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Abstract

Test statistics from the weighted log-rank class are commonly used to
compare treatment with control when there is right censoring. This paper
uses saddlepoint methods to determine mid-p-values from the null permu-
tation distributions of tests from the weighted log-rank class. Analytical
saddlepoint computations replace the permutation simulations and pro-
vide mid-p-values that are virtually exact for all practical purposes. The
speed of these saddlepoint computations makes it practical to invert the
weighted log-rank tests to determine nominal 95% confidence intervals for
the treatment effect with right censored data. Such analytical inversions
lead to permutation confidence intervals that are easily computed and
virtually identical with the exact intervals that would normally require
massive amounts of simulation.

Some key words: Linear rank test; log-rank test, mid-p-value; permu-
tation distribution; saddlepoint approximation; symmetry test; weighted
log-rank class.

1 Introduction

Linear rank statistics are often used to test the effectiveness of a treatment as

compares to a control in the two independent samples context. In clinical trials,

the time to event responses are typically right censored and modified tests from

the class of weighted log-rank statistics are most often used to accommodate the
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censoring. The most commonly used rank tests from this class are the log-rank

and generalised Wilcoxon (Peto-Prentice) tests (Gehan, 1965; Peto and Peto,

1972; Prentice, 1978). The presentation below concerns the entire weighted log-

rank class and uses as examples the log-rank and generalised Wilcoxon tests,

as well as Gehan’s (1965) original test and specific tests from the Tarone-Ware

(1977) and Fleming-Harrington (1981) classes.

The current paper proposes the use of saddlepoint approximations as a means

for determining the significance levels for tests in the weighted log-rank class

under their exact permutation distributions. Permutation significance was orig-

inally advocated by Peto and Peto (1972) however current software such as SAS

uses asymptotic normal approximations as described, for example, in Kalbfleisch

and Prentice (2002). It will be seen that saddlepoint approximations are almost

always closer to the true permutation significance levels than normal approxima-

tions. The degree of greater accuracy is readily apparent in small and interme-

diate size samples for which the asymptotic normality has not been attained. A

variety of examples and simulations with various log-rank statistics are used to

show that the saddlepoint mid-p-value is an extremely accurate approximation

for the mid-p-value as determined from the exact permutation distribution.

The focus is on mid-p-values rather than ordinary p-values because a major

aim of this paper is to construct confidence intervals for the treatment effect

through the inversion of the tests. When mid-p-values are used instead of ordi-

nary p-values in this inversion, the intervals that result have true coverages that

tend to be much closer to the nominal coverage. This fact been discussed ex-

tensively in Agresti (1992), Kim and Agresti (1995), and Butler (2007, chapter

6). If the mid-p-values of rank tests are inverted by using saddlepoint approx-

imations, the resulting confidence intervals are almost identical to the exact

intervals determined by the massive simulations needed for the exact permuta-

tion distributions. Confidence intervals from the inversion of normal tests are
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described in Kalbfleisch and Prentice (2002) and are consistently less accurate.

A range of practical examples is considered and in each case the saddlepoint

intervals almost exactly replicate the true intervals from the exact permutation

distribution.

For settings that lack censoring, Garthwaite (1996) has attempted to invert

randomisation tests by using simulation in conjunction with a Robbins-Munro

search process to located the two ends of the confidence interval. Also Tritchler

(1984) inverted probability generating functions of some simple permutation

distributions by using the fast Fourier transform.

The computational methods based on saddlepoint approximation are ex-

tremely stable and have been programmed as a general purpose “black box”

procedure. The executable files with instructions for use are available at

http://www.smu.edu/statistics/faculty/butler.html. Mid-p-values are computed

for all five of the weighted log-rank tests exemplified in the paper and confidence

intervals can also be determined through the inversion of these five tests.

Section 2 provides an overview of the weighted log-rank tests along with the

associated permutation distributions that determine their mid-p-values. Saddle-

point approximation to these permutation distributions is addressed in section

3. Section four provides numerical examples along with extensive simulations

that demonstrate the extraordinary accuracy of the saddlepoint approximations.

Section five considers test inversion for confidence intervals and provides many

examples. Section six indicates the modifications needed for the treatment of

ties. Section seven concludes by showing how these saddlepoint approximations

may be used to implement permutation tests for symmetry in the presence of

censoring.
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2 Weighted Log-Rank Class

Suppose sample size N1 for the treatment group and N2 for control group with

N = N1 +N2. The pooled data are {(ti, zi, δi) : i = 1, ...,N} where ti is a time

to event, zi is a treatment indicator, and δi indicates an observed failure time.

Assume independent censoring with the censoring distribution not dependent

on group membership. With the survival functions for treatment and control

as S1(t) and S2(t) respectively, then a test for H0 : S1(t) ≡ S2(t) = S(t) versus

a one- or two-sided alternative is generally based on tests from the weighted

log-rank class.

Let t(1) < t(2) < · · · < t(k) be the distinct ordered failure times among

the pooled data with ti1, · · · , timi
as the right censored times in the intervals

[t(i), t(i+1)), i = 0, 1, · · · , k where t(0) = −∞, t(k+1) =∞ and k+
∑k
i=1mi = N .

Also, let z(i) and zij for i = 1, ..., k; j = 1, ...,mi represent the corresponding

indicators of treatment group membership. Assuming no ties among the uncen-

sored data from different groups, the general weighted log-rank class of statistics

is written as

v =
k∑

i=1

wi



z(i) −
1

ni

∑

l∈R(t(i))

zl



 (1)

where ni is the total number of individuals at risk at time t
−

(i), and R(t(i)) is

the set of individuals at risk at t−(i).

