [1,2], dChip [14,15], and

RMA [12]. All three are implemented in Bioconductor [9], a suite of packages

programmed in the R language for statistical analysis [10]. Although authors

of new analysis methods describe their algorithms in detail in their papers, it

is sometimes difficult to understand exactly how the methods are implemented

in software packages. For example, the Bioconductor implementations of MAS

5.0 and dChip give slightly different results than the original software pack-

ages, because these packages are commercially produced, and the source code

is not available. Bioconductor support staff used the relevant papers to try to

reproduce these methods. However, even in a well-written paper, it is some-
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times difficult to understand exactly how a method might be programmed. If

a package is open-source, then one can examine the source code, but this can

be tedious and time-consuming. However, an understanding of the coding of

the method is essential for an understanding of the statistical properties of

the resulting measurements of differentially expressed genes.

In this paper, the parameter estimation method used in RMA is elucidated

and examined. It is shown that the parameter estimates obtained via the cur-

rent implementation are grossly inaccurate, and better estimates are devised.

Section 2 gives an overview of RMA and the calculation of its parameters as

currently implemented in Bioconductor. Section 3 gives the results of simu-

lations which show that these parameter estimates are highly variable and

biased, even under ideal conditions. New parameter estimates are given, and

these estimates are shown to be much more stable. In section 4, microarray

data, in which the true differentially expressed genes are known (so called

spike-in data), are used to show that the new parameter estimates are more

sensitive and specific than the current estimates. The paper concludes in sec-

tion 5.

2 RMA Defined

It is biologically sound to assume that flourescence intensities from a microar-

ray experiment are composed of both signal and noise, and that the noise is

ubiquitous throughout the signal distribution. A convolution model of a sig-

nal distribution and a noise distribution is a good choice in such a situation.

Figure 1 shows a density estimate of log base 2 PM intensities from one of

the Affymetrix spike-in experiments (explained in Section 4). Given this pic-
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ture, a model using the combination of a truncated normal distribution and

an exponential distribution seems reasonable. These distributions have the

added advantage that they are easy to manipulate mathematically, in order

to calculate the conditional expectation given in (2).

The underlying assumption in RMA is that observed PM intensities are a

convolution of normally distributed noise and exponentially distributed signal.

More precisely,

X = S + Y, (1)

where X is the observed PM intensity for a probe on the array, S ∼ exp( 1

α
) is

the true signal, and Y ∼ N (µ, σ2) is the background noise. The normal noise

distribution is truncated at zero to model that there are no negative intensity

values. Then, the true signal can be estimated by

E(S|X = x) = a + b

(

φ(a

b
) − φ(x−a

b
)

Φ(a

b
) + Φ(x−a

b
) − 1

)

, (2)

where a = x − µ − σ2α, b = σ, Φ(·) is the cumulative distribution function

of the normal distribution, and φ(·) is the density function of the normal

distribution. In practice, it is only necessary to compute the first terms in

both the numerator and the denominator, since the other terms either cancel

each other or are negligible [5].

RMA uses only the PM probes to perform its series of algorithms for back-

ground correction, normalization, and summarization of Affymetrix GeneChip

data. Therefore, from this point forward, any reference to “intensities” will im-

ply perfect-match intensities only, unless otherwise stated. Further, this paper

will concentrate on the background correction method in RMA, and not on

methods of normalization and summarization. However, as it was originally de-

signed, the RMA method includes background correction using a convolution
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model, normalization using quantile normalization [6,12] and summarization

via median polish [5,11,19].

The parameters µ, σ and α need to be estimated from the data so that an

estimate of the signal can be obtained via (2). A careful examination of the

code for the background estimation in RMA showed that the following steps

are used to estimate the requisite parameters (Bioconductor code is given as

supplemental material).

Let m = max(f(x)), where f(x) is the density function of the observed inten-

sities from the microarray data file. The value of x at which this maximum

occurs, xm, is the mode of the intensities.

• µ̂ = arg max[f(x|x < xm)]. In other words, once xm is given, the estimate

of the mean is the mode of the intensity values less than xm.

