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Abstract

Con�dence intervals for the median lethal dose (LD50) and other dose percentiles in
logistic regression models are developed using a generalization of the Fieller theorem
for exponential families and saddlepoint approximations. Simulation results show
that, in terms of one-tailed and two-tailed coverage, the proposed methodology gen-
erally outperforms competing con�dence intervals obtained from the classical Fieller,
likelihood ratio, and score methods. In terms of two-tailed coverage, the proposed
method is comparable to the Bartlett-corrected likelihood ratio method, but gener-
ally outperforms it in terms of one-tailed coverage. An extension to the competing
risk setting is presented that allows binary response adjustments to be made using
observed censoring times.

Keywords: Bartlett correction, binary data, bootstrap, competing risks, Fieller�s
method, likelihood ratio, saddlepoint approximation, score statistic.
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1. INTRODUCTION

In toxicity experiments, subjects are given dose x, usually measured on a loga-

rithmic scale, and a binary response (death or non-death) is observed. Let Yi be the

number of deaths among the ni subjects receiving dose xi, for i = 1; : : : I. De�ne

LD100p as the dose for which the probability of death is p 2 (0; 1): When p = 0:5;

the LD100p is the median lethal dose, or LD50, which is commonly used as an overall

measure of toxicity. The LD100p for other values of p is also useful.

If subjects are assumed to be independent Bernoulli trials with probability of

death �i for subjects receiving dose xi; then Yi jxi � Binomial (ni; �i). The logistic

model (McCullagh and Nelder, 1989) assumes that the logit of �i is linear in dose so

ln
�i

1� �i
= �0 + �1xi: (1)

For �xed p, let g := lnfp=(1� p)g and � := LD100p so the relationship is

g = �0 + �1�:

In a toxicity study it is reasonable to assume that �1 > 0 so � can be expressed as

� = (g � �0)=�1:

The LD100p is usually estimated by maximum likelihood, b� = (g� b�0)=b�1, where b�0
and b�1 are the maximum likelihood estimates (MLEs) of the intercept and slope. An
asymptotic standard error, b�(b�); can be based on a one-term Taylor series approxi-

mation of (g � b�1)=b�2 together with the asymptotic covariance matrix for (b�0; b�1)T ,
bV =

24 v00 v01

v01 v11

35 ;
which is computed by inverting the observed Fisher information.

There are a number of existing methods for constructing approximate con�dence

intervals (CIs) for LD100p. Some authors do not assume the logistic model at all
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but rather consider non-parametric methods for making inference about LD100p; see

for instance Bhattacharya and Kong (2006), Dette et al. (2005), Glasby (1987) and

Schmoyer (1984). Other authors such as Stukel (1988) consider parametric general-

izations of the logistic model. We shall however consider methods where the logistic

model is assumed since this is often what is done in practice.

The delta method is based on the approximate normality of b�. A 100(1 � 2�)%
delta method CI is given by b�� z�b�(b�);
where z� is the upper � point of the standard normal distribution.

The Fieller CI (Fieller, 1954) is based on the asymptotic normality of the MLE,

(b�0; b�1)T . The function (b�0 + �b�1 � g) is approximately normally distributed with

mean zero and estimated variance v00 + 2�v01 + �2v11: The 100(1 � 2�)% Fieller

interval is the set of � satisfying the inequality

(b�0 + �b�1 � g)2

v00 + 2�v01 + �2v11
< z2�: (2)

Although Finney (1971) described the Fieller interval as a �ducial interval, it can be

reasonably interpreted as an approximate CI. Indeed, if (b�0; b�1) were exactly normal,
and the variances were known, rather than estimated, the Fieller interval coverage

would be exact.

A third CI for � can also be formed as the set of � not rejected by the asymptotic

likelihood ratio (LR) test. This approach for the LD50 is advocated in Williams

(1986), where it is noted that a LR interval can be computed even when the esti-

mated slope or intercept is in�nite, and the delta method and Fieller CIs cannot be

computed. Williams also suggests that when computing LR CIs an upper bound be

placed on the slope parameter, based on subjective area knowledge.

The parametric bootstrap method of Hwang (1995) is a re�nement of Fieller�s

method. To construct a 100(1� 2�)% CI for � one needs to �nd, via simulation, q�
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and q1�� the � and 1� � quantiles of the distribution of T �0 (b�) where
T �0 (�) =

b��0 + �b��1 � gp
v�00 + 2�v

�
01 + �2v�11

and the starred (�) quantities denote parameter estimates obtained from data simu-

lated from the �tted logistic model. The CI for � consists of those values of � such

that

q� < T �0 (�) < q1��.

The score CI consists of the set of � satisfying the inequalityPI
i=1�̂

2
� (Yi) (xi � �)2

hPI
i=1 fyi � �̂� (Yi)g2

i
PI

i=1�̂
2
� (Yi)

hPI
i=1�̂

2
� (Yi) fxi � ~x�g

2
i < z2�: (3)

where �̂� (Yi) and �̂2� (Yi) are the MLEs for the mean and variance, respectively,

of Yi under the constraint that � is in fact the true value of LD100p, and ~x� =nPI
i=1�̂

2
� (Yi)

o�1PI
i=1�̂

2
� (Yi)xi.

Finally, we also consider the CI obtained from the Bartlett-corrected likelihood

ratio (BLR) test. The BLR test statistic is obtained by scaling the LR test statistic

so it has a chi-squared distribution with error O (n�2); see Butler (2007, section 7.1.2)

for more details. The scaling factor for LD100p in the logistic model is given in Harris

et al. (1999).

Although all of these interval methods apply to any LD100p, simulation studies

have often focused on the LD50. Sitter and Wu (1993) compare the coverage rates

of the �rst two methods and conclude that the Fieller method is superior by a wide

margin. However, for small ni, or for highly asymmetrical designs, the Fieller CIs have

poor coverage. Faraggi, Izikson and Reiser (2003) compare the �rst three methods, as

well as an adjusted likelihood method and a bootstrap ABC method. They conclude

that for small samples the LRmethod has observed coverage that is closest to nominal,

and that the Fieller method is generally conservative.