In most applications the weight function wi is a fixed function of the risk

set sizes {n1, n2, · · · , ni} up to time t(i). Among such tests are the log-rank

test (wi ≡ 1) with optimal power against the proportional hazard alternative,

Gehan’s (1965) test (wi = ni), the Tarone and Ware (1977) class {wi = f(ni)}

with specific recommendation (wi =
√
ni) considered here, the weight function

wi =
∏i

j=1

nj
nj + 1

suggested in Peto and Peto (1972) and Prentice (1978) and referred to as the
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generalised Wilcoxon, and the general class of tests of Fleming and Harrington

(1981) with weight function

wi = Ŝ(t(i−1))
p{1− Ŝ(t(i−1))}q p � 0, q � 0.

Survival estimator Ŝ(t(i)) is the Kaplan-Meier estimator at time t(i) and the

specific example p = 1 and q = 0 is considered here.

In the randomisation used for the permutation distribution of v, the failure

times and censored times remain fixed in time order while the N1 treatment

labels are randomly assigned to
(
N
N1

)
of these time positions. In order to simplify

saddlepoint approximation for this permutation distribution, it is expedient to

rewrite v in the linear form

v =
k∑

i=1





ciz(i) +Ci

mi∑

j=1

zij





(2)

where the constants ci and Ci are fixed constants that depend only on their

time position t(i).

Proposition 1 The weighted log-rank statistic v in (1) has a null permutation

distribution given as the distribution of (2) where z(1),{zij}, ..., z(k), {zkj} are

treatment group indicators with the uniform distribution
(
N
N1

)−1
over values for

which
∑k
i=1(z(i) +

∑mi

j=1 zij) = N1. The weights in (2) are

ci = wi −
i∑

l=1

wl
nl
, Ci = −

i∑

l=1

wl
nl
.

Proof.

v =
k∑

i=1
wi

{

z(i) −
1

ni

k∑

l=i

(

z(l) +
ml∑

j=1
zlj

)}

=
k∑

i=1
wiz(i) −

k∑

i=1

(
i∑

l=1

wl
nl

){

z(i) +
mi∑

j=1
zij

}

=
k∑

i=1

(

ciz(i) +Ci
mi∑

j=1
zij

)

.
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3 Saddlepoint Approximation for the Permuta-

tion Distribution

A uniform distribution on the treatment indicators {z(i)} ∪ {zij} may be con-

structed from a corresponding set of independent and identically distributed

Bernoulli (θ) indicator variables denoted in capitals as {Z(i)}∪ {Zij}. Define Y

to be the same weighting as in (2) and let X be the total count so that

Y =
k∑

i=1





ciZ(i) +Ci

mi∑

j=1

Zij






X =
k∑

i=1





Z(i) +

mi∑

j=1

Zij





.

For any θ ∈ (0, 1), the conditional distribution of Y given X = N1 is the re-

quired permutation distribution which can be approximated by using the double

saddlepoint approximation of Skovgaard (1987).

Previously single saddlepoint approximations for permutation distributions

have been suggested by Daniels (1955), Robinson (1982), and Davison and Hink-

ley (1988). Double saddlepoint approximations for conditional distributions of

the type given above were suggested by Daniels (1958) and further developed

in Booth and Butler (1990).

Let P be a random variable with the required permutation distribution

and v0 the observed value of v. The mid-p-value is pr(P < v0) + pr(P =

v0)/2 = mid-p(v0) and is approximated from the Skovgaard (1987) saddlepoint

procedure as the conditional tail probability pr(Y ≤ v0|X = N1). This ap-

proximation uses the joint cumulant generating function for (X,Y ) given by

K(s, t) = logMX,Y (s, t) with

MX,Y (s, t) =
k∏

i=1

[{1− θ + θ exp(s+ cit)} {1− θ + θ exp(s+Cit)}mi ] . (3)
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Then

mid -p(v0) = Pr(Y ≤ v0|X = N1) ≃ Φ(ŵ) + φ(ŵ)

(
1

ŵ
− 1

û

)
(4)

where

ŵ = sgn(t̂)
√
2
[
{K (ŝ0, 0)−N1ŝ0} − {K(ŝ, t̂)−N1ŝ− v0t̂}

]

û = t̂
√∣∣K′′(ŝ, t̂)

∣∣ /K′′
ss(ŝ0, 0).

In these expressions, K′′ is the 2 × 2 Hessian matrix and K′′
ss is the ∂

2/∂s2

component of this Hessian. The numerator saddlepoint (ŝ, t̂) solves

K′

s(ŝ, t̂) =
k∑

i=1

{
exp(ŝ+ cit̂)

(1− θ)/θ + exp(ŝ+ cit̂)
+

mi exp(ŝ+Cit̂)

(1− θ)/θ + exp(ŝ+Cit̂)

}
= N1

K′

t(ŝ, t̂) =
k∑

i=1

{
ci exp(ŝ+ cit̂)

(1− θ)/θ + exp(ŝ+ cit̂)
+

miCi exp(ŝ+Cit̂)

(1− θ)/θ + exp(ŝ+Cit̂)

}
= v0

while the denominator saddlepoint ŝ0 solves

K′

s(ŝ0, 0) =
N exp(ŝ0)

(1− θ)/θ + exp(ŝ0)
= N1. (5)

Since the computations of ŵ and û do not depend on the particular value of θ

used, the value θ = N1/N has been used since it results in an explicit solution

for (5) as ŝ0 = 0 and simplifies the calculations. For further discussion about

this approximation, see Butler (2005).