• σ̂ is the sample standard deviation of the intensity values which are less

than µ̂, multiplied by a factor of
√

2.

• α̂, the rate parameter of the exponential distribution, is calculated as the

inverse of the mode of the intensity values greater than xm. In other words,

α̂ = arg max[f(x|x > xm)]−1

The rationale behind these estimates relies heavily on the validity of the con-

volution model (1). In general, it is thought that the smallest intensities are

most affected by noise. Therefore, the smaller intensities (those less than the

overall mode, xm) are thought to be strictly from a normal noise distribu-

tion. The signal follows an exponential distribution, thus the values greater

than the mode of the entire distribution should contain mostly signal. The

rate parameter estimate is, in a certain sense, an estimate of where the noise

distribution ends and the signal distribution begins. It is assumed that noise
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permeates the intensities at every level, not just at the smaller intensities.

However, some of the very largest intensities are mostly signal, meaning that

any noise component is negligible. Using that rationale, the estimate of µ as

currently implemented by Bioconductor is almost surely an overestimate of

the mean of the noise distribution, and the estimate of α is nearly always an

underestimate of the rate parameter of the signal distribution.

It is impossible to examine the validity of the convolution model analytically,

since the true signal and true nature of the background noise is unknown.

However, it is possible to use a simulation experiment to examine the perfor-

mance of the parameter estimates in the situation where the underlying model

is truly a convolution of a truncated normal distribution and an exponential

distribution. The simulations are described in the next section.

3 Simulation Results

A convolution of an exponential with a truncated normal with various combi-

nations of values for the mean, variance, and rate parameter were simulated.

Specifically, values α = 250, 500, and 1000 for the rate parameter of the ex-

ponential distribution, µ = 30, 50 and σ = 5, 10 for the mean and variance of

the truncated normal, were used. These values were deemed to be reasonable

values for the parameters by an exploratory examination of a collection of real

microarray data generated on Affymetrix human genome (HG-U133 plus 2.0)

chips.

The HG-U133 plus 2.0 chip contains fifty-four thousand probe sets, which vary

in length from eleven to twenty probe pairs per set. This translates into roughly
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six hundred thousand intensities. For the simulation experiment, one thousand

replications with samples of size 1,000,000 were run for all combinations of µ,

σ, and α.

Seven different methods to estimate µ, σ, and α, were used in the simulations.

These methods are enumerated below.

M1: RMA method, which was described in Section 2.

M2: µ̂ and σ̂ are estimated in the same manner as method 1, but either the

mean, median, seventy-fifth percentile or 99.95th percentile of the data

values greater than the overall mode are used to obtain α̂.

M3: µ̂ = (µ1 + µ2)/2, where µ1, σ1, and α1 are estimated using RMA, and µ2

given by plugging in µ1, σ1, and α1 into a one-step correction, given by

the following formula. The mode, xm, satisfies the equation

φ
(

xm − µ

σ
− ασ

)

= ασ
[

Φ
(

xm − µ

σ
− ασ

)

+Φ
(

µ

σ
+ µα

)

− 1
]

. (3)

In practice, the penultimate term on the right hand side of (3) is nearly

equal to 1; therefore, only the first term is used. Once µ̂ is calculated, it

is used to obtain σ̂ as in M1, and α̂ as in M2.

M4: Instead of estimating µ̂ using the mode of the data values less than xm,

which tends to overestimate the true mean, µ̂ is found using the mode of

the intensities less than 2xm. σ̂ is calculated as in M1, and α̂ is given by

various percentiles of the observations greater than the estimated mean

(M2).

M5: µ̂ and σ̂ are estimated as in M4, and α̂ as in M2. Then, a one-step

correction values for each parameter are obtained. The corrected values

are averaged with the original estimates.

M6: The overall mode (xm) is used by itself to estimate the mean, and the
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intensity values less than the overall mode are used to estimate σ. α

is estimated using either the mean, median, 75th percentile or 99.95th

percentile of all of the intensities (not just those whose values are larger

than xm).

M7: µ̂ is the average of xm and the estimate of µ given by the one-step cor-

rection (3). σ and α are estimated as in the previous scenario.