The BLR and score methods were introduced in Harris et al. (1999) where, for

LD50, they were found to give a coverage probability closer to the nominal level than
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the Fieller and LR methods. Furthermore, Huang (2002) found that these methods

also outperform the Fieller and LR methods for the estimation of LD90. Huang et al.

(2000) considered a number of bootstrap and non-bootstrap methods for generating

LD90 CIs and found that the score method generally performed very well in addition

to the BC and BCa bootstrap methods. For LD10 and LD50 in the probit model,

Mueller and Wang (1990) found that the percentile method and two variants, and

the BC and BCa bootstrap CIs, exhibited no uniform improvement over the delta

method. Despite the somewhat con�icting evidence in support of bootstrap methods

for LD100p problems, we consider the bootstrap method of Hwang (1995) since it

has been found to work quite well in Fieller problems.

In this paper we propose a new method for LD100p CIs based on a generalization

of the Fieller theorem (Cox, 1967) for testing ratios of canonical parameters in expo-

nential families. The new method involves transformation of the su¢ cient statistics

so that the hypothesis H0 : � = (g � �0)=�1 = �0 is equivalent to the test that the

�rst canonical parameter equals g. A uniformly most powerful similar test is then

based on the distribution of the �rst su¢ cient statistic, given the value of the second

su¢ cient statistic; see Lehmann (1986, sec. 4.4). The latter conditional distribution

is approximated by the double-saddlepoint formula of Skovgaard (1987). One-sided

100(1 � �)% CIs are formed as the set of �0 values not rejected in the one-sided

hypothesis test. Two-sided 100(1 � 2�)% CIs are formed as the intersection of two

one-sided intervals.

The new CI formula is derived in Section 2. An example using the Hewlett data set

is given in Section 3. Simulation results for the LD50 and LD90 are given in Section

4. In a competing risks setting where censoring times are available, an extension of

the methodology that adjusts for censoring and survival times is given in Section 5.

Concluding remarks are included in Section 6.

2. SADDLEPOINT LD100p CI CONSTRUCTION
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Ignoring constants that depend only on the data, the binomial likelihood is

L(�1; : : : ; �I) =
IY
i=1

�yii (1� �i)
ni�yi

= exp

(
IX
i=1

yi ln

�
�i

1� �i

�
+

IX
i=1

ni ln(1� �i)

)
:

After applying the logistic model,

L(�0; �1) = exp
"
�0

IX
i=1

yi + �1

IX
i=1

yixi �
IX
i=1

ni ln f1 + exp(�0 + �1xi)g
#
:

In exponential family form the likelihood is written as

L(�0; �1) = exp f�0d+ �1r � c(�0; �1)g (4)

with su¢ cient statistics

d =
IX
i=1

yi and r =
IX
i=1

yixi;

canonical parameter � = (�0; �1)T 2 <2; and normalization constant

c (�0; �1) =
IX
i=1

ni ln f1 + exp(�0 + �1xi)g :

The MLE for the logistic model, b� = (b�0; �̂1)T , is obtained by solving the likelihood
equations c0 (�0; �1) = (d; r)T ; and asymptotic standard deviations are computed

from c00 (�0; �1)
�1, evaluated at the MLE. Formulas for c0 (�0; �1) and c00 (�0; �1) can

be written as functions of �i so

�i = �i(�0; �1) =
exp(�0 + �1xi )

1 + exp(�0 + �1xi )
;

c0 (�0; �1) =

24 PI
i=1 ni�iPI
i=1 nixi�i

35 ;
and

c00 (�0; �1) =

24 PI
i=1 ni�i (1� �i)

PI
i=1 nixi�i (1� �i)PI

i=1 nixi�i (1� �i)
PI

i=1 nix
2
i�i (1� �i)

35 :
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The large sample variance of the MLE is

24 v00 v01

v01 v11

35 := c00(b�0; b�1)�1:
For a speci�ed p and g = ln fp=(1� p)g ; and assuming �1 > 0, consider the test

of the hypothesis that � = �0,

H0 :
g � �0
�1

= �0;

versus the alternative

H1 :
g � �0
�1

> �0:

In all that follows we omit the subscript on �0 to simplify the typesetting. For an

hypothesized �; de�ne  � = �0 + ��1; where the subscript � is a reminder that the

de�nition of  depends on the null hypothesis being tested. Hypotheses H0 and H1

above are equivalent to

H0� :  � = g and H1� :  � < g:

Adding and subtracting ��1d within the exponent of the likelihood we obtain

L(�0; �1) = exp f�0d+ ��1d+ �1r � ��1d� c(�0; �1)g

= exp f(�0 + ��1)d+ �1(r � �d)� c(�0; �1)g :

In the above expression, we recognize (�0 + ��1) as  �, de�ne z� := (r � �d); and

substitute  � � ��1 for �0 in the function c(�; �) to obtain

L(�0; �1) = exp f �d+ �1z� � c( � � ��1; �1)g :

The likelihood is now in canonical form for the parameter ( �; �1) and su¢ cient

statistics (d; z�). The transformation from (d; r) to (d; z�) is one-to-one and can be

written explicitly as0@ d

z�

1A =

24 1 0

�� 1

350@ d

r

1A := B�

0@ d

r

1A :
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The transformation of the parameters is the transpose of the inverse transformation0@  �

�1

1A =

24 1 �

0 1

350@ �0

�1

1A =
�
B�1
�

�T 0@ �0

�1

1A :

The transformation matrices have determinant equal to 1, which is not a considera-

tion for a likelihood written with respect a discrete measure, but is relevant to the

continuous approximation used below.

In the new parameterization, the hypothesis H0� is a point hypothesis about the

�rst canonical parameter. The UMP unbiased level-� test for testing H0� :  � = g

versus H1� :  � < g is the conditional test based on the distribution of d given z�.