The saddlepoint expression in (4) uses the saddlepoint approximation as if

Y, and consequently P, were continuous random variables. In the permutation

setting however, P is discrete and not even a lattice distribution for which a con-

tinuity correction would be available. The reason that this continuous formula

can and should be used is that it provides the most accurate approximation

for the mid-p-value. Pierce and Peters (1992), Davison and Wang (2002), and

Butler (2007, §6.1.4) discuss reasons for this accuracy. Perhaps the simplest

explanation in the last reference takes the view that a continuous saddlepoint
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approximation is an approximation to the true inverse Fourier transform that

determines pr(P ≤ v). Since pr(P ≤ v) has a step discontinuity at v0, the exact

Fourier inversion at v = v0 is the midpoint of the step (see Theorem 10.7b,

Henrici, 1977) or the mid-p-value which is what the continuous saddlepoint

approximation is actually approximating.

Agresti (1992), Routledge (1994) and Kim and Agresti (1995) have advo-

cated use of the mid-p-value over the p-value since the ordinary p-value is too

conservative. This claim finds its strongest justification when the significance

tests are inverted to provide confidence intervals for the parameters under test.

The use of 2.5% mid-p-values in either tail leads to confidence intervals whose

nominal coverage is 95% and whose attained coverage is extremely close to

this nominal coverage. This is not the case when the p-value is inverted and

the attained coverage is consistently larger than the intended nominal coverage

particularly with small sample sizes.

Since the determination of confidence intervals with the correct coverage in

§5 is one of our main goals, the presentation focusses on mid-p-values to con-

struct intervals with more accurate coverage. Also, if there is going to be any

consistency in interpretation between significance levels and coverage probabil-

ities, then the mid-p-value needs to be used in significance computation.

4 Numerical Examples and Simulations

Two published data sets are used to show the accuracy of the saddlepoint meth-

ods as compares to normal approximation in Table 1. The smaller data Set 1 is

given in Kalbfleisch and Prentice (2002, p. 222) while the larger data Set 2 was

used by Pike (1966) and Prentice (1978) and is reproduced in Kalbfleisch and

Prentice (2002, p. 2). Table 1 summarizes the computation of the true (simu-

lated) mid-p-values, saddlepoint mid-p-values, and normal p-values (which are
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naturally mid-p-value approximations) for the five test statistics listed.

Data N1 N2 Test stat. True1 mid-p Sadpt. mid-p Normal p

All items treated as uncensored

Set 1 4 5 LR .01979 .02159 .01590
GW .02388 .02327 .02213

Set 2 21 19 LR .03462 .03458 .03064
GW .04745 .04802 .04637

With Censored Items

Set 1 4 5 LR .01580 .01725 .00937
Censored: 1 1 GW .01581 .01356 .01164

GH .01592 .01478 .01784
TW .01588 .01496 .01296
FH .01593 .01331 .01287

Set 2 21 19 LR .05686 .05636 .04875
Censored: 2 2 GW .05242 .05226 .04960

GH .06037 .06044 .06835
TW .05425 .05412 .06438
FH .05210 .05243 .05895

Table 1. True, saddlepoint, and normal mid-p-values for the log-rank (LR),
generalised Wilcoxon (GW), Gehan (GH), Tarone-Ware (TW) and Fleming-
Harrington (FH) statistics applied to the two sets of data. 1Based on 106 simple
random samples of N1 from N and holding the censoring orders fixed.

The top four rows treat the censored values as actual survival times so that

no censored values need to be accounted for. In each instance, the true mid-p-

value has been calculated by taking 106 simple random samples of N1 from N,

holding the censoring orders fixed, and computing the proportion of times that

P is less than v0 plus half the proportion of time it attains v0.With larger data

sets the distinction between mid-p-value and p-value becomes negligible since

the mass at v0 is quite small. The saddlepoint approximation is highly accurate

for both the smaller and larger data sets and also with and without censoring.

By contrast, the normal approximation only works well with no censoring and

shows inaccuracy with censoring even for the larger data Set 2.
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4.1 Simulation Study

The saddlepoint accuracy seen in Table 1 occurs consistently over a wide range

of conditions. For the log-rank and generalised Wilcoxon tests, simulation stud-

ies were conducted to evaluate the consistency of performance of saddlepoint

mid-p-value approximation over a range of sample sizes, degrees of sample im-

balance, and prevalence of censoring. Three error distributions were used to

simulate data: log-logistic and Weibull for which the modified Wilcoxon and

log-rank tests are the respective locally optimal tests, and a log-Weibull distri-

bution. For each distribution, 1000 data sets were generated in the following

way. First N = N1+N2 independent and identically distributed responses were

drawn from the distribution. Secondly, N1 of these values were selected at ran-

dom to determine the locations for treatment. Thirdly, the treatment values

were translated to the right an amount β > 0 designed to induce borderline sig-

nificance of a treatment effect, since this really is the most interesting situation.

Finally a randomly chosen preset number of observations from each group were

relabelled as censored. Small, intermediate and large sample sizes were used

which were either balanced or unbalanced among the groups. The censoring

percentage also changed between light, intermediate and heavy censoring. The

aim in these choices was to keep the mean mid-p-value near .05.

Tables 2-4 provide summaries of these simulations for the three error distri-

butions. Each table provides the following information: “Mean” is the average

true mid-p-value based on 106 simulations for each of the 1000 data sets; “Sadpt.

Prop.” is the proportion of the 1000 data sets for which the saddlepoint mid-

p-value was closer to the true mid-p-value than the normal p-value; “Abs. Err.