The mean-squared errors of µ̂, σ̂, and α̂, for the various combinations of sim-

ulated parameter values, are given in Tables 1 and 2. The MSEs presented

in the table are for M3, the one-step correction method using different pa-

rameter estimates for α (mean, median, seventy-fifth percentile, and 99.95

percentile). This method was found to give the best overall performance, in

terms of MSE, across almost all simulated scenarios. For example, the MSE

for σ̂ when µ = 30, σ = 5, and α = 250 using RMA to estimate the parameters

is 92. When using M3, in which the mean of the observations greater than µ̂

estimates α, the MSE for σ̂ is 1.35.

Some of the numbers in the tables seem to be identical, for example, the MSE

for µ̂ in the first row of Table 1 is listed as 2.62 three times. In reality, these

values differ in the third or fourth decimal place. The same is true for other

values in the tables which seem to be equal. The MSEs for µ̂ and σ̂ tend to

be particularly close across all estimates. One might expect that MSEs for µ̂

and σ̂ would be more similar to each other than they are to the MSE for α̂,

because the data used to calculate σ̂ depends on the value of µ̂. Further, µ̂

and σ̂ are estimated by the same method: the one-step correction method (3).

In contrast, α̂ is calculated by either the mean, the median, the seventy-fifth

percentile, or the 99.95 percentile of all values to the right of µ̂. The resulting

differences among the results of these estimators overwhelms any similarity in
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the estimates due to the dependency of α̂ on µ̂ and σ̂ via (3).

In practice, M5 performed almost as well as M3; however, M2, M4, M6, and

M7 did not perform as well as the others. We will not mention them further

except to say that their mean-squared errors (MSE) were still many times less

than those of the estimates using the current implementation of RMA.

4 Performance on Spike-In Data

To test the performance of these methods on real data where the concen-

trations of some genes are known, the Affymetrix spike-in data sets were

used. Affymetrix has developed two Spike-In data sets, one series on the HG-

U95A chip and the other on the HG-U133A chip. Both data sets, and corre-

sponding detailed descriptions, are freely available on the Affymetrix website

http://www.affymetrix.com/support/technical/sample data/datasets.affx.

The HGU95 data set has fourteen spiked transcripts at known locations in

fourteen experiments. The spiked concentrations range from 0 pM to 1024

pM. There are several replicates of each experiment, giving a total of fifty-nine

arrays. The HGU133 data set consists of 3 technical replicates of 14 different

experiments using forty-two spiked transcripts at known locations. The spiked

concentrations range from 0 pM to 512 pM, at finer gradations than for the

HGU95 data. Therefore, the HGU133 data has a larger background population

and more spike-ins at a greater range than the HGU95 data set. For both data

sets, the spike-ins are arranged from experiment to experiment using a Latin

square design.

There is disagreement in the literature about the nature of the spiked in genes
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for the HGU95 data. The authors of Affycomp [8], an online package for the

evaluation of the performance of new methods on the HGU95 and HGU133

spike-in data sets, contend that transcripts “33818 at” and “546 at” should

be included as spiked-in transcripts. Another group claims that “1598 g at”

and “37658 at” should also be included [20]. Further, the transcripts “407 at”

and “36889 at” have been noted to have poor behavior, as noted in the de-

scription of the HGU95 data on the Affymetrix website. For these analyses,

the Affycomp definition of the spiked-in transcripts for the HGU95 series is

adopted.

In Tables 1 and 2, it was apparent that the best estimates of α (in the MSE

sense) were the mean and the seventy-fifth percentile of the intensities greater

than µ̂. Recall that µ̂ is given by (µ1+µ2)/2, where µ1 is the estimate of µ given

by RMA and µ2 is the estimate of µ from the one-step correction formula.
√

2σ̂

is the standard deviation of the values less than µ̂. In the comparisons that

follow, the results are shown for M3 only. This method found estimates of µ and

σ using the one-step correction method. α̂ is given by either the mean (RMA

Mean) or the seventy-fifth percentile (RMA 75) of the values greater than µ̂.

For all three methods (RMA, RMA Mean, and RMA 75), the intensities were

normalized using quantile normalization and summarized using median polish.