(Lehmann, 1986, sec. 4.4). In the continuous case, the similar conditional test rejects

H0� when

P (D < d jZ� = z� :  � = g) < �:

Because the distribution is an exponential family, this conditional distribution does

not depend on the nuisance parameter �1. For discrete distributions, a randomization

mechanism must be employed to achieve exact conditional level �. This problem is

described by Cox (1967) in the context of his generalization of Fieller�s Theorem for

exponential families. Cox described the properties of the analogous conditional test

for the ratio of Poisson means, and noted that for small sample sizes the test was

not useful because the reference set for the conditional inference is very limited, or

even degenerate. By analogy, Cox dismissed the conditional approach for such tests

concerning the LD50 in logistic regression. In the LD50 problem, the reference set is

the set of outcomes for which r��d equals its observed value. This set is indeed very

limited, and even degenerate for many real values of �. The conditional p-value may

be small for one value of �, and yet large for nearby values of �. If con�dence regions

are formed as the set of values of � not rejected in the corresponding hypothesis test,

such regions will not even be intervals.

Rather than dismiss the conditional test, we proceed by computing the Skovgaard

(1987) double saddlepoint approximation to the conditional distribution: D jZ� =
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z� :  � = g. Though the Skovgaard approximation is derived for continuous distri-

butions, we apply it formally to the discrete case, without correction for continuity.

One justi�cation for this approach, given by Davison and Wang (2002), is that the

saddlepoint approximation is nearly an exact solution for an analogous problem in

which the discrete mass function of the data is replaced by a continuous approxima-

tion. Another justi�cation is given by Pierce and Peters (1999), who argue in favor

of approximate conditioning in discrete problems. They note that the p-value re-

sulting from saddlepoint approximation accomplishes approximate conditioning, and

provides an approximation to a conditional mid-p-value. The use of mid-p-values

when forming CIs based on discrete distributions is advocated in Agresti (1992) and

Routledge (1994). Ultimately, however, justi�cation for our approach rests upon the

coverage accuracy of the interval and its improvement over existing methods. Sad-

dlepoint methods have achieved remarkable accuracy in approximating non-normal

distributions (Butler, 2007) and potentially o¤er improvement over existing meth-

ods in very small samples or asymmetric situations where methods based on normal

approximations fail.

De�ne F (d j z�) := Pr(D � d jZ� = z� :  � = g): The Skovgaard approximation

to F (d j z�) for exponential families, also described in Butler (2007, sec. 5.4.5), is

bF (d j z�) := �( bw�) + �( bw�)� 1bw� � 1bu�
�
; b � 6= g (5)

where �(�) and �(�) are the standard normal CDF and PDF, respectively, and bw�
and bu� are

bw� := sgn( b � � g)

q
2 lnL(b�0; b�1)� 2 lnL(g � �b�1�; b�1�); (6)

bu� := ( b � � g)

s
jc00(b�0; b�1)jbh� ;

where bh� = � �� 1
�
c00(g � �b�1�; b�1�)���

1

�
:
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The bh� term is the second derivative of c( � � ��1; �1) w.r.t. �1, evaluated at (g �

�b�1�; b�1�); the MLE under the constraint H0�. b�1� solves likelihood equation
IX
i=1

(xi � �)

"
ni expfg + b�1� (xi � �)g
1 + expfg + b�1� (xi � �)g

� yi

#
= 0:

The formula for bw� is a signed version of the square root of the usual likelihood
ratio statistic for testing H0� versus H1�; and the leading term in the expression forbF (d j z�) is the one-sided p-value for the usual likelihood ratio test.
One-sided CIs are formed using the values of � not rejected by the size � test.

Thus, a 100(1� �)% lower one-sided con�dence limit is

LCL = inff� : bF (s j z�) > �g:

Similarly, a 100(1� �)% upper one-sided con�dence limit is formed using the values

of � not rejected in the test of H0� above, versus H1� :  � > g :

UCL = supf� : 1� bF (s j z�) > �g:

The two-sided interval is the intersection of the two one-sided intervals. An unusual

characteristic of this CI construction is the dependence of the conditioning variable

z� on �:

For �xed �; individual p-values are easily computed from quantities that are

standard output of most logistic regression computer packages. The quantity bw�
is the signed square root of the likelihood ratio statistic for testing H0� above, versus

H1� :  � > g. It involves the di¤erence between the deviances of the unrestricted and

null models. The null model may be �tted in a statistical package by transforming

xi to xi � �; and specifying a model without intercept and with o¤set value equal to

g. The quantity bu� is the MLE of b �, minus its hypothesized value, divided by its
asymptotic standard error. The value c00(b�0; b�1) is the inverse of the estimated co-
variance matrix of the unrestricted parameter estimates, under the alternative model.

The value bh� is the inverse of the estimated variance of the b�1� parameter in the null
model.
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To compute the 100(1� 2�)% CI, the p-value must be computed over a �ne grid,

or inserted into a root-�nding subroutine to �nd the values of � at which bF (d j z�)
equals � and 1��. The likelihood ratio CI is obtained by the same procedure, using

only the leading term in bF (d j z�).
3. EXAMPLE : HEWLETT DATA

In this section we examine 95% CIs for the Hewlett data using the saddlepoint,

Fieller, LR, Hwang�s bootstrap, score and BLRmethods. We do not consider the delta

method due to its poor performance in small to moderate sample sizes. The Hewlett

data, with nine design points, relatively moderate samples, and a steep response curve

is studied in Sitter and Wu (1997), and Faraggi et al. (2003). It seems to have �rst

appeared in print in Abdelbasit and Plackett (1983) where the authors state that it

was obtained from personal communication with P.S. Hewlett; no additional details

were provided. Based upon Hewlett (1947,1975) we posit that some kind of petroleum

oil was sprayed directly on each of the grain weevils in the study. It appears that this

oil caused death by migrating into the tracheae and causing anoxia (a total decrease

in the level of oxygen). Furthermore, death, when it occurred, probably happened

within a few days of the spraying and those weevils which did not die recovered from

the spraying. The data are given in Table 1.