Sadpt.” is the average absolute error of the saddlepoint mid-p-value from the

true
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Stat. Mean Sadpt. Abs. Err. Abs. Err. Rel. Abs. Rel. Abs.
Prop. Sadpt. Normal Err. Sadpt. Err. Nor.

N1 = 18 N2 = 17 β = 1.5 30% censoring

LR .145 .983 .03484 .0128 .04100 .03167
GW .108 .980 .03198 .02436 .05300 .03114

N1 = 18 N2 = 17 β = 1.5 5% censoring

LR .059 .996 .03413 .02353 .05800 .03115
GW .041 .855 .03132 .03810 .05100 .04160

N1 = 8 N2 = 7 β = 2.0 15% censoring

LR .117 .995 .02137 .0237 .04140 .03459
GW .090 .982 .03403 .02663 .05830 .04630

N1 = 36 N2 = 34 β = 1.0 5% censoring

LR .122 .986 .03343 .02509 .06100 .04130
GW .087 .909 .03178 .02111 .05444 .04300

Table 2. Performance under simulation from the log-logistic distribution.

Stat. Mean Sadpt. Abs. Err. Abs. Err. Rel. Abs. Rel. Abs.
Prop. Sadpt. Normal Err. Sadpt. Err. Nor.

N1 = 12 N2 = 8 β = 0.8 30% censoring

LR .085 .999 .02110 .0339 .04254 .03284
GW .046 .997 .03296 .0108 .06128 .03580

N1 = 18 N2 = 17 β = 0.5 30% censoring

LR .054 .987 .03376 .02502 .05219 .03221
GW .028 .872 .04886 .03980 .05794 .03145

N1 = 36 N2 = 34 β = 0.3 30% censoring

LR .09 .987 .03221 .02387 .06266 .05273
GW .06 .914 .03150 .02110 .05317 .04377

N1 = 30 N2 = 10 β = 0.55 30% censoring

LR .055 1.0 .03303 .0186 .04220 .03472
GW .032 1.0 .03106 .02740 .05400 .03486

Table 3. Performance under simulation from the log-Weibull distribution.

mid-p-value; “Rel. Abs. Err. Sadpt.” is the average relative absolute error
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of the saddlepoint mid-p-value from the true mid-p-value; and the remaining

listings are the same assessments for the normal approximation.

Consider for example the simulation of 1000 data sets with N1 = 18 and

N2 = 17 and 30% censoring. With the log-rank test, the saddlepoint mid-p-value

was closer to the true value 98.3% of the time. For the generalised Wilcoxon

test the saddlepoint approximation was closer 98% of the time. For the log-rank

test, the absolute error of the saddlepoint approximation was 0.0484% versus

1.28% for the normal approximation, and the relative error the saddlepoint

approximation was 0.001% versus 0.0167% for the normal approximation.

Stat. Mean Sadpt. Abs. Err. Abs. Err. Rel. Abs. Rel. Abs.
Prop. Sadpt. Normal Err. Sadpt. Err. Nor.

N1 = 8 N2 = 7 β = 1.5 15% censoring

LR .049 1.0 .03895 .0122 .05100 .03389
GW .055 .83 .03764 .02226 .05900 .04290

N1 = 18 N2 = 17 β = 1.0 15% censoring

LR .031 1.0 .03247 .02435 .04230 .03607
GW .044 .860 .03121 .03793 .04230 .04220

N1 = 32 N2 = 38 β = 0.7 30% censoring

LR .040 .979 .03128 .02209 .04160 .03267
GW .055 .856 .03132 .03746 .04110 .04650

N1 = 10 N2 = 30 β = 1.0 30% censoring

LR .048 .990 .03212 .02646 04180 .03490
GW .064 .979 .03147 .02403 .05400 .03223

Table 4. Performance under simulation from the Weibull distribution.

Overall, the saddlepoint approximation performed better than the normal

approximation in all cases and the discrepancy was greater for the log-rank than

the generalised Wilcoxon test. Inferior normal approximation to the permuta-

tion distribution of the log-rank test as compares with the generalised Wilcoxon

test has also been noted by Heller and Venkatraman (1996). When averaged over

all simulations, the saddlepoint approximation was closer 99.18% and 91.95%
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of the time respectively for the log-rank and generalised Wilcoxon tests. In

most cases the saddlepoint approximation demonstrated a relative error that is

less than 0.001% and an absolute deviation of 0.05%. Unbalanced data, heavy

censoring, and nonsymmetric error distributions had a much greater detrimen-

tal effect on the accuracy of the normal approximation than the saddlepoint

approximation.

5 Confidence Interval for the Treatment Effect

Treatment effects are defined as locational shifts on the log-scale for the uncen-

sored data model. If T is an uncensored failure time, then log T is assumed to

have location parameters µ and µ + β respectively for the control and treat-

ment groups that share a common error distribution. Let the (unordered) log-

survivial/censoring times be denoted using the N -vector y = (log t1, ..., log tN)T

with z = (z1, ..., zN)
T indicating the corresponding treatment group member-

ship. The framework of the censored accelerated failure time model, as described

in Kalbfleisch and Prentice (2002), determines the confidence interval for β.

While the rank tests of §3 were concerned with testing H0 : β = 0 essentially

using the components of y, these same tests provide for testing H0 : β = β0 �= 0

if the log-survivial/censoring time residuals y − zβ0 are used in place of y.

Within this framework, a 95% confidence interval consists of those β0 values

whose mid-p-values in (4) fall within the range [.025, .975].