The code for background correction using RMA-Mean and RMA-75 is given

as supplemental material. Alternatively, the code is available for download at

http://faculty.smu.edu/mmcgee.

Receiver operating characteristic curves (ROC curves) have been used in sev-

eral articles for comparing the performance of methods in obtaining the “cor-

rect” answer [5,21]. Here, ROC curves are used to compare methods of detect-

ing differentially expressed genes based on fold-change. Figure 2 shows ROC

12

http://faculty.smu.edu/mmcgee


curves for RMA Mean and RMA 75 using the HGU95 data set. For compar-

ison, the results using the current implementation of RMA are also plotted.

Note that our estimates do not perform any better or worse than does RMA.

However, there is a much larger difference among the methods in Figure 3,

which shows a ROC curve calculated using the HGU133 data. Recall that

these data have larger background population and more spiked transcripts.

Here, both RMA Mean and RMA 75 substantially outperform the current

implementation of RMA. This comparison was made using experiments one

and two, whose concentrations do not differ that much; therefore, detecting

true differences is difficult. On experiments where the differences in concentra-

tions between spike-ins were much greater, the methods performed equally well

(ROC curves for experiment 1 paired with all other experiments are given in

supplemental materials). However, the current implementation of RMA some-

times needed a larger false positive rate to obtain the same true positive rate

as with RMA Mean and RMA 75.

In addition generating ROC curves for pairs of experiments, our methods were

applied to the spike-in datasets using Affycomp [8]. Affycomp uses fourteen of

the fifty-nine HGU95 chips to make its comparisons. The fourteen chips are

chosen so that probeset interactions were balanced. Affycomp also uses four-

teen of the HGU133 chips, representing one experiment (http://www.biocon

ductor.org/repository/devel/vignette/affycomp.pdf). It is not clear which ex-

periment is used. However, since only one experiment is chosen, all measures

for the HGU133 data given by Affycomp are computed without replicates.

Affycomp returns many measurements and graphics. Among these is a ranking

for overall signal to ratio assessment. RMA 75 was given a rank of 1, while
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RMA Mean was given a rank of 2, implying that the performance of both

methods was better overall than that of RMA. Ranks for the overall assessment

for the HGU95 Spike-In data were 21 and 22, respectively. At the time RMA

Mean and RMA 75 were submitted to the Affycomp contest, there were sixty-

eight methods for which assessment results were available.

5 Discussion and Conclusion

RMA Mean and RMA 75 performed much better than RMA on the HGU-133

Spike-In data, but comparably on the HGU-95 data. The discrepancy can be

explained on at least three fronts.

First, the HGU133 spike-in experiments are newer and use more reliable tech-

nology and methods than the HGU95 spike-in data. The discrepancy about

additional spiked-in genes, mentioned in the introduction, calls into question

the use of the older data as a benchmark for comparison of method perfor-

mance.

Second, the convolution model may be incorrect. Separate analyses (manuscript

in preparation) have revealed that the underlying background noise may, in

fact, be normal, but the distribution of the signal has heavier tails than an

exponential distribution. There is anecdotal evidence that RMA does not per-

form well on real data sets. If this assertion is true, it may be so because the

convolution method is not valid. Other researchers have used the lognormal

distribution [13] and the Laplace distribution [16] to model the overall sig-

nal from two-channel microarray data. Neither of these distributions has been

investigated for Affymetrix chips, with or without the convolution model.
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Third, not all methods can be expected to perform uniformly well across all

data sets. It may be the best background correction method is platform, and

possibly experiment, dependent. For example, while RMA performs well for

both the HGU95 and HGU133 spike-in datasets, it has been shown that MAS

5.0 outperforms RMA on a dataset of 3860 RNA species using a DrosGenome1

GeneChip [7]. The optimal background correction algorithm may depend on

the number of the spiked-in probes, the design of the spike-in experiment, and

the GeneChip platform. This conjecture requires further investigation, and

lends credence to the call for more publicly available spike-in datasets on a

variety of platforms in order to thoroughly validate new and existing methods

[4].