The quantities needed for computing bF (d j z�) are easily obtained from logistic

regression programs. The unconstrained MLEs, b�0 = 0:4891892; b�1 = 28:2422, and
the deviance, �2 lnL(b�0; b�1) = 22:78897, are standard output. For LD50 intervals,
set p = 0:5 and g = 0. Fix � = �0:01 and compute b � = b�0 + �b�1 = 0:2067674.

To compute the MLE and deviance under the constraint, g = �0 + ��1, we note that

the constraint implies that the linear predictor is (g���1)+ �1xi = g+ �1(xi��); a

no-intercept model with independent variable xi � � and o¤set g: From any logistic

regression program one can obtain b�1� = 27:2273 and deviance � lnL(g� b�1��; b�1�) =
13



23:59636. Thus bw� = 0:898548. Computing bu� = 0:848501 requires evaluating c00(:; :)
under the unconstrained and unconstrained parameter estimates, but only depends

on the parameter estimates through the model predicted values, b�i. Thus bF (d j z�) =
0:798064. Figure 1 plots bF (d j z�) versus � for � in [�0:06; 0:02] and identi�es the
two-sided 95% CI as the values of � for which 0:025 < bF (d j z�) < 0:975:
Estimates of LD10; LD50; and LD90; and their respective 95% CIs, calculated

using the six methods, are given in Table 2. The di¤erences between the CI methods

are very minor, due to the relatively moderate sample size; however, the saddlepoint

CI is generally narrower than the Fieller and the score CIs which are similar, and

is about the same width as the LR and BLR CIs, and Hwang�s CI based on 1000

bootstrap samples.

4. SIMULATION STUDIES AT HEWLETT DESIGN POINTS

In this section we compare the performance of the saddlepoint CIs, for LD50 and

LD90; with CIs from the Fieller, LR, score and BLR methods. The resampling-based

methodology of Hwang (1995) was excluded from these simulation studies since it was

found to have substantial undercoverage for small samples and highly-skewed designs

in a preliminary simulation study. In this preliminary study and the main study,

the Hewlett design points are chosen so as to be comparable to the simulations of

Sitter and Wu (1993) and Faraggi et al. (2003). For the LD50 simulations, we take

�1 = 7; 14 and 21 and � = �0:017 (MLE for LD50), 0:1, 0:2 and 0:3; and sample size

n = 7; 10; 20; 30 and 50: Here sample size is the number of independent realizations

simulated at each Hewlett design point. The � grid does not contain negative �

values �0:1,�0:2 or �0:3 since symmetry guaranteed that results for these values

would match the results of their positive � counterparts up to simulation error, where

the roles of death and non-death are interchanged.

The � grid for the LD90 simulations consists of values 0:0, 0:1, 0:2, and 0:3. The

MLE for LD90 is 0:0605 and is too close to 0:1 to be of interest so � = 0:0 is used
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instead. In addition, negative � grid values are not considered since they will yield

many simulated data sets with very few una¤ected subjects and hence will provide

very little information about LD90. We do not consider simulations for LD10 since

this dose level for deaths is the LD90 dose level for non-deaths and the Hewlett design

points are symmetric about zero. As such, results for LD10 would coincide with those

for LD90 if the roles of death and non-death are interchanged. The saddlepoint,

Fieller, score and BLR methods cannot be computed in the presence of in�nite MLEs

and as such we let these methods default to the LR method in such settings.

For the preliminary simulation study we followed the simulation design of Hwang

(1995) and performed 3,000 Monte Carlo simulations, each involving 1000 bootstrap

samples. Here the coverage probability was averaged over 21 equi-spaced � values,

in an interval containing the true value of �, for reasons we explain below. Table

3 displays results for those cases where the coverage probability for a nominal 95%

CI was particularly bad (below 0.9) for smaller samples. Notice that the observed

coverage probabilities were all relatively close to the nominal value of 0.95 for larger

n whereas they were quite poor for small n. In the main simulation study none of the

�ve remaining methods ever yielded 95% CIs with coverage probabilities below 0.9.

For the �ve remaining methods we de�ne several types of CI error. A low error

occurs when the CI lies completely below � and a high error occurs if it lies completely

above this value. Low and high error rates exhibit oscillatory behavior when graphed

over a range � values. Figure 2 shows low error rates for the saddlepoint (black),

Fieller (red) LR (green), score (blue) and BLR (gold) methods, for �1 = 7 and

n = 10, where 100,000 data sets were simulated at each point of a �ne grid of LD50 �

values. The oscillatory behavior seen in this �gure is caused by the discrete nature of

the underlying binomial distribution. A similar phenomenon is noted for instance in

Brown, Cai and DasGupta (2002) for the binomial proportion exact CIs considered

therein. We adjust for error rate oscillation by considering averaged error rates where

the average is taken over 21 equi-spaced � values in the interval [�� 0:01; �+ 0:01].
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Furthermore, the error rate at each of the � grid points will be based on 50,000 Monte

Carlo simulations for a total of 1,050,000 data sets per con�guration and simulation

standard error of 0.015% when the true error rate is 2.5%.

We also consider median CI length based upon 50,000 Monte Carlo repetitions at

the speci�ed value of �. Numerical experimentation revealed no oscillation for this

summary statistic so averaging over the grid of � values was not necessary.

For smaller samples, all �ve of the remaining methods sometimes produced CIs

that were in�nite in length, however this is not necessarily a sign that the methods

are failing. In many cases it is an indication that the data do not contain enough

information about the slope of the logistic curve to make useful conclusions about

the location of �, e.g. indicating that more data should be collected. Hwang (1995)

points out that in Fieller problems a CI method that always has a positive con�dence

level must on occasion produce in�nite CIs. Furthermore, with regards to LD100p,

an anonymous referee indicated to us that with �0 �xed and �1 approaching zero the

coverage probabilities for any method, which always produces �nite intervals, will

have to approach zero; see Theorem 1 of Gleser and Hwang (1987).