Prentice (1978) has inverted such tests by using the asymptotic normal dis-

tribution theory for the standardized rank tests. Using a fine grid of β0-values

with increment 0.01, he computed normal p-values for the log-rank and gener-

alised Wilcoxon tests. As a function of increasing values of β0, the normalised

value of v is a step function that makes an incremental increase whenever the

residual for a treatment subject is interchanged with the value of a control sub-

13



ject and both scores have not been censored. When a 0.01 increment in the

value of β0 does not lead to such an interchange, then the normal statistic and

p-value remain unchanged and the dependence is flat.

The idea of inverting rank tests is conceptually simple and easy to imple-

ment, however there are some subtleties that need to be noted. First consider the

determination of the required cutoff v0 and, for purposes of discussion, suppose

that β0 > 0. For the treatment group all log-survival and log-censored times are

diminished by amount β0 which changes the relative ordering of treatment and

control responses as well as the ordering of the positions held by censored obser-

vations. Denote the determination of the observed test statistic with treatment

translation β0 as v0(β0). As previously mentioned with the normal approxima-

tion, the cutoff v0(·) is a step function in β0 that makes incremental increases

with increasing β0. Finally consider the permutation distribution of P whose

distribution determines the mid-p-value as in (4). As noted in Proposition 1,

the weights {ci} and {Ci}, used on ordered treatment survival and censored val-

ues, depend on the relative ordering of the observed censored values from one

group with the observed failure values of the other group. Thus when treatment

values are shifted by amount β0 �= 0, ci = ci(β0) and Ci = Ci(β0) depend on

the degree of shift β0. These weights determine the distribution of P so it also

changes with β0, and is denoted as P (β0).

Under a β0 translation of the treatment group, the mid-p-value is

p(β0) = pr{P (β0) < v0(β0)}+ 1
2 pr{P (β0) = v0(β0)}. (6)

The saddlepoint approximation p̂(β0) for (6) uses cutoff v0(β0) in conjunction

with the moment generating function in (3) for (X,Y ) whose constants ci and

Ci are now replaced with ci(β0) and Ci(β0). The set Î = {β0 : 0.025 ≤ p̂(β0) ≤

0.975} determines a 95% nominal saddlepoint region as an approximation to

I = {β0 : 0.025 ≤ p(β0) ≤ 0.975}. The set I is an interval under the following
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condition.

Proposition 2 The set I , determined by inverting a log-rank test, is an inter-

val when the weights {wi} are decreasing in index i. Under this condition, p(β0)

is an increasing step function in β0.

Proof. See the Appendix.

The condition is satisfied by all 5 examples considered below, the Tarone-Ware

class in which the function f in wi = f(ni) is increasing, and tests in the

Fleming-Harrington class with p > 0 = q. The proposition does not assure that

Î is an interval but intervals have been obtained in all examples considered.

5.1 Numerical Examples

The vaginal cancer data of Pike (1966) provides an example with an intermediate

amount of data and light censoring. Take yi = log(ti−100) and use a grid of β0-

values over (−5, 5) with incremental step 0.001. For each β0 value, the residuals

y − β0z were computed, ordered, and the normal and saddlepoint mid-p-values

were computed for both the log-rank and generalised Wilcoxon statistics. For

the smaller values of β0 used to determine the left edge of the confidence interval,

Figures 1 and 2 plot p̂(β0) versus β0 for the log-rank and generalised Wilcoxon

statistics respectively. The figures provide the saddlepoint (dotted) and normal

(solid) mid-p-values for the collection of one-sided tests of H0 : β = β0 versus

H1 : β > β0 over the range β0 ∈ (−0.1, 0.055) with p̂(β0) ∈ (0.0, 0.1).

The horizontal dashed line indicates a height of 0.025 and selects the left

edge of the saddlepoint (normal) interval as −0.041 (−0.038) where it crosses

the dotted (solid) step function. The two figures show that p̂(β0), the saddle-

point mid-p-value in the one-sided test of H0 : β = β0 versus H1 : β > β0, is

consistently larger than the corresponding asymptotic normal p-value for the

same hypothesis.
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Figures 3 and 4 plot 1 − p̂(β0) versus β0 for the log-rank and generalised

Wilcoxon test respectively. The saddlepoint mid-p-values in these figures are

for the one-sided tests of H0 : β = β0 versus H1 : β < β0. For these plots, the

saddlepoint and normal approximations are closer and the right edges of the

resulting confidence intervals are also closer. Table 6 summarizes the confidence

intervals that result for the Pike data.

Interval Lower Upper

True Sadpt. Normal True Sadpt. Normal
Log-rank −.0403 −.041 −.038 .4269 .427 .424
G. Wilcoxon −.0369 −.038 −.025 .4139 .414 .414

Table 6. Confidence intervals for the Pike data.

The plots in Figures 1 and 2 that provide the left edge of the interval are

more interesting. Here an exclusion of β = 0 to the left of the confidence interval

would demonstrate that treatment is significant at mid-p-value 2.5% in the one-

sided hypothesis test of H0 : β = 0 versus H1 : β > 0. These same plots are

also the plots in which the saddlepoint determination of mid-p-value is more

shifted away from the asymptotic normal determination. For the Pike data, the

true mid-p-value is .05242, the saddlepoint mid-p-value is .05226 and the normal

p-value is shifted away at .0496.

Figures 3 and 4 plot mid-p-values 1− p̂(β0) of one-sided tests whose alterna-

tives state that the β0-translated treatment responses fare worse than control.

Here the saddlepoint and normal approximations are closer together, but this

also is the less interesting tail for determining a beneficial treatment effect.