This paper explains the method of parameter estimation for RMA, a popular

method for analysis of microarray data. It is shown that the original param-

eter estimates used for the RMA background correction do not perform well

in simulation studies. Better results were obtained using other estimates. In

addition, implementing RMA with the better parameter estimates gave better

downstream results than the current implementation of RMA in the Spike-In

data.
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Captions for Tables and Figures

Table 1: MSEs of parameter estimates for µ = 30, σ = 5, 10, and α =

250, 500, 1000. Estimates were calculated µ̂ = (µ1 + µ2)/2, where µ1, σ1, and

α1 are estimated using the Bioconductor implementation of RMA, and µ2

given by plugging in µ1, σ1, and α1 into a one-step correction (3). Once µ̂ is

calculated, σ̂ is given by the standard deviation of the intensities less than µ̂.

α̂ is given by either the mean, median, 75th percentile or 99.95th percentile of

the intensities values larger than the overall mode.

Table 2: MSEs of parameter estimates for µ = 50, σ = 5, 10, and α =

250, 500, 1000. Parameter estimates are given in the same way as in Table

1.

Figure 1: Density Estimates of Log Base 2 PM Intensities of one replicate from

each of the 14 experiments in the HG-U133 Spike-In Data series. A convolution

of a normal distribution and an exponential distribution seem reasonable for

these data.

Figure 2: ROC curves of the original implementation of RMA versus two

competitors: RMA where µ̂ and σ̂ are estimated using a one-step correction,

and α̂ is given by either the mean (RMA Mean) or the 75th percentile (RMA

75) of the intensities greater than µ̂. This comparison is done using the HG-

U95 spike-in data.

Figure 3: ROC curves of RMA versus RMA Mean and RMA 75 for the HG-

U133 spike-in data.
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Estimation Method

Combination RMA Mean Median 75th 99.95th

µ = 30 233 2.62 2.62 2.62 2.68

σ = 5 92 1.35 1.35 1.51 1.39

α = 250 45135 4.70 10.2 2.56 22.1

µ = 30 590 8.90 8.90 8.90 9.30

σ = 10 215 5.32 5.32 6.20 5.48

α = 250 45028 11.85 26.59 6.51 21.27

µ = 30 436 4.98 4.98 4.98 5.05

σ = 5 192 1.59 1.59 1.77 1.63

α = 500 180781 8.07 17.2 7.02 76.72

µ = 30 930 10.79 10.79 10.79 11.03

σ = 10 363 4.52 4.52 5.16 4.64

α = 500 180508 19.7 41.0 10.61 87.29

µ = 30 1094 11.61 11.62 11.61 11.86

σ = 5 552 3.38 3.38 3.82 3.48

α = 1000 723457 16.97 33.50 20.53 333.11

µ = 30 1712 18.40 18.43 18.64 18.64

σ = 10 744 5.05 5.06 5.70 5.16

α = 1000 722989 31.15 66.89 23.70 309.1

Table 1

19



Estimation Method

Combination RMA Mean Median 75th 99.95th

µ = 50 230 2.47 2.47 2.47 2.53

σ = 5 90 1.29 1.29 1.44 1.32

α = 250 45218 4.73 10.41 2.36 21.39

µ = 50 576 8.511 8.512 8.511 8.922

σ = 10 211 6.091 6.091 6.990 6.260

α = 500 45016 12.09 26.67 6.310 20.75

µ = 50 447 5.55 5.55 5.55 5.63

σ = 5 197 1.802 1.802 2.008 1.841

α = 1000 180790 8.212 17.37 6.717 81.89

µ = 50 925 11.26 11.28 11.26 11.53

σ = 10 364 5.40 5.41 6.06 5.52

α = 250 180554 19.32 41.15 10.58 91.16

µ = 50 1074 12.29 12.30 12.29 12.60

σ = 10 541 3.64 3.64 4.11 3.79

α = 500 723356 16.83 34.08 19.30 339.8

µ = 50 1731 20.26 20.39 20.36 20.86

σ = 10 761 6.575 6.578 7.786 6.773

α = 1000 723128 37.92 80.17 30.09 372.67

Table 2
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Fig. 1.
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