4.1 LD50 Results

We �rst compare the performance of the saddlepoint CI for LD50 with CIs from

the Fieller, LR, score and BLR methods. In the �gures below �Combined Error�

refers to the two-tailed error rate which is the sum of the low and high error rates.

Furthermore, we report averaged error rates. From Figures 3 and 4 one can see

that the saddlepoint (SP) method outperforms the Fieller and LR methods by a wide

margin and the score and BLR methods to a lesser extent. The saddlepoint method is

nearly perfect in terms of one-tailed and two-tailed coverage, for all cases considered.

The Fieller method is conservative in terms of two-tailed coverage and the LR method

is liberal, as is the score method. The BLR has good two-tailed coverage but much

poorer one-tailed coverage. While there appears to be relatively few di¤erences in
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the plots of median lengths, the score method seems to generally have the shortest

median length of all methods which is consistent with its liberal coverage.

Another issue to consider in the simulations is that Fieller�s method yields a �nite

CI whenever the slope is statistically signi�cant, i.e. �̂21=v11 > z2�. It is argued in

Sitter and Wu (1993) that the LD50 estimation is not meaningful when the regression

relationship is not signi�cant and therefore one should consider CI error rates which

are de�ned over the collection of data sets which result in a �nite Fieller CI. We

refer to these error rates as Fieller-conditional. Previous studies have reported only

Fieller-conditional error rates, but in doing so have sometimes omitted over half of

the simulated data sets.

For the settings considered in Figure 3, the Fieller-conditional error rates and

unconditional error rates are essentially the same since the proportion of cases with

in�nite Fieller CIs was so small. As a result, we have presented only one set of

�gures. Figure 5 presents Fieller-conditional error rates for the same settings as those

used in Figure 4 as well as the percentage of times Fieller�s method did not yield

a �nite CI. Inspection of this �gure reveals that with few exceptions, in terms of

Fieller-conditional one-sided coverage, the saddlepoint method outperforms the BLR

method. In terms of both one-sided and two-sided coverage, it outperforms the other

methods with few exceptions. These exceptions occur with large � and or �1 which

are cases in which the design is poorly suited to provide much information about �

and therefore ones in which any method of CI construction will perform poorly. For

instance, with settings � = 0:3, �1 = 21 and n = 7 the median con�dence interval

length for all methods was in�nite and so are not given in Figure 4. The reason for

this is seen in Figure 5 where the percentage of in�nite Fieller intervals is shown to

be 65%.

A referee has pointed out the need to assess the bias associated with defaulting

to the LR con�dence interval in the case of in�nite MLE�s. To assess this bias we

consider MLE-conditional CI error rates which are de�ned as rates over the collection
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of data sets which result in �nite MLEs. We take as our measure of bias the di¤erence

of two Euclidean distances. The �rst distance is that of the unconditional error rate

from the nominal rate and the second is that of the MLE-conditional error rate from

the same nominal rate. Our bias measure describes how much LR defaulting improves

the error rates for a CI method. A positive bias value indicates that LR defaulting

improved the error rate and a negative bias value indicates that it actually hurt the

error rate. For the larger samples, n = 20; 30 and 50, the bias values are essentially

zero so these graphs are omitted. Figure 6 indicates that LR defaulting has the

greatest e¤ect for larger values of � and or �1 and that the saddlepoint error rates are

relatively una¤ected by LR defaulting. Furthermore, the bias due to LR defaulting

is greatest for all methods when �1 = 21 which coincides with higher rates of in�nite

MLEs.

4.2 LD90 Results

In this section we compare the performance of the saddlepoint CI�s for LD90 with

CIs from the Fieller, LR, score and BLR methods. For the larger sample sizes, the

proportion of cases where the Fieller CI was in�nite or the MLEs were in�nite did not

a¤ect the results so we present only the unconditional error rates. As before, there

was a di¤erence in the unconditional, Fieller-conditional and MLE-conditional error

rates for smaller samples so we report Fieller-conditional error rates and LR default

bias rates for these settings.

From Figures 7 and 8, it can be seen that the saddlepoint method is again nearly

perfect in terms of one-tailed and two-tailed coverage for all cases considered with

few exceptions. The exceptions again occur with small n and large � and or �1, cases

for which any method would perform poorly. As before, the saddlepoint method

generally outperforms the Fieller and LR methods by a wide margin and the score

and BLR methods to a lesser extent. The Fieller method is again conservative in

terms of two-tailed coverage and the LR method is liberal, as is the score method. A
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comparison of Figure 3 with Figure 7 and Figure 4 with Figure 8 shows that Fieller�s

method is more conservative for LD90 than for LD50 and similarly the LR and score

methods are more liberal for LD90 than for LD50. The BLR method generally has

good two-tailed coverage but it�s LD90 one-tailed coverage is generally worse than its

LD50 one-tailed coverage. As before, there appears to be relatively few di¤erences in

the plots of median lengths and the score method seems to have the shortest median

length.

Figure 9 presents Fieller-conditional error rates for the same settings as those

considered in Figure 8 as well as the percentage of times Fieller�s method did not

yield a �nite CI. Inspection of this �gure reveals that again with few exceptions, in

terms of Fieller-conditional one-sided coverage, the saddlepoint method continues to

outperform the BLR method. In terms of both one-sided and two-sided coverage, it

outperforms the other methods with few exceptions. These exceptions as usual occur

with large � and or �1.

The bias values for LR defaulting are shown in Figure 10 which indicates that LR

defaulting again has the greatest e¤ect for larger values of � and or �1 and that the

saddlepoint error rates are relatively una¤ected by LR defaulting in comparison with

the other methods.