The true 95% confidence intervals were computed by using the simulated

mid-p-values as described in §4. Since it was prohibitive to simulate mid-p-

values over the entire grid of β0 values, only the true mid-p-values for a sequence

of β0 values that searched for a root to p(β0) = 0.025 were used. Starting with
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the saddlepoint confidence interval, this sequence of β0-values consisted of those

needed when using a bisection method to solve for the root of p(β0) = 0.025.

The three methods of confidence interval construction in Table 6 are all

conservative. For each, the determination of endpoints is based on the vertical

steps in the plot cutting through the horizontal line at height 0.025 and the

coverage must include the full probability mass at the endpoints. It is clear

that the saddlepoint confidence intervals are more accurate than the normal

ones for both the log-rank and generalised Wilcoxon tests.

Any attempt to simulate these confidence intervals, for the purpose of deter-

mining whether the saddlepoint interval achieves more accurate coverage, would

be difficult to implement and also difficult to interpret because the true cover-

age cannot be set to 95%. As indicated above, even the true confidence interval

using simulation is conservative due to the extra mass at the endpoints of the

confidence interval that pushes the total coverage over 95%. However the simu-

lations in §4.1 suggest that if (a, b) is the true 100α% confidence interval with

α ≈ 0.95, then p̂(a) ≃ p(a) and p̂(b) ≃ p(b) so that p̂(b)− p̂(a) ≃ p(b)−p(a) = α

and the total coverage as well as overshoot and undershoot should all be very

close to their true values.

5.2 Further Examples

Some additional examples are given in Table 7 for some published data sets

using yi = log(ti) so time 0 is the baseline for measurement. In each, β is

the differential effect of the second group. The saddlepoint confidence interval

“Sadpt.” is extremely accurate in all instances of the log-rank and
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Interval Lower Upper

True Sadpt. Normal True Sadpt. Normal

Breast Cancer: Sedmak et al. (1989) N1 = 36(20) N2 = 9(1)

Log-rank −2.1477 −2.113 −2.069 −.1940 −.194 −.278
G. Wilcoxon −1.9387 −1.940 −1.953 .03498 .0350 .0400

Ovarian Cancer: Edmunson et al. (1979) N1 = 13(6) N2 = 13(8)

Log-rank −.7901 −.808 −.676 3.0348 3.035 2.351

G. Wilcoxon −.5586 −.559 −.527 2.9519 2.952 2.256

Myelomatosis: Peto et al. (1977) N1 = 12(6) N2 = 13(2)

Log-rank −5.0230 −4.722 −4.056 1.7739 1.774 1.774

G. Wilcoxon −4.1829 −4.183 −3.335 2.1699 2.170 2.170

Gastric Carcinoma: Stablein et al. (1981) N1 = 47(9) N2 = 48(8)

Log-rank −.2575 −.258 −.229 .9099 .910 .885

G. Wilcoxon .0685 .068 .081 1.0039 1.004 1.000

Table 7. Four published data sets with exact 95% confidence intervals
“True”, saddlepoint determination “Sadpt.”, and normal intervals “Normal”.
Group sample sizes and the number censored (in parentheses) are shown.

generalised Wilcoxon inversion. The examples show large and small data sets

with heavy and light censoring that is balanced and unbalanced among the

groups.

From a practical point of view, the 95% confidence interval for β is more

meaningfully reported as a 95% confidence interval for 100(eβ − 1)%, the per-

centage increase in treatment survival time over control survival time under the

accelerated failure time model. To understand this, let T1 and T2 be control

and treatment survival times respectively with ε as the error distribution on the

log-scale. The ratio of means (or medians for that matter) is

E(T2)

E(T1)
=
eµ+βE(eε)

eµE(eε)
= eβ

so that 100(eβ−1)% is the percentage increase in survival time due to the treat-

ment effect. Ninety-five percent confidence intervals for this percentage are out-
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put by the software available at http://www.smu.edu/statistics/faculty/butler.html.

6 Tied Failure Times

Suppose t(1) < ... < t(k) are the ordered failure times, and there are di failures

at time t(i). Let z(i)j be the treatment indicator for individual j at time t(i) and

suppose zi1, ..., zimi
are treatment indicators for the censored data in [t(i), t(i+1)).

The weighted log-rank statistic for the tied data is

vt =
k∑

i=1

wi




di∑

j=1

z(i)j −
di
ni

∑

l∈R(t(i))

zl



 (7)

where ni is the number of individuals at risk at time t
−

(i), and R(t(i)) is the risk

set at time t−(i). A simple exercise shows that vt can be written in the form of

(2) as

vt =
k∑

i=1









wi −

i∑

j=1

wjdj
nj






di∑

j=1

z(i)j +





−

i∑

j=1

wjdj
nj






mi∑

l=1

zil





with

ci = wi −
i∑

j=1

wjdj/nj Ci = −
i∑

j=1

wjdj/nj .

Thus all tied failures at t(i) are given the same weight. With appropriate scores

{ci} and {Ci} and repeats of weights assigned to ties, the permutation dis-

tribution of vt can be approximated by using the Skovgaard expression as in

§3.

Tied failure times are found in the kidney data of Nahman et. al. (1992)

with N1 = 43 and N2 = 76. Table 8 compares saddlepoint and normal mid-p-

values with exact mid-p-values determined by simulating 106 permutations of

vt.

Mid-p-value Log-rank G. Wilcoxon Gehan TW HF

True .05098 .1136 .4883 .2574 .1144
Sadpt. .05122 .1134 .4891 .2569 .1144
Normal .05587 .1184 .4818 .2628 .1195
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Table 8. Mid-p-values for five tests in the log-rank class in the presence of
tied failure times.

7 Permutation Tests for Symmetry

Tests for symmetry of the distribution of uncensored log-survival times are pro-

posed when the data are subject to right censoring. Such tests are relevant when

using the generalised Wilcoxon test, whose motivation rests on the assumption

of log-logistic errors, however no tests for symmetry have been found in the

literature when there is right censoring. This section shows how such tests may

be performed by using the two-sample tests of §3. If log T is an uncensored

log-survival time that has been centered about 0, then the weighted log-rank

class of statistics may be used to test that the distribution of logT is symmetry

about zero.

Initially suppose there is no censoring and yi = log ti for i = 1, ...,N are the

unordered log-survival times that form a random sample from continuous distri-

bution G. For this setting, Tajuddin (1994) has suggested testing the symmetry

of G about 0 by using the two-sample Wilcoxon test. He suggests pooling

the data as |y1|, ...|yN | and using {i : yi > 0} as the designated “treatment”

group. For Y ∼ G assumed to be symmetric, the test is based on the idea that

−Y |Y < 0 has the same distribution as Y |Y > 0 so that |y1|, ...|yN | are a ran-

dom sample from a common distribution. Tajuddin shows that such tests are at

least as powerful as the test of McWilliams (1990) who in turn shows his test to

be more powerful than tests by Butler (1969), Rothman and Woodroofe (1972),

and Hill and Rao (1977) for selected alternatives in the asymmetric lambda

distribution class.

Modification of this idea to accommodate right censoring leads to the weighted

log-rank class of tests for symmetry. Suppose {yi} are the unordered log-
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survival/censoring times that have been centred, perhaps by subtracting the

median value. Treatment labels are assigned to {i : yi > 0} and control labels

to the remainder. Now all of the absolute treatment data are combined with

only the absolute survival times from the control group. Censored data from

control are eliminated for the reasons given below. This pooled data |y1|, ...|ym|

retains treatment/control labels as well as the censoring labels for the treat-

ment group. Now any test in the weighted log-rank class may be used to check

equality of the distributions for the treatment and control groups.

Censored control observations are removed because they are not informative

about symmetry. To understand why, consider a censored survival time centred

at, for example, −3. Its centred survival time falls in the range (−3,∞) which

becomes [0,∞) upon taking its absolute value. Thus a censored control value

should be treated as censored at 0 and therefore it is not in R(t(1)) and never at

risk for any terms in the computation of v in (1). Thus, censored control values

are treated as if they are not in the data set and therefore not informative. Of

course the same may be said if the smallest treatment value were censored; it is

not in R(t(1)) and its presence or removal has no effect on the computation of

v.

Good and Gaskins (1980) provide uncensored data measuring the percentage

of silica for N = 22 chondrites meteors. The data are to be tested for symmetry

about the value 29 which leads to N1 = 11 = N2. Using the Wilcoxon signed

rank test, the true mid-p-value is .36156, the saddlepoint mid-p-value is .36166,

and the normal approximation yields .42914.

Dinse (1982) provides censored survival times for patients with non-Hodgkins

lymphoma. The asymptomatic portion of the data are used and centered about

the median which leads to N1 = 15 = N2. There are no censored values below

the median but 13 out of the 15 values above the median are censored. Table

9 provides mid-p-values that contrast the accuracy of the saddlepoint approxi-
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mation with the poor performance of the normal approximation.

True Sadpt. Normal

Log-rank .09225 .09033 .05051
Gehan .05206 .05160 .04942

Table 9. Mid-p-values for testing the symmetry of survival data that are

censored.

8 Appendix

Proof of Proposition 2:

The value of p(β0) may only change when the translation of log-treatment

times is increased from β0 to β0+ ε and this leads to an interchange of a treat-

ment response with a control response. For this interchange, a control response

is smaller than a treatment response with translation β0 and this order gets

reversed when increased to β0 + ε. Four cases need to be considered depend-

ing upon whether the control and treatment responses are failure times (1) or

censoring times (0). Let L and R respectively denote the control and treatment

types (0 or 1) that get interchanged.

In each case, the randomization variable P ∗(β0) = P (β0)− v(β0) is shown

to have a stochastically decreasing distribution as β0 increases to β0 + ε or

P ∗(β0) = P (β0)− v(β0)
st
� P (β0 + ε)− v(β0 + ε) = P ∗(β0 + ε). (8)

It is shown below that when the increment from β0 to β0 + ε leads to an

interchange in which either L �= 0 or R �= 0, then

pr{P∗(β0) ≤ 0} ≤ pr{P ∗(β0 + ε) ≤ 0} (9)

and

pr{P∗(β0) < 0} ≤ pr{P ∗(β0 + ε) < 0} (10)
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so that p(β0) ≤ p(β0 + ε). If L = 0 = R then p(β0) = p(β0 + ε).

In the notation below, ni is the number at risk at the ith smallest failure

time t(i) when log-treatment times have been translated by β0. Likewise the

between failure bracket [t(i), t(i+1)) is after translation by β0.

Case 1 : L = 0 = R, a censored control and censored treatment in interval

(t(j), t(j+1)) are interchanged.

The change in v(β0) is

∆v = v(β0)− v(β0 + ε) = 0.

The weights on the randomisation distribution P (β0) also remain the same

as those on P (β0 + ε). Therefore, the two distributions in (8) are equal and

p(β0) = p(β0 + ε).

Case 2 : L = 1 = R, a control failure at t(j) and a treatment failure at t(j+1)

are interchanged.