5. SURVIVAL-ADJUSTED LD100p CONFIDENCE INTERVAL

It has been pointed out by an Associate Editor that a dose-response analysis in a

toxicity or carcinogenicity study often needs to address a competing risk problem. For

instance with the Hewlett data, if the time between the application of oil and death

had not been so short (2-3 days), then a grain weevil could also have died from natural

causes before dying from the dosing or else could have been right-censored. For such

applications, appropriate competing risk models for survival times are introduced

along with the possibility of independent right censoring. When no censoring occurs,
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survival times are not found to be informative about LD100p and the analysis based

strictly on dose responses is fully informative about LD100p: If survival times are

censored however, then such censoring times along with all known survival times

carry additional information about LD100p: A method that incorporates some of this

information into the present logistic regression analysis is described. It essentially

involves adjusting death counts Yi and sample sizes ni at dose xi by imputing the

missing binary dose responses due to censoring. This scheme would increase Yi and

ni to Y �
i and n

�
i for i = 1; 2; : : : ; I.

To motivate such imputations, consider a semi-Markov competing risk model. The

overall survival distribution is the sum of two subdistributions or cumulant incident

functions (CIFs)

F (tjx; �) = p(x; �)F1(tjx; �) + f1� p(x; �)gF2(tjx; �); (7)

where the �rst term is toxin (or radiation) speci�c and the second is speci�c to all

other risks. Here, p(x; �) is the probability that an animal ultimately dies from a

toxin (or radiation) and F1(tjx; �) is the survival distribution of the animal if it is

certain to die from the toxin and not from a competing cause. Survival distribution

F2(tjx; �) applies to all other competing risks. In most examples, one would expect

that F1(tjx; �) 6= F2(tjx; �) are radically di¤erent however these distributions are the

same in an important special case.

5.1 Markov Setting

Suppose F1(tjx; �) is Exponential (�1) with

ln�1 = �11 + �12x
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and independent of F2(tjx; �) which is Exponential (�2): Then

p(x; �) =

Z 1

0

F1(tjx; �)dF2(tjx; �) =
Z 1

0

(1� e��1y)�2e
��2ydy

=
�1

�1 + �2
=

exp(�11 � ln�2 + �12x)

exp(�11 � ln�2 + �12x) + 1

=
exp(�0 + �1x)

exp(�0 + �1x) + 1
=

eg

eg + 1
;

where �0 = �11� ln�2 and �1 = �12: This model leads to logit probabilities for death

by the toxin.

Since the competing risk is among independent exponentials, the CIF components

F1(tjx; �) = F2(tjx; �) are Exponential (�0 + �1) and

F (tjx; �) = F1(tjx; �) = F2(tjx; �): (8)

The main consequence of (8) is that observed survival times, and right censoring

times for which cause of death is unobserved, are uninformative about associated

dose response. Thus in this Markov setting, observed death times by either cause and

independently right-censoring times add no additional information for determining

LD100p and should therefore be ignored. To see this, denote dose, death time,

and cause of death as f(xi; ti; zi) : i = 1; : : : ; ng where zi = 1 (zi = 0) indicates

death by toxic dose (competing risk). Denote independently right censored data as

(xj; tj) : j = 1; :::;m where xj is dose; tj is censoring time, and binary toxic response

zj is unobserved. In the Markov case, the likelihood function is

nY
i=1

fp(xi; �)dF1(tijxi; �)gzi f[1� p(xi; �)] dF1(tijxi; �)g1�zi �
mY
j=1

S1(tjjxj; �)g

= LM(�)� h(t;F1);
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where S1(tjjxj; �) = 1� F1(tjjxj; �); and

LM(�)=

nY
i=1

fp(xi; �)gzi [1� p(xi; �)]
1�zi

h(t;F1) =

nY
i=1

dF1(tijxi; �)�
mY
j=1

f1� F1(tjjxj; �)g

= �n exp
n
��
�Pn

i=1ti +
Pm

j=1tj

�o nY
i=1

dti;

with � = �0+�1: The likelihood is completely separable into logistic regression factor

LM(�); with parameters � = (�0; �1) = (�01 + ln�1; �01); and distribution parameter

F1 $ � = �0 + �1 with factor h(t;F1): The likelihood is variation independent in

� and � ; see Butler (2007, §9.6). Term LM(�) is the marginal likelihood function

as it involves only uncensored dose response data and represents the marginal mass

function of fzig: It does not represent the conditional distributions of ftijzig for

i = 1; :::; n nor the distributions of the ftjg: The separation of parameters in the

likelihood is the strongest possible and likelihood inference under such circumstances

should be based only on the marginal likelihood LM(�) as in the �rst part of this

paper.

5.2 Non-Markov Setting

A special case of the semi-Markov mixture model in (7) is equivalent to the mix-

ture model in Larson and Dinse (1985). It represents a more realistic non-Markov

setting in which F1(tjx; 
) 6= F2(tjx; 
) and 
 is a nuisance parameter that does not

include �:Without censoring, the likelihood is again variation independent in � and 


and logistic regression in observed dose responses is fully informative about LD100p:

However, when right-censoring occurs, censoring times contribute likelihood factors

that link together interest parameters � and nuisance parameters 
; F1; and F2:

Denoting marginal survival as S(tjjxj; �; 
) = 1� F (tjjxj; �; 
) and F 0k(tijxi; 
) =

fk(tijxi; 
); the likelihood is
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nY
i=1

fp(xi; �)f1(tijxi; 
)gzi f[1� p(xi; �)] f2(tijxi; 
)g1�zi �
mY
j=1

S(tjjxj; �; 
)

= LM(�)�
nY
i=1

f1(tijxi; 
)zif2(tijxi; 
)1�zi �
mY
j=1

S(tjjxj; �; 
):

Without the last factor due to censored data, the likelihood is completely separable

into interest parameter � and nuisance parameters 
; f1; and f2: Marginal likelihood

LM(�) is fully informative about � and the conditional densities for ftij zig are fully

informative about 
: When there is censored data, the last factor
Qm
j=1 S(tjjxj; �; 
)

involves both � and (
; f1; f2) and is the marginal distribution of ftjg that sums out

the missing binary toxic responses fzj : j = 1; : : : ;mg:

With censored data, inference would bene�t from some alternative method that

uses the information in ftj; j = 1; : : : ;mg: A reasonable and practical solution is to

impute the missing binary toxic responses fzj : j = 1; : : : ;mg in the censored data by

using the EM algorithm (Dempster et al., 1977). Imputed data pairs D̂ =f(xj; ẑj) :

j = 1; : : : ;mg can then supplement data D=f(xi; zi) : i = 1; : : : ; ng expressed in

marginal likelihood LM(�): New sample size n + m accommodates both zero-one

dose responses fzig as well as imputed fractional dose responses fẑj 2 (0; 1)g: A

�pseudo-likelihood�of the form (4) with canonical parameter � = (�0; �1)T 2 <2 uses

pseudo-su¢ cient statistics

d̂ =

nX
i=1

zi +

mX
j=1

ẑj and r̂ =
nX
i=1

xizi +

mX
j=1

xj ẑj;

and normalization constant

ĉ (�0; �1) =

nX
i=1

zi ln f1 + exp(�0 + �1xi)g+
mX
j=1

ẑj ln f1 + exp(�0 + �1xj)g :

Such pseudo-likelihoods are of relevance only because they represent a model that

motivates the inputs used in the saddlepoint formulas based on �data�D [ D̂.
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Imputation ẑj makes use of Bayes theorem and the fact that S1(tjx; 
) and S2(tjx; 
)

are di¤erent distributions. For an observed value tj; the imputation step of EM uses

the Bayes update

ẑ
(k+1)
j = P

�
death by toxinjt > tj; �̂(k); �̂(k)

�
= P

�
zj = 1jt > tj; �̂(k); �̂(k)

�
=
p(xi; �̂

(k))Ŝ
(k)
1 (tjjxj; 
̂(k))

Ŝ(k)(tjjxj; 
̂(k))

where �̂(k) and �̂(k) = (
̂(k);Ŝ(k)1 ; Ŝ
(k)
2 ) are MLEs based on �complete�data f(xi; ti; zi) :

i = 1; : : : ; ng [ f(xj; tj; ẑ(k)j ) : j = 1; : : : ;mg: Then ẑj is the limit point for fẑ
(k)
j g:

Note that using imputed values of fẑjg is not the exact maximum likelihood

procedure. That procedure would compute the LD100p interval by entertaining the

test H0 : (g � �0)=�1 = � versus H1 : (g � �0)=�1 6= � and incorporating the missing

data structure into each individual test of �: Since the missing data structure is not

of exponential form, this cannot be easily done. However our missing data approach

is an ad hoc way of approximating this procedure.

5.3. Example

We illustrate the proposed non-Markov methodology with the data from Groer

(1978) which describes the incidence of osteosarcomas in beagle dogs injected with

varying amounts of Plutonium-239 (Ci/kg). Dogs in the study were injected with

this carcinogen at dates between January 12, 1952 and October 17, 1974. Here 199

dogs were observed until death, to determine the number of days since injection, or

until March 31, 1977 which was the cuto¤ date for data as originally reported in Jee

(1977). At the time of death, an autopsy was performed to determine cause of death.

Groer (1978) does not report survival/censoring times at lower dose values where

many of the dogs were still alive at the cuto¤ date. We obtained these times from Jee

(1977) and in Table 4 provide a summary, by mean dose level, of the number of dogs,

the number of deaths, the number dead dogs with osteosarcoma and the number of

censored death times. We omit the death and censoring times, which range from 467
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to 5362. Our data set di¤ers in a single respect from that used in Groer (1978); we

maintain a cuto¤ date of March 31, 1977 and so do not take into account the two

later osteosarcomas referenced in table footnote �*�on page 4089 of Groer (1978).

Furthermore, in our analysis we exclude the data for all dogs at mean dose value 2:88

Ci/kg since the logistic model �ts the remaining data well with a Hosmer-Lemeshow

p-value of 0:321.

We assume a proportional hazards model using piecewise-exponential baseline

cause-speci�c hazard functions, with q + 1 subintervals,

�j (tjx; 
) = exp (
q+1;jx)
qX
i=0


ji1 [�i � t < �i+1) (9)

where j = 1 or 2, 0 = �0 < �1 < � � � < �q < �q+1 =1 and

1 [�i � t < �i+1) =

8<: 1 if �i � t < �i+1

0 elsewhere
.

The piecewise-exponential hazard model provides a simple and �exible distribution

for modeling individual subdistributions or CIFs; see for example Proschan and Kim

(1989). Larson and Dinse (1985) also assume the piecewise-exponential proportional

hazards for the methodology they develop. Note that in this setting the Sj(tjx; 
)

are easily determined in closed-form and we omit the details. We determine our grid

of time-points f�j : j = 1; : : : ; qg so that the resulting intervals contain nearly equal

numbers of deaths and there is at least one death from each cause in every interval.

This is the approach for time-point selection suggested in Larson and Dinse (1985).

Our �tted model uses 5 subintervals since the imputed values ẑj from this model were

similar to those models with 6 or more subintervals. In addition, likelihood ratio

model tests indicate that 5 subintervals yield the best �tting model. The imputed

number of osteosarcoma deaths for the censored death times are given in the last

column of Table 4. In parentheses, we display these values as a percentage of the

number of censored observations. We see that as the mean dose level decreases

fewer osteosarcoma deaths are expected. Table 5 shows LD10; LD50; and LD90
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estimates, and their respective 95% CIs, calculated using the saddlepoint and the

survival-adjusted saddlepoint methods. Imputation increases the estimated values for

LD10 and LD50. Furthermore it yields narrower CIs and provides a more reasonable

lower con�dence bound for LD10; here negative dose values are not meaningful.