In this case

∆v =

(
wj+1 −

j+1∑

l=1

wl
nl

)
−
(
wj −

j∑

l=1

wl
nl

)
= wj+1 −wj −

wj+1
nj+1

< 0

when wj is decreasing in j. The interchange of two failure times does not change

the randomization distribution so P (β0) and P (β0 + ε) have the same distrib-

ution. Since v(β0) < v(β0+ ε), the stochastic ordering of distributions in (8) is

strictly decreasing and both (9) and (10) hold.

Case 3 : L = 0 and R = 1, a censored control in (t(j−1), t(j)) and a treatment

failure at t(j) are interchanged.

Here,

∆v =

(
wj −

j∑

l=1

wl
nl

)
−
(
wj −

j−1∑

l=1

wl
nl
− wj
nj + 1

)
= − wj

nj(nj + 1)
< 0.

In this case, the interchange affects the randomisation distribution so P (β0)

and P (β0 + ε) have different distributions. The change in this distribution is
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determined by what group labels the randomisation allocates to the censored

control and treatment failure that get interchanged. Let notation ETC refer to

the event that a treatment label is allocated to censored control (on the left at

β0) and a control label is assigned to the treatment failure (on the right). The 4

cases ECC , ETT , ECT , and ETC partition the possible randomisations and are

considered in turn.

Conditional on event ECC ,

P (β0)
st
= P (β0 + ε) (11)

so, adding ∆v +wj/{nj(nj + 1)} = 0 to right hand side of (11), gives

P ∗(β0)
st
� P∗(β0 + ε).

Conditional on event ECT , so the allocation agrees with the observed labels at

β0, then

P ∗(β0)
st
= P∗(β0 + ε).

Conditional on ETC ,

P (β0)−
(
−
j−1∑

l=1

wl
nl

)
st
= P (β0 + ε)−

(
−

j∑

l=1

wl
nl

)

so that P (β0)
st
= P (β0 + ε) +wj/nj . Since ∆v < 0,

P ∗(β0)
st
� P ∗(β0 + ε) +

wj
nj

st
� P ∗(β0 + ε). (12)

Finally, conditional on ETT ,

P (β0)−
{
−
j−1∑

l=1

wl
nl

+

(
wj −

j∑

l=1

wl
nl

)}
st
=

P (β0 + ε)−
{(

wj −
j−1∑

l=1

wl
nl
− wj
nj + 1

)
−
j−1∑

l=1

wl
nl
− wj
nj + 1

}

so that P (β0)
st
= P (β0+ ε)+wj(nj − 1)/{nj(nj +1)}. Conditional on ETT , the

stochastic ordering in (12) again holds. Since the events ECC, ETT , ECT , and

24



ETC partition the randomisation outcomes and the stochastic ordering is strict

in the latter 3 cases, the stochastic ordering holds unconditionally so that (9)

and (10) hold for Case 3.

Case 4 : L = 1 and R = 0, a control failure at t(j) and a censored treatment

in (t(j), t(j+1)) are interchanged.

In this case

∆v =

(
−

j∑

l=1

wl
nl

)
−
(
−
j−1∑

l=1

wl
nl

)
= −wj

nj
< 0.

The 4 randomisation cases ECC , ETT , ECT , and ETC are considered in turn to

compare P (β0) to P (β0 + ε).

Conditional on event ECC ,

P (β0)
st
= P (β0 + ε) (13)

so, adding ∆v +wj/nj = 0 to right hand side of (13), gives

P ∗(β0)
st
� P∗(β0 + ε).

Conditional on event ECT , so the allocation agrees with the observed labels at

β0, then

P ∗(β0)
st
= P∗(β0 + ε).

Conditional on ETC ,

P (β0)−
(
wj −

j∑

l=1

wl
nl

)
st
= P (β0 + ε)−

(
wj −

j−1∑

l=1

wl
nl
− wj
nj − 1

)

so that P (β0)
st
= P (β0 + ε) +wj/{nj(nj − 1)}. Since ∆v < 0,

P ∗(β0)
st
� P ∗(β0 + ε) +

wj
nj(nj − 1)

st
� P ∗(β0 + ε).

Finally, conditional on ETT ,

P (β0)−
{(

wj −
j∑

l=1

wl
nl

)
−

j∑

l=1

wl
nl

}
st
=

P (β0 + ε)−
{
−
j−1∑

l=1

wl
nl

+

(
wj −

j−1∑

l=1

wl
nl
− wj
nj − 1

)}
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so that

P (β0)
st
= P (β0 + ε) +

wj
nj(nj + 1)

− wj
nj
. (14)

Adding ∆v +wj/nj = 0 to right hand side of (14) shows, conditional on ETT ,

that

P ∗(β0)
st
= P ∗(β0 + ε) +

wj
nj(nj + 1)

st
� P ∗(β0 + ε).

Since the events ECC , ETT , ECT , and ETC partition the randomisation out-

comes and the stochastic ordering is strict in all cases but ECT , the stochastic

ordering holds unconditionally so that (9) and (10) hold for Case 4.
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Figure 1. Plot of p̂(β0) versus β0 for the log-rank test using the Pike data.
Mid-p-values for the saddlepoint approximations (dotted) and the normal

approximations (solid) are shown over the range (0.0, 0.1).
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Figure 2. Same plot of p̂(β0) versus β0 as Figure 1 but for the generalized
Wilcoxon test.
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Figure 3. Plot of 1− p̂(β0) versus β0 for the log-rank test using the Pike data.
Mid-p-values set against the alternative hypotheses H1 : β < β0 for the

saddlepoint approximations (dotted) and the normal approximations (solid)
are shown over the range (0.0, 0.1).
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Figure 4. Same plot of 1− p̂(β0) versus β0 as Figure 3 but for the generalized
Wilcoxon test.
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