5. CONCLUSIONS

We have developed a novel method of CI construction for LD100p using a gener-

alization of the Fieller theorem for exponential families and saddlepoint approxima-

tions. The CIs are formed as the intersection of upper and lower con�dence bounds,

and as such have very good one-tailed coverage, which is particularly important in

applications for which one-sided con�dence bounds are appropriate. For instance in

pharmacology, where one considers the therapeutic response to a drug, an accurate

lower con�dence bound for LD99, or perhaps more properly ED99, may be of primary

interest since it estimates the minimal dose at which at least 99% of the people taking

the drug would bene�t. On the other hand in environmental toxicology an accurate

upper con�dence bound for LD1 might be of interest since it estimates the maximal

dose which kills no more than 1% of the population.

Simulation results show that, in terms of one-tailed and two-tailed coverage, the

proposed methodology generally outperforms competing con�dence intervals obtained

from the classical Fieller, likelihood ratio, and score methods. In terms of two-tailed

coverage, the proposed method is comparable to the Bartlett-corrected likelihood

ratio method, but generally outperforms it in terms of one-tailed coverage. We also

develop an extension of our methodology which adjusts for survival in a competing

risk setting subject to right-censoring. Here semi-Markov competing risk models are

developed and the EM algorithm is used to impute binary responses based upon

observed censoring times.
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TABLES

log10(dose) Number of subjects Number a¤ected

xi ni yi

.2810 47 47

.2304 50 50

.1523 50 50

.0864 50 46
-.0363 50 25
-.0809 50 0
-.1487 50 2
-.2147 50 1
-.3098 50 0

Table 1. Hewlett Data - Toxicity of Sitophilus Granarius (Grain Weevil) to oil

LD10 LD50 LD90
-.0951 -.0173 .0605

Method LCL UCL LCL UCL LCL UCL

Saddlepoint -.1182 -.0776 -.0318 -.0004 .0362 .0912
Fieller -.1190 -.0777 -.0322 -.0000 .0374 .0949
Likelihood Ratio (LR) -.1168 -.0768 -.0322 -.0009 .0350 .0897
Hwang�s Bootstrap -.1168 -.0772 -.0328 .0000 .0358 .0908
Score -.1187 -.0778 -.0320 -.0004 .0377 .0938
Bartlett-corrected LR -.1171 -.0765 -.0323 -.0007 .0345 .0901

Table 2. Hewlett data two-sided 95% CIs for LD10; LD50; and LD90; based on
Saddlepoint, Fieller, Likelihood Ratio (LR), Hwang�s Bootstrap, Score and

Bartlett-corrected LR (BLR) methods.

n
�1 � 7 10 20 30 50
21 .3 0.812 0.874 0.936 0.945 0.949
21 .2 0.783 0.846 0.925 0.943 0.949
21 .1 0.861 0.910 0.935 0.941 0.946
21 .0 0.850 0.905 0.948 0.952 0.951
14 .3 0.896 0.926 0.945 0.946 0.948
14 .2 0.881 0.916 0.944 0.947 0.948

Table 3. LD90 95% CI coverage rates (%) for Hwang�s Bootstrap method for
selected values of �1 and �.
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Mean Dose No. No. Num. with Num. Imputed Num.
(Ci/kg) Dogs Deaths Osteosarcoma Censored Osteoarcoma

2.88 9 9 7 0 n/a
.909 12 12 12 0 n/a
.296 12 12 12 0 n/a
.0951 12 12 10 0 n/a
.0477 14 14 9 0 n/a
.0156 26 14 4 12 1.74 (14.5%)
.0103 38 1 0 37 4.60 (12.4%)
.0054 24 4 0 20 1.97 (7.5%)
.0019 10 3 0 7 0.52 (7.5%)
.0007 13 5 0 8 0.60 (7.5%)
.0000 29 14 0 15 1.11 (7.4%)

Table 4. Summary of the Beagles data with the imputed number of osteosarcoma
deaths for the censored death times.

LD10 LD50 LD90
Method MLE LCL UCL MLE LCL UCL MLE LCL UCL

Saddlepoint 0.005 -0.023 0.020 0.046 0.034 0.064 0.088 0.067 0.133
Surv-Adj Saddlepoint 0.006 -0.008 0.015 0.047 0.036 0.064 0.088 0.067 0.126

Table 5. Beagle data two-sided 95% CIs for LD10; LD50; and LD90; based on the
Saddlepoint and the Survival-adjusted Saddlepoint methods.

32



FIGURE TITLES AND LEGENDS

Figure 1. Saddlepoint p-value, bF (d j z�); versus hypothesized LD50 for the Hewlett
data. (page 34)

Figure 2. Low error rates versus hypothesized LD50 for the Hewlett data. (page 34)

Figure 3. LD50 95% CI. �1 = (7; 14; 21) and n = (20; 30; 50). Error rates (%) and
Median Lengths for the �ve methods.(page 35)

Figure 4. LD50 95% CI. �1 = (7; 14; 21) and n = (7; 10). Error rates (%) and Median
Lengths for the �ve methods. (page 36)

Figure 5. LD50 95% CI. �1 = (7; 14; 21) and n = (7; 10). Fieller-conditional error
rates (%) and percentage of simulated data sets with in�nite Fieller intervals. (page
37)

Figure 6. LD50 95% CI. �1 = (7; 14; 21) and n = (7; 10). Bias rates (%) and
percentage of simulated data sets with in�nite MLEs. (page 38)

Figure 7. LD90 95% CI. �1 = (7; 14; 21) and n = (20; 30; 50). Error rates (%) and
Median Lengths for the �ve methods. (page 39)

Figure 8. LD90 95% CI. �1 = (7; 14; 21) and n = (7; 10). Error rates (%) and Median
Lengths for the �ve methods. (page 40)

Figure 9. LD90 95% CI. �1 = (7; 14; 21) and n = (7; 10). Fieller-conditional error
rates (%) and percentage of simulated data sets with in�nite Fieller intervals. (page
41)

Figure 10. LD90 95% CI. �1 = (7; 14; 21) and n = (7; 10). Bias rates (%) and
percentage of simulated data sets with in�nite MLEs. (page 42)
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